
Householder factorizations of unitary matrices
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Abstract

A method to construct all representations of finite dimensional unitary matrices as the product of

Householder reflections is given. By arbitrarily severing the state space into orthogonal subspaces,

the method may, e.g., identify the entangling and single-component quantum operations that

are required in the engineering of quantum states of composite (multi-partite) systems. Earlier

constructions are shown to be extreme cases of the unifying scheme that is presented here.
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I. INTRODUCTION

The strong superposition principle of quantum mechanics tells us that every orthonormal

basis represents an exhaustive test. In his book [1], Peres takes note that the principle does

not tell us how to actually perform the test. This “inverse problem” is at the heart of the

engineering of quantum systems. The problem has two faces. One is to write the unitary

transformation U ∈ U(N) ⊂ CN×N that resolves quantum states into eigenstates of an

observable. The other is to build the hardware realizing U .

The standard bridge from U(N) to the hardware is to represent a quantum operation as

the product of simpler unitary factors. In the field of quantum information it is well known [2]

that any quantum operation from U(2n), acting on n-quibit states, may be factorized into

single qubit operations (meaning a U(2) factor acting on a particular C2 subspace of the joint

state space) and operations entangling pairs of qubits (U(4) factors acting on a particular

C2×C2 subspace). The inverse problem, operatively, is to find a sequence of quantum gates

producing the desired matrix in U(N).

A systematic approach to the factorization problem was initiated in reference [3], wherein

instructions to prepare arbitrary one-photon quantum states in multiple optical beams were

supplied: U(N) is represented by a product of at most N(N−1)/2 elementary U(2) factors,

each of them realizable as a Mach-Zehnder interferometer. Afterwards, in a variant [4] of

the factorization method in [3] any matrix in U(N) is represented as a sequences of N − 1

factors at most. Factors in [4] are taken from U(N), U(N − 1), . . . , U(2) succesively and

some implemantations require, for each factor in the sequence, a number of fields and/or

interactions to be applyied simultaneously on the physical system during well-controlled

time intervals.

It is essential thus that factors in a sequence for U(N) fit the physical nature of the system

implementation. This is a feasibility problem. The physical nature (and formal description)

of the set of elementary quantum operations is dictated by the application. It is, of course,

far from being a unique set. Compare, for instance, the following references: [2–8].

In this article a method to construct all representations of U(N) as the product of House-

holder factors is presented (as Theorem III.1). Our method provides a unifying scheme to

attend to the feasibility problem and earlier constructions [3, 4] appear as two extreme cases

of it.
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To deal with the feasibility condition on unitary factors for, e.g., composite systems, the

factorization method in Theorem III.1 allows us to decide freely on the sub-space for each

factor in a sequence, with the aim of fitting the requirements of a particular implementation.

The relevance of this adaptability of the method is illustrated by the following.

In the field of quantum information joint states are tensor products of n qubits, fact that

endows the joint state space with a natural partitioning into two dimensional subspaces.

In this setup, the quantum realization of the Fourier transform which is quadratic in the

number of U(2) factors is the natural choice since the factors combine in the form of gates

acting on the “right” C2 × C2 subspaces as to entangle pairs of qubits. This is a suitable

choice of subspaces in the factorization of the Fourier transform for qubit systems.

While U(2) factorizations produce the longest sequences, factors have, in general, an

easier implementation than U(k > 2) factors. In the engineering of one-photon states that

makes use of lossless optical devices [5, 6], any U(2) factor is known to correspond to a

Mach-Zehnder interferometer [3]. The representation of arbitrary unitary operations as se-

quences of U(2) factors makes the M-Z interferometer a promising candidate to become the

elementary building block for one-photon integrated optics (as the transistor is for electron-

ics). Theorem III.1 provides us with a method to search, among all U(2) sequences, the one

having the most convenient (regarding implemantation) U(2) factors.

The length of a sequence is not necessarilly an issue. By using Theorem III.1 we may

produce factorizations of a Fourier transform in U(N) that go from linear to quadratic in N

for the number of “single” quantum operations. It is the nature of the quantum system what

determines the nature of single quantum operations to choose in a sequence. Generally, a

U(k) factor becomes harder to relize as a piece of hardware as the value of k is increased.

