

Universidad Autónoma de San Luis Potosí FACULTAD DE CIENCIAS



TESIS PROFESIONAL

Para obtener el grado de: LICENCIADA EN FÍSICA

PRESENTA:

Rocío Reyes Ramos

Estudio de interacciones hadrónicas con  $\Lambda^0\Lambda^0$  y  $\Lambda^0 p\pi^-$  en el estado final

ASESOR DE TESIS

**Dr. Jürgen Engelfried** Profesor Investigador del Instituto de Física

> SAN LUIS POTOSÍ, S.L.P. Enero, 2015

A mi papá por su trabajo. A mi mamá por su fortaleza. A mi hermana por sus porras. Muchas gracias.

# Agradecimientos

A mi asesor el **Dr. Jürgen Engelfried** por su paciencia al momento de la realización de este trabajo y al explicar una y otra vez las dudas.

A la **colaboración SELEX** que me permitió usar los datos, sin los cuales este trabajo no hubiera sido posible. Al **Instituto de Física** por permitirme realizar este trabajo de tesis en sus instalaciones. Al **Dr. Antonio Morelos Pineda** por el préstamo de las computadoras en las que se realizó el trabajo de tesis.

A mi papá, **Toño**, por sus cuidados, sus consejos y su apoyo incondicional, agradezco su trabajo duro que bien sé que es para que nosotras tres estemos bien. A mi mamá, **Pati**, que es mi fortaleza y no deja que me doble, por sus cuidados y cariño. A mi hermana, **Erandi**, por sus ánimos, porras y sus regaños. Sé que no les facilité esta etapa así que muchas gracias por su comprensión y paciencia, los quiero.

A mis abuelos, **Cato** y **Carmelú**, a mis tíos, **Came**, **René**, **Cuti**, **Lilia**, **Silvia**, **Rubén**, **Martha**, **Marco**, **Maye**, **Aris**, **Laura** y **Gerardo**, por cuidarme en todo momento, siempre están presentes cuando los necesito. A mis **primos y primas**, por las risas y las buenas atenciones que siempre me brindan.

A los técnicos académicos **L.E.S.D. José Limón Castillo** y a **I.E. Luz del Cármen Nuche**<sup>1</sup> por su apoyo en el laboratorio de altas energías en todo cuanto a problemas con software, hardware, miles de dudas y por su amistad en los ataques de pánico que sucedieron. A la señora **Araceli Becerra** y a **Rosa María Rodríguez**,por todas las facilidades durante mis estudios de licenciatura y durante mi estancia en el instituto.

A mis **compañeros de laboratorio** por compartir el mismo espacio, pláticas y reuniones en la duración de este trabajo. A **Nora** por sus traducciones e interpretaciones del idioma y a sus explicaciones.

A mis profesores de la facultad y del instituto por sus enseñanzas, que permitieron mi formación académica. En especial a los doctores Alvarado, Cisneros, Palomares, Mariana, Faustino, Guirado, Villaseñor, José Manuel García a quienes agradezco su forma respetuosa de enseñar a los alumnos y del apoyo moral que recibí de ellos.

 $<sup>^{1}\</sup>mathrm{como}$ noche pero con u

A mis amigas **Ericka** y **Katia** por escucharme, por sus consejos acompañados por cafecito para hacerme más ligera esta etapa y por muchas otras cosas. A **Thalía**, por sus mensajes con chistes que nadie más entiende, pero que relajan en un día de estrés.

Y a la **duración de esta tesis** que me permitió conocer mucha gente, como **Loki**, por algo suceden las cosas, quiero creer.

#### RESUMEN

Se estudian interacciones entre partículas hadrónicas. Se utilizó la información obtenida del experimento de blanco fijo SELEX, que se localizó en Fermilab, el cual recopiló datos en los años 1996 y 1997. Era un espectrómetro multi-etapas con una alta aceptancia ( $x_f > 0.1$ ). Se diseñó para el estudio sistemático con alta estadística de los mecanismos de producción de materia hadrónica. Utilizó un haz de  $\Sigma^-$  y  $\pi^-$  de 600 GeV/c y un haz de protones de 540 GeV/c, los cuales interactuaron con blancos de cobre y carbón. Se encontró una acumulación en la masa invariante de  $\Lambda^0 \Lambda^0$  en 2340 MeV/c<sup>2</sup> con un ancho de 14 MeV; y para  $\Lambda^0 p \pi^-$  una acumulación en 2215 MeV/c<sup>2</sup> con un ancho de 1.9 MeV. Tales acumulaciones indican la primera observación de una partícula nueva y su estado excitado.

#### ABSTRACT

Interactions between hadronic particles are studied. Data collected by the fixed target experiment SELEX at Fermilab, which took data in 1996-97, were used. It was a multi-stage spectrometer, with high forward acceptance ( $x_f > 0.1$ ). It was designed for high statistic systematic studies of the production mechanisms of hadrons. It used a  $\Sigma^-$  y  $\pi^-$  beam of 600 GeV/c and a proton beam of 540 GeV/c, interacting with copper and carbon targets. We found an accumulation in the invariant mass of  $\Lambda^0 \Lambda^0$  at 2340 MeV/c<sup>2</sup> with a width of 14 MeV; and in  $\Lambda^0 p \pi^-$  a 2215 MeV/c<sup>2</sup> accumulation with a width of 1.9 MeV. Those accumulations indicate the first observation of a new particle and its excited state.

