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Abstract

Locality and fair sampling are proved to be contradictory assumptions in hidden variable models of the Bell test that are based upon a
3-dimensional sample space. This result makes the class of 3-dimensional hidden variable models incompatible with quantum mechanics in
the ideal case, independently of detection efficiencies.
© 2007 Elsevier B.V. All rights reserved.
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The Bell test for the singlet state [1] entails the measure-
ment of the spin projections (or polarizations) of two spatially
separated spin-1/2 particles (or photons) that have been pre-
pared in the singlet state. In local hidden variable models with
two outcomes (“spin-up” or “spin-down”) [2] the spin correla-
tions obey an upper bound [3,4] that is exceeded experimen-
tally [5–7]. On the contrary, experimental spin correlations are
consistent with quantum theory and with local hidden variable
models with three outcomes [8]. The latter are justified by the
fact that experiments have very low detection efficiencies [1]
and the extra third outcome is interpreted as a sample being
missed by the detectors. The situation is known as the detec-
tion loophole in the Bell test. The loophole, as sized by the
Clauser–Horne inequality [9], is as wide as about 83% of rel-
ative joint detection efficiency [8–10]. The “most economical
class” of local hidden variable models with three outcomes are
based upon a 3-dimensional sample space [8,11]. Here we give
a rigorous proof that the “most economical class” is incompati-
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ble with quantum mechanics in the ideal case on the basis of an
irresoluble antagonism between locality and fair sampling. Our
result, in the ideal case, does not extend to models with dimen-
sion n > 3 as proved by the 4-dimensional model in Ref. [12].
Neither to the non-ideal case, as proved by the class of models
introduced in [13].

The EPR-Bohm setup of the Bell test includes two ana-
lyzer/detector (a/d) assemblies, located at distant sites denoted
A and B . The analyzers have polarizers oriented in directions
specified by the unit vectors a and b. The outcome at site A

is m ∈ {−1,0,1} (correspondingly m′ at B). In a local hidden
variable (LHV) model, outcomes depend on hidden variables.
The (a fortiori) hidden variables are two angles (φ, θ), with the
“objective physical interpretation” of specifying the direction
of “spin” by the unit vector s = (sin θ cosφ, sin θ sinφ, cos θ).
To exploit the detection loophole in the ideal case [2,8], at least
one more hidden variable t is necessary. It is assumed to take
value in the interval [0,1]. For our discussion variable t has
no other “objective physical interpretation” than allowing data
rejection. The sample space Γ , extended to include t , is the
unit ball. A sample corresponds to a point (s, t) ∈ Γ . The parti-
cle flying towards site A carries the “physical properties” (s, t),
and (−s, t) the one flying towards site B .
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For each vector a, outcome at site A is given by the random
variable ξa : Γ → {−1,0,1}. A sample (s, t) with outcome
ξa(s, t) = 1 (−1) means that the spin-up (spin-down) detector
has been triggered. While if ξa(s, t) = 0, means that the sam-
ple has been missed by the detector. Outcome ξa defines the
following events: Sa(±1) := {ξa = ±1} and Sa(0) := {ξa = 0},
subsets of Γ such that Sa(1) ∪ Sa(−1) ∪ Sa(0) = Γ . They gen-
erate the algebra Sa of events. Joint outcomes ξa,b , valued in
{−1,0,1}× {−1,0,1}, and the events they define are discussed
later on.

A probability over Sa is specified by a probability mea-
sure P with a density function λ(s, t) over Γ such that P(S) =∫
S
λ(s, t) dt dΩ/4π , where dΩ is the element of solid angle.

There is no loss of generality in assuming that P is indepen-
dent of vector a.1

Rotational invariance of the singlet state requires, for indi-
vidual a/d assemblies, that the probabilities P(Sa(m)) should
not depend on vector a. A way to keep it fixed is to assume
that P is spherically symmetric and that the subset Sa(m)

moves rigidly within the ball Γ as vector a is moved on the
unit sphere. I.e., we assume that

(1)

⎧⎨
⎩

(a) Measure P is specified by the density
dλ = μ(t) dt dΩ/4π.