Theoretically, any U(k) is realizable in some implementations [4] by applying k fields to the

system, simultaneously and during a well controlled time interval. The fact is that such

general single quantum operations, for arbitrary values of k, are difficult to implement for,

e.g., trapped-ion systems and an alternative and approximate factorization scheme is, for

instance, described in reference[9]. As a rule of thumb, longer factorizations involve simpler

(in terms of hardware) factors and vice versa.

The article contains the following specific subjects. Given an orthonormal vector basis

Y of CN , the idea of the factorization method is to take each of the vectors in the trans-

formed basis UY to the corresponding vector in the original basis Y , individually, in a
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succession of Householder reflections along pre-selected subspaces. What we accomplish is a

first characterization of U(N) which we state as Lemma III.2. The next subject is to prove

that the composition of all such steps for all the vectors in the orthonormal basis Y consti-

tutes a characterization (in the form of a factorization) of U(N). The formal statement is

Theorem III.1.

The proof of Theorem III.1 that is presented in Section III is nothing else but a method

to systematize the search of Householder factorizations of any U ∈ U(N). A rather poor

estimate we made of the number of different ways to proceed in the factorization of matrix U ,

for a given vector basis, shows us that it is not lesser than N !×B2×B3×· · ·×BN−1, which

is quite a number (Bn is Bell number, for which there is not a simple formula).

In the Sections to follow, we show that the strategies in [3, 8] and [4, 10] are examples of

the engineering of quantum states stemming from two extreme cases of Theorem III.1. One

extreme case consists of representations by the shortest sequences, having N − 1 factors at

most. The case is simple enough as to admit an explicit recording of all the factor matrices

and phase factors involved in the factorizations of U . This we do in Section IV and found

that there are no more than N ! such representations for a given U ∈ U(N).

The second extreme case produces the longest factorizations of U into U(2) factors, N(N−

1)/2 of them at most. This restriction on Theorem III.1 is treated in Section V. For every

unitary operation the method provides no more than super-factorial N s! ≡ N ! (N − 1)! · · · 1

different factorizations into U(2) quantum operations. Every U(2) sequence constitutes a

parametrization of U(N). We conclude by indicating the connection of this extreme case of

our method with Murnaghan’s U(2) factorization [11].

II. HOUSEHOLDER REFLECTIONS

For any two vectors x and y ∈ CN , the inner product is denoted x∗y and the norm

‖x‖ =
√
x∗x. We are overloading symbol ∗. For a matrix U , its Hermitian conjugate is

denoted U∗ and the complex conjugate of z ∈ C is denoted z∗. The meaning of ∗ follows

from the context.

Householder reflections on CN are defined as follows. For any vector x ∈ CN , we associate

the reflection operator [x] ∈ CN×N producing the transformations

[x]y = −y for any y ∈ 〈x〉 and [x]y = y for any y ∈ 〈x〉⊥,
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where 〈x〉 is the linear span of x and 〈x〉⊥ denotes the orthogonal complement of 〈x〉.

Notice that [x] = [x′] if and only if the reflecting vectors, x and x′, are parallel, x ‖

x′. Normalization of the reflecting vector x in the definition of [x] is irrelevant. Every

Householder reflection [x] is unitary, hermitian and idempotent, [x]2 = 1I. Every reflection

(x 6= 0) may be written as [x] = 1I − 21I〈x〉, where 1I〈x〉 is the orthogonal projection onto

subspace 〈x〉. For future convenience we define [x] = 1I in the case vector x is the null

vector, x = 0. Eventhough 1I is not a reflection.

Householder reflections are the most economical unitary transformations to exchange

pairs of vectors in CN . Given any two vectors, the Householder reflection to exchange them

(including the correct phase factor) is provided by the following.

Lemma II.1 Let vectors x 6= y ∈ CN , both x and y 6= 0. There is one and only one

Householder reflection [r] such that

[r]x = z∗(‖x‖/‖y‖)y . (1)

The unit complex number z has ∠z = ∠x∗y and r = z‖y‖x− ‖x‖y, not necessarily normal-

ized.

