1. Why is the wavelength of an α-particle that comes from a nuclear decay about equal to the size of a nucleus?
2. In the Rutherford experiment, is it possible to choose the impact parameter? Explain.
3. Could x-rays have been used to discover the nucleus?
4. The strong interaction has a short range, approximately 1 fm . Use this fact to estimate the cross section for the strong interaction of two energetic protons $\left(E \gg m c^{2}\right)$. Compare your answer to 40 mb .
5. When a particle has structure, why does a deviation from the Rutherford scattering formula at a fixed energy show up at large scattering angles rather than at small angles?
6. Why is it convenient to write the differential cross section as $d \sigma / d \cos \theta$ rather than $d \sigma / d \theta$? Show that if we write the differential cross section as $d \sigma / d \theta$ and integrate over all angles to get the total cross section that we get the same result as integrating $d \sigma / d \cos \theta$ over all values of $\cos \theta$.
7. How important was it for Geiger and Marsden to evacuate their chamber? For α-particles estimate the thickness of air that would have the same cross section as scattering in a gold foil of thickness $0.2 \mu \mathrm{~m}$. (The density of gold is $1.9 \cdot 10^{4} \mathrm{~kg} / \mathrm{m}^{3}$ and the density of air is $1.2 \mathrm{~kg} / \mathrm{m}^{3}$ at atmospheric pressure and room temperature.)
8. A $10 \mathrm{MeV} \alpha$-particle scatters from a silver nucleus at an angle of 90°. (a) Calculate the impact parameter. (b) Calculate the distance of closest approach.
9. Calculate the kinetic energy of an $\alpha-$ particle if the distance of closest approach to a gold atom is 10 fm when scattered at 90°.
10. Read SELEX Collaboration, I. Eschrich et al.: Measurement of the Σ^{-}Charge Radius by Σ^{-}-Electron Elastic Scattering, Physics Letters B 522 (2001) 233239, arXiv:hep-ex/0106053.
11. Only for very interested people: Read SELEX Collaboration, U. Dersch et al.: Total Cross Section Measurements with π^{-}, Σ^{-}and Protons on Nuclei and Nucleons around $600 \mathrm{GeV} / c$. Nuclear Physics B579 (2000) 277-312, arXiv:hep-ex/9910052.
