Coloquio del Instituto de Física

El Coloquio del Instituto de Física se lleva acabo unicamente en vivo en nuestro canal de YouTube

Liga YouTube

https://www.youtube.com/channel/UCijcZAcDo1Ih5u9e8kiFP3g

Contacto e información: Ing. Cristina Cázares Grageda 

 


 Programación del Semestre Agosto - Diciembre 2022

 

Fecha Ponente Procedencia Tema
1 de febrero      
8 de febrero      
15 de febrero      
22 de febrero

Dr. Luis Orozco

Universidad de Maryland

Enfriamiento por luz de nanofibras ópticas.
1 de marzo Roberto de J. León Montiel  Universidad Nacional Autónoma de México 

Imagenología cuántica de alta resolución asistida por inteligencia artificial.

8 de marzo      
15 de marzo      
22 de marzo Jan Dhont 

Forschungszentrum Jülich GmbH & Lund University 

Electric-field induced phase transitions of highly charged rod-likecolloids.
29 de marzo      
19 de abril

David Wong Campos 

Harvard University 

Imagenología y optogenética de voltaje revela mecanismos de computación neuronal _in vivo_

26 de abril

Baron Chanda

Washington University School of Medicine 

Probing Allostery in ion channels at single molecule resolution.

3 de mayo Jonathan K. Whitmer  University of Notre Dame  Modeling Ionic Liquid Crystals for Ion Transport.
17 de mayo      
24 de mayo Luis Fernando Elizondo Aguilera  Instituto de física / BUAP  Comportamiento estructural y dinámico de un sistema granular vibrado conformado por partículas cúbicas. 
31 de mayo      
7 de junio Jorge Arreola 

Instituto de Física / UASLP 

La breve estancia activa de un ion dentro del poro de un canal iónico. 

 

Liga de Youtube

The TMEM16 proteins constitute a family of membrane proteins, which comprises lipid scramblases and Cl- channels that are involved in diverse physiological processes. Whereas TMEM16 channels contribute to Cl- secretion in airway epithelia and electrical signaling in smooth muscles and certain neurons, TMEM16 scramblases participate in blood clotting and the fusion of trophoblasts and myoblasts. Members of both functional branches share a common architecture and are activated by intracellular Ca2+ by a similar mechanism. TMEM16 proteins form homodimers of subunits that are composed of ten membrane-spanning helices. The subunits are functionally independent and contain a regulatory Ca2+-binding site embedded within the transmembrane domain and a close-by site of catalysis located at the periphery of the protein, which either facilitates ion or lipid permeation. In the fungal lipid scramblase nhTMEM16, Ca2+-binding opens a hydrophilic membrane-spanning furrow, which is hidden in the Ca2+-free protein. This furrow provides a pathway for lipid headgroups to move between both leaflets of the bilayer. In contrast, in the anion channel TMEM16A, Ca2+-binding triggers the opening of a protein-enclosed ion conduction pore located in the same region, which remains shielded from the membrane in its activated state. In this case, Ca2+ serves a dual role in promoting a conformational change to release a gate that impedes conduction in the closed state and by shaping the electrostatics to enhance anion permeation. Finally, in the lipid scramblase TMEM16F, we find both functions as lipid scramblase and ion channel contained within the same protein. Despite its close relationship to the anion channel TMEM16A, in its activated state TMEM16F assumes a structure that is distinct from either nhTMEM16 or TMEM16A, which presumably catalyzes both processes in a single conformation.