Proof. The complex number z has been chosen as to have the orthogonality relation

(zx‖y‖ − y‖x‖) ⊥ (zx‖y‖ + y‖x‖), which may be verified by a direct calculation of the

inner product

(zx‖y‖ − y‖x‖)∗(zx‖y‖+ y‖x‖) = 0 .

Then, for the given vector r we have that [r](zx‖y‖+ y‖x‖) = zx‖y‖+ y‖x‖. 2

Notice that the case x ‖ y is not excluded in Lemma II.1. In this case the reflecting

vector r is the null vector, r = 0, for which we have defined matrix [r = 0] as the identity.

This convention makes the job in (1). Thus, given any two vectors, x and y, Lemma II.1

provides the most economical unitary transformation in CN that produces the exchange

z‖y‖x ↔ ‖x‖y. The economy refers to the fact that [r] is the identity on 〈x, y〉⊥, the

orthogonal complement of the 2-dimensional subspace 〈x, y〉.
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III. MAIN FACTORIZATION THEOREM

The transformation U ∈ U(N) ⊂ CN×N takes any orthonormal vector basis Y = (y1, . . . ,

yN) to the basis UY ≡ (Uy1, . . . , UyN), which is orthonormal too. The idea of the factor-

ization is to take each of the vectors in the transformed basis —beginning with, say, vector

Uyq— to the corresponding vector yq in the original basis in several (or many) “partial”

steps. Lemma II.1 will be adopted as the method to take such steps. From this idea we get

a first characterization of unitarity stated in Lemma III.2 below. The main result in this

Section states that the composition of all such steps for all the vectors in any orthonormal

basis constitutes a characterization (in the form of a factorization) of unitary matrices. It is

Theorem III.1, which has two extreme versions that we develop as examples in Sections IV

and V.

Let us prepare the setup for the first step in the factorization of U . From basis Y select

the vector yq. There are N choices for yq. However, to keep the exposition clear, let us

say it is y1. Then prescribe a partition {Pi} of Y \ {y1} into non-empty subsets Pi. Let

s1 ∈ {1, . . . , N − 1} denote the number of elements in the partition set {Pi}. Bell number

BN−1 is the number of different choices for such a partition. Then, assign an ordering to the

partition set. Let it be P1, . . . , Ps1 , one out of s1! different orderings. We see that the total

number of choices to start the first step are never lesser than NBN−1 (different orderings of

the partition set are not being counted).

The partition element Pi ⊂ Y determine the subspace Ii ≡ 〈Pi〉 having dimension

dim Ii ≡ ni, i = 1 to s1. The ordered set of dimension integers (ni)
s1
1 constitute a partition

of N − 1,
∑

i ni = N − 1. Every subspace Ii is orthogonal to 〈y1〉 and they are mutually

orthogonal: Ii ⊥ Ij whenever i 6= j. We have the direct sum decomposition of CN =

〈y1〉 ⊕ I1 ⊕ · · · ⊕ Is1 .

The first step in the factorization procedure takes vector Uy1 to vector y1 by hopping

along the subspaces Hi := 〈y1〉 ⊕ Ii, successively from i = 1 to s1, in the prescribed order.

The orthogonal projection to subspace Hi is denoted 1Ii.

Let us proceed. First, vector Uy1 is projected to subspace H1 as the vector x1,1 := 1I1Uy1.

Then, we make use of Lemma II.1 to exchange just the vectors x1,1 and y1 by means of the

Householder reflection, denoted [1, 1], reflecting CN along the direction of vector r1,1 =
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z1,1x1,1 − y1‖x1,1‖ ∈ H1, where z1,1 = eiϕ1,1 and ϕ1,1 = ∠x1,1∗y1. We have that

[1, 1]x1,1 = z∗1,1 ‖x1,1‖ y1 . (2)

Notice that we might get x1,1 ‖ y1, situation that we did not exclude in Lemma II.1. It

occurs if and only if the reflecting vector is the null vector, r1,1 = 0. In this case matrix

[1, 1] is conveniently defined as the identity.