(b) Index 1Sa(m)(s, t) is a function of (a · s, t).
Notice that the relevant quantity is the probability measure
of Sa(m), thus we are not losing generality in adopting (1)
since, otherwise, the (homeomorphic) deformation of Sa(m),
as a function of vector a, might be compensated by choosing a
probability density λ(s, t) which is not spherically symmetric
as to make P(Sa(m)) a constant, independent of a (the formal
argument is similar to the one given in footnote 1). Anyway,
condition (1) is one of the assumptions that specify our repre-
sentative of the class of 3-dimensional LHV models. We have,
by condition (1)(b) that ξa(s, t) = ξ(s ·a, t) and the correspond-
ing subset Sa(m) = {ξa = m} is cylindrically symmetric about a

and that pA := P(Sa(1)∪ Sa(−1)), the probability to get a par-
ticle at site A, is a constant independent of vector a.

Locality in a LHV model requires that subsets {ξa,b =
(m,m′)} for joint events to be the intersection of independent
events at each one of the distant a/d assemblies. Assuming that
sites A and B are fully equivalent, their outcomes for the sam-
ple (s, t) are ξ(s ·a, t) and ξ(−s ·b, t) = ξ−b(s, t), respectively.
The corresponding algebras of individual events are Sa and
S−b , with elements generated by Sa(m) = {ξa = m} at site A

and by S−b(m
′) = {ξ−b = m′} at site B . Thus, the algebra

of joint events is Sa ∨ S−b , generated by {ξa,b = (m,m′)} =
Sa(m) ∩ S−b(m

′), which are determined by the index function
1Sa(m)1S−b(m

′), the product of individual index functions.

1 We are assuming that events in the finite algebra Sa are simple subsets
of the unit ball and that the probability measure P is absolutely continuous
respect to Lebesgue’s. Thus, for any other absolutely continuous probability
measure Pa , having algebra S ′ of events, we may always find a self-homeomor-
phism Ta : Γ → Γ such that T −1

a S ∈ S ′ and P(S) = Pa(T −1
a S) = PaT −1

a (S)

for each S, i.e., P = PaT −1
a .

Rotational invariance and locality imply that the joint prob-
abilities P(Sa(m) ∩ S−b(m

′)) are not functions of vectors a

and b, separately. They only depend on the angle α between a

and b. Indeed, by assumption (1), Sa(m) and Sb(m
′), as sub-

sets of the unit ball Γ , are cylindrically symmetric about
axes a and b, respectively. In this way the “volume” P(Sa(m)∩
S−b(m

′)) of the intersection of two individual events is a func-
tion of angle α, only.

One further condition any LHV model must fulfill is that
the probability measure P(Sa(m) ∩ S−b(m

′)) > 0 for every
α ∈ (0,π). We are assuming P absolutely continuous re-
spect to Lebesgue’s. Then we must require the intersection
Sa(m) ∩ S−b(m

′) to have positive Lebesgue measure (its geo-
metric shape is irrelevant) as to be able to give it a probability
measure arbitrarily fixed by means of density μ(t). So, there is
no loss of generality in adopting Pearle’s random variable [8]

(2)ξ(a · s, t) =
{1, a · s > cos(tπ/2),

−1, −a · s > cos(tπ/2),

0, otherwise.

Finally, assumptions (1) and (2) specify our representative of
the class of 3-dimensional LHV models. Let us emphasize
that (1) and (2) do not represent any loss of generality.

Joint probabilities are given in terms of the density func-
tion μ by the integral

pm,m′(α) :=
1∫

0

dt μ(t)Im,−m′(α, t)

(3)≡ P
(
Sa(m) ∩ S−b(m

′)
)
,

where

(4)Im,m′(α, t) :=
∫
Σ

dΩ

4π
1Sa(m)1Sb(m

′)

(Σ denotes the unit sphere). Using random variable (2) to
specify the subsets Sa(1) and Sb(1) in the integral (4) with
m = m′ = 1 and integrating in the angles, (3) yields

(5)

p1,−1(α) = π

2

1∫
α/π

du

1∫
0

dz cos(uπ/2)h
(
z cos(uπ/2)

)√
1 − z2

where

(6)

h(x) := 2

π

μ(u)

sin(uπ/2)
� 0, with x = x(u) = cos(uπ/2).

