Responsible: Dr. Roberto Sánchez Olea

 Research lines

a)Determine the function of the GTPasas Gpn in 1 and Gpn3 on mammals cells on cultivation by analyzing the consequences of suppressing their expression with  RNA interference techniques (Sanchez-Olea et al., 2008; JBC 283: 24400)

b)Identify the molecular mechanisms regulated by Gpn3 that explain our original findings that Gpn3 is essential for the nuclear accumulation of RNA polymerase II (Calera et al., 2011; BBA 1813: 1708)

c)Explore differences in the importance of Gpn3 in the nuclear accumulation of RNA polymerase II between tumorigenic and non-tumorigenic breast cells (Calera et al., 2011; BBA 1813: 1708), and its use in the diagnosis of cancer.

d)Investigate the localization and intracellular traffic of Gpn1 and Gpn3 proteins using hybrid versions with fluorescent proteins. We used recombinant DNA to generate point mutants and other molecular variants of Gpn1 and Gpn3, and we analyzed the effect of these changes on their localization and intracellular trafficking with fluorescence microscopy

e)Analysis of the posttranslational modifications of the Gpn1 protein during the cell cycle and in response to exposure to ultraviolet light

f)Characterize the physical interaction between the Gpn1 and Gpn3 proteins both in mammalian cells in cultivation, and with recombinant Gpn1 and Gpn3 proteins produced in bacteria. We use immunoprecipitation and western blot assays, as well as the FRET technique

Publications

Rogelio González-González, José A. Guerra-Moreno, Gema R. Cristóbal-Mondragón, Violeta Romero, Sonia G. Peña-Gómez, Gabriela M. Montero-Morán, Samuel Lara-González, Andrés Hernández-Arana, Daniel A.Fernández-Velasco, Mónica R. Calera, Roberto Sánchez-Olea (2017). Human Gpn1 purified from bacteria binds guanine nucleotides and hydrolyzes GTP as a protein dimer stabilized by its C-terminal tail. Protein Expression and Purification 132:85-96

Gehenna Guerrero-Serrano, Leonardo Castanedo, Gema R. Cristóbal-Mondragón, Javier Montalvo-Arredondo, Lina Riego-Ruíz, Alexander DeLuna, Alejandro De Las Peñas, Irene Castaño, Mónica R. Calera, Roberto Sánchez-Olea (2017). Biochimica et Biophysica Acta - Molecular Cell Research 1864(3):451-462

Lucía E. Méndez-Hernández, Ana E. Pérez-Mejía, Bárbara Lara-Chacón, Angel A. Barbosa-Camacho, Sonia G. Peña-Gómez, Mayra Martínez-Sánchez, Angélica Y. Robledo-Rivera, Roberto Sánchez-Olea, Mónica R. Calera (2014). Gpn1 and Gpn3 associate tightly and their protein levels are mutually dependent in mammalian cells. FEBS Letters 588 (21):3823-3829

Humberto Reyes-Pardo, Angel A. Barbosa-Camacho, Ana E. Pérez-Mejía, Bárbara Lara-Chacón, Leslie A. Salas-Estrada, Angélica Y. Robledo-Rivera, Gabriela M. Montero-Morán, Samuel Lara-González, Mónica R. Calera, Roberto Sánchez-Olea (2012) A nuclear export sequence in GPN-loop GTPase 1, an essential protein for nuclear tageting of RNA polymerase II, is necessary and sufficient for nuclear export. Biochimica et Biophysica Acta –Molecular Cell Research 1823(10):1756-1766

Mónica R. Calera, Cristina Zamora-Ramos, Minerva G. Araiza-Villanueva, Carlos A. Moreno-Aguilar, Sonia G. Peña-Gómez, Fabiola Castellanos-Terán, Angélica Y. Robledo-Rivera, Roberto Sánchez-Olea (2011). Parcs/Gpn3 is required for the nuclear accumulation of RNA polymerase II.  Biochimica et Biophysica Acta - Molecular Cell Research 1813(10):1708-1716.

Calera, M.R., Wang, Z., Sánchez-Olea, R., Paul, D.L., Civan, M.M., y Goodenough, D.A. (2009). Depression of intraocular pressure following inactivation of connexin43 in the nonpigmented epithelium of the ciliary body. Invest Ophthalmol Vis Sci. 50(5):2185-2193.

Sánchez-Olea, R., Calera, M.R., Degterev, A. (2009). Molecular pathways involved in cell death after chemically induced DNA damage. Molecular, Clinical and Environmental Toxicology 1: 209-229.

Franco, R., Sánchez-Olea, R., Reyes-Reyes, E.M., Panayiotidis, M.I. (2009). Environmental toxicity, oxidative stress and apoptosis: Ménage a trios. Mutation Resarch/Genetics Toxicology and Environmental Mutagenesis 674: 3-22