The important remark about the Householder matrix [1, 1] we just have computed is

that

y∗[1, 1]Uy1 = 0, ∀y ∈ I1 . (3)

So, for every j such that yj ∈ I1: the (j, 1) entry of the matrix V
(1)
1 := [1, 1]U vanishes,

yj
∗ V

(1)
1 y1 = 0 , yj ∈ I1 .

To see why (3) holds, expand vector Uy1 as a direct sum in H1 ⊕H⊥1 and write

[1, 1]Uy1 = [1, 1] 1I1 Uy1 + [1, 1] 1I1⊥ Uy1 .

The sensible point is that by definition of reflection [1, 1] in (2) we have that [1, 1]1I1Uy1 ≡

[1, 1]x1,1 ‖ y1 ⊥ I1. While for the component H⊥1 we just have that [1, 1]1I1⊥x = 1I1⊥x ⊥ I1
for any vector x ∈ CN . Thus, while the reflection [1, 1] is the identity on H⊥1 it is not on

H1. This situation is referred to by saying that reflection [1, 1] has a block size not greater

than n1 + 1 ≡ dimH1. The actual block size depends on the basis Y . However, in any basis,

the block size of [1, 1] is, by definition, never lesser than 2. Unless it happens by accident

to be the identity.

Next, the same treatment is given to matrix V
(1)
1 = [1, 1]U . The method in Lemma II.1

is applied this time on vectors y1 and the projection x1,2 = 1I2V
(1)
1 y1 to subspace H2. The

new Householder matrix exchanging vectors y1 and x1,2 is denoted [1, 2]. The relevant yield

is matrix

V
(2)
1 := [1, 2]V

(1)
1 = [1, 2] [1, 1]U . (4)

In Lemma III.1 below we will prove that it has the property

y∗V
(2)
1 y1 = 0 , ∀y ∈ I1 ⊕ I2 . (5)

At the moment we keep going on computing Householder matrices, up to exhaust the col-

lection of subspaces Hi, i = 1, . . . , s1. The summing-up is matrix V
(s1)
1 ≡ V1,

V1 := [1, s1] · · · [1, i] · · · [1, 1]U . (6)
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Index i in [1, i] refers to the “transit” subspace Hi. The Householder matrix [1, i] is

block diagonal in the direct sum decomposition CN = Hi ⊕H⊥i and has block-size at most

ni + 1 = dimHi. The block of [1, i] corresponding to its restriction on H⊥i is the identity.

A block-diagonal form of the product matrix V1 in (6) is disclosed in the following.

Lemma III.1 Matrix V1 in (6) transforms the subspace 〈y1〉⊥ unitarily.

Proof. By construction V1 is unitary. Thus, we are to prove that y∗jV1y1 = 0 for every

j 6= 1. Let us then prove that for every j (from 1 to s1),

y∗V
(j)
1 y1 = 0 , ∀y ∈ I1 ⊕ · · · ⊕ Ij−1 ⊕ Ij . (7)

For j = 1 we proved (3) already. Next, let p > 1 be given and assume (7) holds from j = 1 to

p−1. We prove in two steps that (7) holds for j = p too. First take a vector y ∈ I1⊕· · ·⊕Ip−1.

Since y ⊥ Hp we have that [1, p] y = y so that

y∗V
(p)
1 y1 = ([1, p] y)∗V

(p−1)
1 y1 = y∗V

(p−1)
1 y1 = 0

by hypothesis.

To deal with y ∈ Ip recall that [1, p] is block diagonal in the decomposition CN = Hp⊕H⊥p .

