Tareas 8 Tópicos de la Física Moderna

31 de octubre 2020

- 1. Estimate the energy of an innermost electron in (a) the sodium atom, (b) the silver atom, and (c) the uranium atom.
- 2. Consider the total wave function Ψ for three electrons. Give an expression for Ψ as a function of the individual wave functions $\Psi_{\vec{a}}(\vec{r}_1)$, $\Psi_{\vec{b}}(\vec{r}_2)$, and $\Psi_{\vec{c}}(\vec{r}_3)$, where \vec{a} , \vec{b} , and \vec{c} represent the quantum numbers of each electron and \vec{r}_1 , \vec{r}_2 , and \vec{r}_3 represent the coordinates.
- 3. (a) List the possible values of the quantum numbers n, l, m_l and m_s for a 2p state. (b) If an atom has two 2p electrons, how many states are there?
- 4. If there were a stable element 113, what would be your guess of the quantum numbers n and l of the most energetic electron? Why might such an element not exist?
- 5. Determine the possible values of the total angular momentum, J, for and outer electron in the scandium atom (Z=21). Express your answer in units of \hbar .
- 6. An atom has two electrons in the d sub-shell. What are the possible values of the z component of the total angular momentum?
- 7. In an energy level diagram for a multi-electron atom, why must we specify the quantum numbers of every electron in the atom to define an energy level?
- 8. What is the highest energy photon that can be emitted from the Helium atom?
- 9. Make a qualitative sketch of the energy levels in the arsenic atom (Z = 33).
- 10. A $3d_{5/2}$ state with an unsplit energy of E is placed in a weak magnetic field. Determine the number of states that level split into and make a sketch of the resulting energy levels.