Normalization of density μ implies that the new density func-
tion h is normalized too,

∫ 1
0 dt h(t) = 1. Main steps leading

to (5) are followed in Appendix A.
Formulae (5) and (6) constitute the functional relationship

between p1,−1 and μ that is implied by rotational invariance,
locality and the equivalence of sites A and B .

Last task to accomplish is to make p1,−1(α) coincide with
quantum theory and the experimental counting rates. And then
to invert (5) to get the probability density μ, which at the mo-
ment is the only “free parameter” left. We are thus compelled
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to digress from LHV models and discuss about the assump-
tions involved in the interpretation of the experimental counting
rates.

Let rA and rB be the individual counting rates at sites A

and B , respectively. Let rAB be the counting rate of coincident
events. We have that (rA + rB)/2 � rAB . The relative joint effi-
ciency is the ratio

0 < ε(a, b) = rAB

(rA + rB)/2
� 1.

Counting rates measured in experiments are consistent with
ε(a, b) = ε being a constant independent of both vectors, a

and b. We have retrieved by the hand the Innsbruck data plot-
ted in Ref. [14] and found a relative joint efficiency ε ≈ 0.13
with a variance not greater than 3% for the “scanblue” data. The
“bluesine” data has ε ≈ 0.14 with a variance smaller than 1%.
Furthermore, the experimental counting rates show that the in-
dividual rates rA and rB are constants (consistent with the com-
bined assumption of rotational invariance (for the singlet state)
and non-signaling), as well as the rate of coincidences, rAB .

The foregoing discussion allows us to make the identifica-
tion

ε = 1

pA

∑
(m,m′)�=0

pm,m′(α) = 1

pB

∑
(m,m′)�=0

pm,m′(α),

where the probabilities pB = pA := ∑
m �=0,m′ pm,m′(α) are in-

dependent of the angle α. To reproduce the experimental obser-
vation that the relative joint efficiency ε is a constant too, we
have to impose the condition

(7)
∑

(m,m′)�=0

pm,m′(α) =: η, a constant,

on the joint detection efficiency η. Notice that (7) is a necessary
condition for us to admit the fair sampling assumption. How-
ever, (7) actually is imposed by experimental data on us.

Let qm,m′(α) denote the probabilities given by quantum the-
ory in the ideal case. The specification of the probabilities in
the LHV model is fulfilled by requiring further that, when con-
ditioned to the fair ensemble of registered data, pm,m′(α)/η =
qm,m′(α). For m = −m′ = 1 the condition is

(8)p1,−1(α) = η
1

2
cos2(α/2).

We have every thing to go for the probability density μ. First
notice that locality is supporting (5) while (8) is a necessary
condition on fair sampling. Equating the derivatives of (5)
and (8) results in the equation

(9)

1∫
0

dz
√

1 − z2h
(
z cos(α/2)

) = η sin(α/2)

for the unknown density function h. The inverse of integral
transforms of the type (9) is found in Ref. [8]. Applying it to (9)
yields the result

π

2η
h(x) = 2 − x2

1 − x2
− 3

2
x ln

1 + x

1 − x
, x ∈ [0,1).

This solution for h is not a density function since it is negative
for x > 0.62, contradicting (6).

The conclusion is immediate: fair sampling and locality are
contradictory assumptions in LHV models that intend to repro-
duce the results of quantum mechanics in the ideal case and that
are based upon a 3-dimensional sample space. In such mod-
els the functional relationship (5) implied by locality is too
restrictive to allocate fair-sampling too. The revealed antago-
nism between locality and fair sampling explains why LHV
models found in the literature [8,11] that are based upon a
3-dimensional sample space have joint detection efficiencies
that vary sensibly with α, the angle between polarizers. On
the basis of this antagonism is that the class of 3-dimensional
LHV models (which, by definition, hold the locality assump-
tion) is not compatible with quantum mechanics in the ideal
case.