Consider then the direct sum V
(p)
1 y1 = 1IpV

(p)
1 y1 + 1Ip⊥V

(p)
1 y1. Since vector y is orthogonal

to H⊥p (because Ip ⊥ H⊥p ) we just have to care about the component of V
(p)
1 y1 in Hp. For it

we have that

1Ip[1, p]V
(p−1)
1 y1 = [1, p] 1IpV

(p−1)
1 y1 ‖ y1 ⊥ y ,

where the parallel relation holds because x1,p = 1IpV
(p−1)
1 y1. 2

Lemma III.1 tells us that the matrix V1 we have computed as the product in (6) is

block-diagonal in the direct sum decomposition CN = 〈y1〉 ⊕ 〈y1〉⊥. Thus, we write

V1 = Ũ1D1 (8)

where D1y1 = z1y1, with z1 a phase factor, and D1 is the identity on 〈y1〉⊥. The factor Ũ1

is a unitary matrix too which is the identity on 〈y1〉 and its action on 〈y1〉⊥ coincides with

that of V1. In the basis Y, matrix D1 is diagonal,

D1 = diag(z1, 1, . . . , 1︸ ︷︷ ︸
N−1

) ,
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and Ũ1 is block-diagonal.

Taking Uy1 7→ y1 by hopping along subspaces H1, . . . , Hs1 we have constructed matrix

V1 as the product given in (6). Inverting it gives us the “partial factorization” (associated

to vector y1) of U ,

U = [1, 1] [1, 2] · · · [1, s1]Ũ1D1 . (9)

Formally, what we got is the following characterization of unitarity.

Lemma III.2 U ∈ U(N) if and only if the following statement holds.

For every vector y ∈ CN and every ordered partition (ni)
`
i=1 of N − 1, 1 ≤ ` ≤ N − 1,

there exist Householder reflections {hi}`i=1 such that Uy = zh1 · · ·h`y. The block-size of

each hi is not greater than ni + 1 and z is a phase factor.

Notice that existence of Householder factors in Lemma III.2 has been proved by providing

a method to actually compute them.

Next, we go for a full factorization of U (not just the one given for vector y1). Let us

organize what we have done in the following terms. Let H1 := [1, 1][1, 2] · · · [1, s1]. By

Lemma III.2 we have that H∗1Uy1 = z1y1. Then, define U1 ∈ U(N) such that U1y1 = z1y1

and that U1 = H∗1U when restricted to 〈y1〉⊥, expressed in the form U1

∣∣〈y1〉⊥ ≡ H∗1U
∣∣〈y1〉⊥.

Again by Lemma III.2, given the basis vector y2, given a positive integer s2 ≤ N − 2

and given any ordered partition (n2,i)
s2
1 of N − 2 there exist Householder reflections [2, 1],

[2, 2], . . . , [2, s2], such that H∗2U1y2 = z2y2, with H2 := [2, 1][2, 2] · · · [2, s2] and z2 a

phase factor. Then define U2 ∈ U(N) such that U2yi = ziyi, i ≤ 2, and that U2

∣∣〈y1, y2〉⊥ ≡
H∗2U1

∣∣〈y1, y2〉⊥. By definition we have that H∗2U1 = H∗2H
∗
1U .

When we have gone as far as the k–th basis vector yk, have given a positive integer sk

which is not greater than N−k and an ordered partition (nk,i)
sk
i of N−k, then Lemma III.2

tells us that there exist Householder reflections [k, 1], [k, 2], . . . , [k, sk] which allow us to

define Uk ∈ U(N) such that Ukyi = ziyi, i ≤ k (for some zk which is a phase factor too),

and that Uk
∣∣〈y1, . . . , yk〉⊥ ≡ H∗kUk−1

∣∣〈y1, . . . , yk〉⊥, with Hk := [k, 1][k, 2] · · · [k, sk]. Just

by definition, we have that Uk = H∗kUk−1 = H∗kH
∗
k−1 · · ·H∗1U .

The recursive action we are describing stops at k = N−1 with matrix UN−1 being defined

by the relations UN−1yi = ziyi for i ≤ N − 1 and

UN−1
∣∣〈y1, . . . , yN−1〉⊥ ≡ H∗N−1UN−2

∣∣〈y1, . . . , yN−1〉⊥ =: zN ,
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which is a phase factor, by unitarity. We identify the matrix of phases

D ≡ UN−1 = diag(z1, . . . , zN).

We further have that UN−1 = H∗N−1UN−2 = H∗N−1H
∗
N−2 · · ·H∗1U = D.

What we just got is another characterization of unitarity.

Theorem III.1 U ∈ U(N) if and only if the following statement holds.

