Tareas 9 Tópicos de la Física Moderna

Martes, 3 de Noviembre 2020

- 1. Why don't two helium atoms bond together to make a molecule like H_2 , N_2 , or O_s ?
- 2. An experimenter provides 4.5 eV of energy in order to dissociate an H_2 molecule into two H atoms. Where has the energy gone?
- 3. (a) The binding energy of each of the hydrogen atoms in CH_4 is nearly identical: $4.5 \,\mathrm{eV}$ for $H CH_3$, $4.8 \,\mathrm{eV}$ for $H CH_2$, $4.4 \,\mathrm{eV}$ for H CH, $3.5 \,\mathrm{eV}$ for H C. Why is this true? (b) Hydrogen and carbon atoms are combined to make 1 kg of methane. Calculate the mass of the uncombined atoms.
- 4. The ionization energy of lithium is $4.3 \,\mathrm{eV}$ and the electron affinity of fluorine is $3.4 \,\mathrm{eV}$. The bond length of the LiF molecule is $0.16 \,\mathrm{nm}$. Make an estimate of the molecular binding energy.
- 5. Why is more energy required to induce a vibrational molecular excitation than to induce a rotational excitation?
- 6. The vibrational frequency of the CO molecule is $6.42 \cdot 10^{13}$ Hz. Estimate the amplitude of the molecular vibrations. Compare your answer to the bond length.
- 7. For hydrogen gas at room temperature, make an estimate of the fraction of molecules that are in the first vibrational state.
- 8. Why does the removal of an electron from a molecular bonding orbital by photoabsorption cause the molecular ion to be left in an excited vibrational state?
- 9. The CO molecule absorbs radiation at a wavelength of 0.652 mm. What transition is taking place?