The Clauser–Horne inequality [9] on LHV models in its sim-
plest form, ε � 2(

√
2 − 1) ≈ 83%, assumes fair sampling. It

is not valid for 3-dimensional LHV models. Instead, the basic
inequality in Ref. [9] produces the following necessary condi-
tion,

(10)3ε(α) cos2(α/2) − ε(3α) cos2(3α/2) � 2, α ∈ [0,π],

on LHV models, without assuming fair sampling. As a prac-
tical test of locality (10) is very demanding on relative joint
efficiencies. We did a numerical exploration of the LHV model
in Ref. [11] and determined optimal parameter values (without
any physical significance) that put the left-hand side of (10),
numerically, very close to the upper bound and put the relative
efficiency ε(α) itself very close to 83%. This optimal version of
model [11] shows us that inequality (10) is a tight one. Whence,
we conjecture that (10) is both, necessary and sufficient. The
locality condition (10) is deprived of the fair sampling assump-
tion.

Our result, in the ideal case of condition (8), does not ex-
tend to LHV models with more than three hidden variables.
The example in Ref. [12], by using four hidden variables re-
produces the quantum spin correlation functions and supports
the fair sampling assumption with a constant relative joint effi-
ciency ε = 2/3.

Our result neither extends to the non-ideal situation [9]
where condition (8) is relaxed with a further parameter V ∈
(0,1) by replacing cos2(α/2) with (1+V cosα)/2. In Ref. [13]
Santos provides a class of LHV models based upon two hidden
variables that are compatible with quantum mechanics in the
non-ideal case. For V ≈ 1, the joint efficiency η for the models
in the class by Santos is rather small. It is bounded from above
as η < 2(1 − V )/π2.
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Appendix A. Working out integral (5)

For the random variables (2), subsets {ξa = 1} and {ξb = 1},
in the integral (4) with m = m′ = 1, intersect the t -sphere in
caps that have a half-opening angle tπ/2 and are centered at
points at and bt each. For α � tπ the caps do not overlap so
that I1,1(α, t) = 0.

When α < πt , subset {ξa = 1} ∩ {ξb = 1} has a non-empty
intersection with the t -sphere. To calculate I1,1(α, t) the coordi-
nate system is chosen with the x–y plane the same as the plane
defined by vectors a and b. The x axis bisects the angle be-
tween a and b, such that a = (ax, ay,0) and b = (ax,−ay,0).
The border line φ0(θ) of the a-cap is defined implicitly by the
condition

cos(tπ/2) = a · s = ax sin θ cosφ0 + ay sin θ sinφ0

= sin θ cos(α/2 − φ0).

Just by symmetry, the border lines of the a- and b-caps cross at
φ0 = 0 and θ0 given by φ0(θ0) = 0. I.e., given by cos(tπ/2) =
sin θ0 cos(α/2).

The intersection with the t -sphere of the subset {ξa = 1} ∩
{ξb = 1} is described as follows. The x–y plane splits it into two
specular halves. The half above the x–y plane is divided into
specular halves by the φ = 0 plane. Thus, the integral I1,1(α)

is 4 times the integral over the fourth piece that has points with
angle φ ∈ [φ0(θ),0] for each θ ∈ [θ0,π/2]. We have that

I1,1(α, t) = 4
1

4π

π/2∫
θ0

dθ sin θ

0∫
φ0(θ)

dφ = − 1

π

π/2∫
θ0

dθ φ0(θ) sin θ.

After an integration by parts we have that

I1,1(α, t) = 1

π

π/2∫
θ0

dθ cot2 θ cos(tπ/2)

×
(

1 −
(

cos(tπ/2)

sin θ

)2)−1/2

.

Changing variable of integration θ → u: cos(uπ/2) =
cos(tπ/2)/ sin θ we have that

(A.1)I1,1(α, t) = 1

2

t∫
α/π

du

√
1 −

(
cos(tπ/2)

cos(uπ/2)

)2

,

whenever α < πt . Then integral (A.1) is substituted into (3)
and the order of integration is exchanged,

∫ 1
α/π

dt
∫ t

α/π
du =∫ 1

α/π
du

∫ 1
u

dt . Finally, we get the double integral (5) once
the change of variable of integration t → z: z = cos(tπ/2)/

cos(uπ/2) is done.
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