For k = 1 to N − 1, let positive integers sk be such that sk ≤ N − k and let (nk,i)
sk
i=1 be

ordered partitions of N − k. Then, there exist Householder reflections [k, i] ∈ CN×N ,

i = 1, . . . , sk, such that

U = [1, 1] · · · [1, s1 − 1][1, s1]︸ ︷︷ ︸
k=1

· · · [N − 2, sN−2 − 1][N − 2, sN−2]︸ ︷︷ ︸
k=N−2

·

[N − 1, 1]︸ ︷︷ ︸
k=N−1

D . (10)

where D = diag(z1, . . . , zN) is unitary. The block-size of each Householder factor [k, i]

is never greater than nk,i + 1 ≤ N + 1− k.

Again, notice that existence of the Householder reflections in Theorem III.1 was proved

by a recursive use of Lemma III.2 which, technically, may be considered as a computing

procedure. Every representation (10) involves an ordered partition for each of the following:

{y2, . . . , yN} ⊃ {y3, . . . , yN} ⊃ . . .⊃ {yN−1, yN} ⊃ {yN}, subsets of basis Y . Thus, the set of

all representations supplied by Theorem III.1 have a partial order that is induced from the

relation “finer than” on the family of partition sets. The extremal elements in the partial

order are treated in Sections IV and V.

Let us find a lower bound for the number of options we have for the full factorization

of unitary U ∈ CN×N , respect to a given vector basis Y . At every step the index for the

vector to be factorized is selected ad lib. If (q1, . . . , yk, . . . , qN) is a record of the successive

choices, we see that it is one of the N ! permutations of the indices (1, . . . , k, . . . , N). The

subspaces to be considered at every step (from 1 to N − 1) are, successively, the linear span

of the elements of some partition set of subsets of Y having cardinalities N − 1, . . . , 1. The

number of choices we have for such partition sets are, successively, the Bell numbers BN−1,

BN−2, . . . , 1. Without counting the ways the partition set may be ordered, we see that the

number of different ways to proceed in the factorization of unitary matrix U ∈ CN×N , for

the given basis Y , is never lesser than N !×B1 × · · · ×BN−1, which is quite a number. Not

every choice will necessarily produce a different factorization of U .
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Theorem III.1 has two extreme cases, relative to the upper bound,
∑

k sk, for the number

of factor matrices in (10). In the next Section IV we consider its most economical form

(sk = 1, that produces N −1 factors at most). In Section V we deal with its most expensive

form (dim Ik = 1, that produces N(N − 1)/2 factors at most).

IV. THE SHORTEST FACTORIZATIONS

The example we are about to consider is a very simple case of Theorem III.1. Simple

enough as to admit an explicit recording of all the Householder matrices and phase factors

involved in the factorization of U . In this respect we may say that the example is the

simplest case of Theorem III.1.

The simplifying choice in the procedure that leads to representation (10) in Theorem III.1

is to take sk = 1 at every step. Subspaces are not severed and every map Uyk 7→ yk is done

in a single stroke. The only Householder matrix that is computed at step k is [k, 1] ≡ [rk],

with rk ∈ CN the reflecting vector. Matrix U is represented by the product

U = [r1][r2] · · · [rN−1]D, (11)

which is the shortest version of (10), N − 1 Householder factors at most. In Lemma IV.1

below we prove that, for every i < k, the basis vector yi ⊥ rk such that [rk]yi = yi. The

block size of Householder factors [rk] is thus reduced at least by one from step k to the

next.

A simple recursive definition of all the reflecting vectors ri, i = 1, . . . , N − 1, that are

involved in the factorization (11) of U is given. The projection operators 1Ii that were used

in the definition of vectors xk,i, are superfluous for the example. The single phase factors

zk,1, introduced in (2) and successive steps, are denoted ζk.

At step k = 1 introduce the quantities

r1 = ζ1Uy1 − y1 , with ∠ζ1 = ∠(Uy1)
∗y1 , and I1 = [r1]ζ1U . (12)

Then, at the following steps, 1 < k < N , let

rk = ζkIk−1yk − yk , with ∠ζk = ∠(Ik−1yk)
∗yk , and Ik = [rk]ζkIk−1 . (13)

The for-loop ends producing the matrix

IN−1 = (ζN−1 · · · ζ1)[rN−1] · · · [r1]U. (14)
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Our claim is that the matrix D of phases in (11) is

D ≡ diag(z1, . . . , zN) = (ζN−1 · · · ζ1)∗ IN−1 , (15)

with phases given by zk = (ζ1 · · · ζk)∗, k = 1 to N (the new number ζN is defined later,

below). Once our claim (15) is proved, the representation (11) with Householder factors

given by (12)–(13) follows from (14).

To prove claim (15) we need some definitions intended to keep a proper record of the phase

factors ζi computed at every step and then collect them all in matrix D. Let Zk
i := ζi · · · ζk

for i ≤ k. Let unitary matrices Fk, k = 1, . . . , N − 1, be defined by their action on the

vectors in the basis Y . For k = 1, we let F1 = 1I while for k > 1,

Fkyi =

(Zk
i+1)

∗ yi , i = 1, . . . , k − 1

yi , i ≥ k
. (16)

Matrices Fk are diagonal in the basis Y , Fk = diag(Zk ∗
2 , . . . , Zk ∗

k , 1, . . . , 1). By definition,

F ∗kFk = 1I. Our claim (15) is a corollary of the following.

Lemma IV.1 Matrix FkIk is the identity on the subspace 〈y1, . . . , yk〉, for each k = 1, . . . ,

N − 1.

Proof. By definition of I1 in (12) and by Lemma II.1 we have that F1I1 is the identity on

the subspace 〈y1〉 (recall that F1 = 1I). Assume next that Fk−1Ik−1 is the identity in the

subspace 〈y1, . . . , yk−1〉.

First we prove that yi ⊥ rk for every i < k. A direct calculation of the scalar product

rk
∗yi ≡ (ζkIk−1yk − yk)∗yi proceeds as follows,

rk
∗yi = ζ∗k (Ik−1yk)

∗yi = ζ∗k yk
∗(I∗k−1yi) = ζ∗k yk

∗(I∗k−1F
∗
k−1Fk−1yi)

= Zk ∗
i+1 yk

∗(I∗k−1F
∗
k−1yi) ,

where we have made use of (16) and ζ∗kZ
k−1 ∗
i+1 = Zk ∗

i+1. Next, observe that I∗k−1F
∗
k−1yi = yi

since, by the induction assumption, Fk−1Ik−1yi = yi and both Fk−1 and Ik−1 are unitary.

Thus, rk
∗yi ≡ Zk ∗

i+1 yk
∗yi = 0, proving that yi ⊥ rk for i < k.

Next, we prove that FkIkyi = yi for i < k. By definition (13) and the induction assumption

it follows that

FkIkyi = Fk[rk]ζkIk−1yi = Fk[rk]ζkF
∗
k−1yi = Zk

i+1Fk[rk]yi .

12



We have proved that rk ⊥ yi for i < k. Hence, [rk]yi = yi and FkIk yi = Zk
i+1Fk yi =

Zk
i+1Z

k ∗
i+1 yi as promised. To complete the proof, let us consider FkIk yk. Directly from

definitions (13) and by Lemma II.1 we find that Ikyk = [rk]ζkIk−1yk = yk. Then, by (16)

we have that FkIk yk = yk. 2

Lemma IV.1 tells us that FN−1IN−1 is block-diagonal in the direct sum CN = 〈y1, . . . , yN−1〉⊕

〈yN〉, having the form FN−1IN−1 =: diag(1, . . . , 1, ζ ∗N) in the basis Y . The entry ζN is, by

unitarity, a phase factor. Using this corollary of Lemma IV.1 in (14) we identify the following

matrix of phase factors,

D = ZN−1 ∗
1 IN−1 = F ∗N−1FN−1IN−1Z

N−1 ∗
1

= diag
(
ζ∗1 , (ζ1ζ2)

∗, . . . , (ζ1 · · · ζN)∗
)
, (17)

which proves our claim (15).

V. EXPLICIT U(2) PARAMETRIZATIONS OF U(N)

The other extreme of Theorem III.1 is reached by taking sk = N − k, i.e., nk,i = 1, for

each k (from 1 to N−1) and each i (from 1 to N−k). Within this choice, all subspaces in the

definition of the Householder factors in representation (10) of U ∈ U(N) in Theorem III.1

are 2-dimensional, getting (10) the following form

U = [1, 1] · · · [1, N − 2] [1, N − 1]︸ ︷︷ ︸
step 1

· · · [N − 2, 1] [N − 2, 2]︸ ︷︷ ︸
step N − 2

[N − 1, 1]︸ ︷︷ ︸
step N − 1

D . (18)

The number of Householder factors is
∑

k(N − k) = N(N − 1)/2 at most. Each reflection

[k, i] in (18) is the identity on 〈yk, yi〉⊥, the reflecting vector r that defines [k, i] lays in

the two-dimensional subspace 〈yk, yi〉. The block-size of every [k, i] is thus two (unless they

happen to be the identity). In this respect we refer to factor [k, i] as an elementary factor.

To fix the ideas about elementary factors in (18), for any x ∈ 〈yk, yi〉 let r := z‖yk‖x −

‖x‖yk and consider the reflection [r] restricted to the 2-dimensional subspace 〈yk, yi〉 of CN .

Matrix [r] has eigenvalues ±1. Then, the restricted [r] has tr[r] = 0. For an explicit

parametrization of an elementary Householder matrix [r] consider x as the coordinate

vector x = (eiθ sinϕ, cosϕ) ∈ 〈yk, yi〉 with yk = (1, 0) and yi = (0, 1). Then, by applying

Lemma II.1 to x and yk we have that z = e−iθ and that r = x− yk = (sinϕ− 1, e−iθ cosϕ).

13



A direct calculation leads us to the following matrix for [r], restricted to 〈yk, yi〉,

[r] =

 sinϕ eiθ cosϕ

e−iθ cosϕ − sinϕ

 . (19)

When sinϕ = cosϕ = 1/
√

2, the unitary operator [r] in (19) is a Fourier transform between

the complementary bases (yk, yi) and (x1, x2), x1 = (1, e−iθ)/
√

2 and x2 = (eiθ,−1)/
√

2, of

the 2-dimensional subspace 〈yk, yi〉. Every [k, i] in (18), when restricted to 〈yk, yi〉, has the

form in (19), up to an overall phase factor that may be absorbed in matrix D, see (18).

After (19) we see that matrix U ∈ U(N) is parametrized in (18) by N(N − 1)/2 angles

ϕ and by
N(N − 1)

2
+N =

N(N + 1)

2
phase factors eiθ and z,

at most. All of them make N2 real parameters for U(N).

Let us find an upper bound for the number of forms of representing U as the product of

elementary factors in (18). First, the vector yk may be chosen in 1 of N−k+1 forms, totaling

N ! choices. Second, we are considering the finest partition at every step k. The choice is

unique, having cardinality N − k each. The number of choices for a given order of the

partition set at every step is (N − 1)!, (N − 2)!, . . . , 1, successively. The number of possible

factorizations of matrix U ∈ U(N) into elementary Householder blocks is thus never greater

than the superfactorial N s! := N !× (N −1)!×· · ·×2!×1! ≡ 1N ·2N−1 ·3N−2 · · · (N −1)2 ·N .

This is a strict upper bound, since otherwise the dimension of U(N) would be smaller than

N2.

A related parametrization of U(N) is the one given by Murnaghan in [11]. Let A ∈ U(N).

Let AD be the diagonal form of A as given by the transformation U∗AU = AD, for some

matrix U ∈ U(N). Murnaghan’s remark [11] is that a matrix U diagonalizing A may be

represented as a product of N(N − 1)/2 elementary factors and a matrix of phases D = 1I

such that UADU∗ is a representation of matrix A as the product of N(N − 1) elementary

factors and a diagonal matrix of phase factors, AD. Theorem III.1 in its version (18) provides

a proof of Murnaghan’s remark [11] and a method to compute the factors as well.
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