# Índice general

| M  | Motivación                                |                                                                      |          |  |  |  |  |
|----|-------------------------------------------|----------------------------------------------------------------------|----------|--|--|--|--|
| In | trodu                                     | ıcción                                                               | 5        |  |  |  |  |
| 1  | Exp                                       | erimento SELEX                                                       | 7        |  |  |  |  |
|    | 1.1                                       | Descripción de SELEX                                                 | 9        |  |  |  |  |
|    | 1.2                                       | Espectrómetro del haz                                                | 9        |  |  |  |  |
|    |                                           | 1.2.1 Haz de Hiperones                                               | 10       |  |  |  |  |
|    |                                           | 1.2.2 Detector de radiación de transición del haz (BTRD)             | 12       |  |  |  |  |
|    |                                           | 1.2.3 Detectores de la trayectoria del haz (BSSD)                    | 12       |  |  |  |  |
|    | 1.3                                       | Espectrómetro del vértice                                            | 13       |  |  |  |  |
|    |                                           | 1.3.1 Blancos de producción                                          | 14       |  |  |  |  |
|    |                                           | 1.3.2 Detector de tiras de silicio del vértice (VSSD)                | 14       |  |  |  |  |
|    | 1.4                                       | Espectrómetro M1                                                     | 15       |  |  |  |  |
|    |                                           | 1.4.1 Cámaras proporcionales de alambre (PWC)                        | 15       |  |  |  |  |
|    |                                           | 1.4.2 Cámara de arrastre (DC)                                        | 16       |  |  |  |  |
|    |                                           | 1.4.3 Detectores de silicio de ángulo grande (LASD)                  | 16       |  |  |  |  |
|    | 1.5                                       | Espectrómetro M2                                                     | 16       |  |  |  |  |
|    |                                           | 1.5.1 Cámaras proporcionales multialambre (MPWC)                     | 17       |  |  |  |  |
|    |                                           | 1.5.2 Hodoscopios                                                    | 17       |  |  |  |  |
|    |                                           | 1.5.3 Detectores de Radiación de Transición de los Electrones (ETRD) | 18       |  |  |  |  |
|    |                                           | 1.5.4 Ring Imaging Cherenkov Counter (RICH)                          | 18       |  |  |  |  |
|    |                                           | 1.5.5 Cámaras de arrastre vectorial (VDC)                            | 19       |  |  |  |  |
|    | 1.6                                       | Espectrómetro M3                                                     | 20       |  |  |  |  |
|    | 1.7                                       | Imanes                                                               | 20       |  |  |  |  |
|    | 1.8                                       | Sistema disparador (Trigger)                                         | 21       |  |  |  |  |
|    | 1.9                                       | Filtro en línea                                                      | 22       |  |  |  |  |
|    | 1.10                                      | Datos del experimento SELEX                                          | 22       |  |  |  |  |
|    | 1.11                                      | Procesamiento de datos                                               | 24       |  |  |  |  |
|    |                                           | 1.11.1 SOAP                                                          | 24       |  |  |  |  |
|    |                                           | 1.11.2 Pass                                                          | 28       |  |  |  |  |
|    | 4 4 2                                     | 1.11.3 Strip                                                         | 28       |  |  |  |  |
|    | $\begin{array}{c} 1.12\\ 1.13\end{array}$ | Simulación                                                           | 29<br>30 |  |  |  |  |

## 2 Análisis

 $\mathbf{31}$ 

|              | 2.1Partícula $\Lambda^0$ 2.2Decaimiento en $\Lambda^0 \Lambda^0$ 2.3Decaimiento en $\Lambda^0 p \pi^-$                                                                                       | 33<br>36<br>41                    |
|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|
| 3            | Estudios Sistemáticos3.1Comprobación mediante simulación3.2Estabilidad del pico contra diferentes cortes de $L/\sigma$ 3.3Revisión de eventos repetidos3.4Estudio del ruido con event-mixing | <b>53</b><br>55<br>55<br>58<br>58 |
| 4            | Conclusiones                                                                                                                                                                                 | 67                                |
| $\mathbf{A}$ | Colaboración SELEX                                                                                                                                                                           | 69                                |
| в            | Programa recon_recon.F                                                                                                                                                                       | 73                                |
| С            | Programa anal.F                                                                                                                                                                              | 89                                |
| D            | Programa <i>sc.kumac</i>                                                                                                                                                                     | 99                                |
| $\mathbf{E}$ | Programa mix.kumac                                                                                                                                                                           | 107                               |
| Bi           | ibliografía                                                                                                                                                                                  | 119                               |

# Índice de figuras

| 1.1          | Esquema del experimento SELEX                                                                      | 8         |
|--------------|----------------------------------------------------------------------------------------------------|-----------|
| 1.2          | Esquema de los espectrómetros de SELEX                                                             | 10        |
| 1.3          | Sistema de coordenadas de SELEX                                                                    | 11        |
| 1.4          | Esquema del espectrómetro del Haz.                                                                 | 11        |
| 1.5          | Estaciones del detector de la trayectoria del haz                                                  | 13        |
| 1.6          | Región del vértice.                                                                                | 13        |
| 1.7          | Esquema del espectrómetro M1                                                                       | 15        |
| 1.8          | Esquema del espectrómetro M2.                                                                      | 17        |
| 1.9          | Cámaras de alambre en M2.                                                                          | 18        |
| 1.10         | Detector RICH.                                                                                     | 19        |
| 1.11         | Espectrometro M3.                                                                                  | 20        |
| 1.12         | Elementos que participan en el trigger.                                                            | 21        |
| 1.13         | Toma de datos.                                                                                     | 23        |
| 1.14         | Tabla recdf.ocs.                                                                                   | 27        |
|              |                                                                                                    |           |
| 2.1          | Esquema de la reconstrucción de una $\Lambda^0$                                                    | 34        |
| 2.2          | Masa invariante de $p \neq \pi^-$                                                                  | 35        |
| 2.3          | Distribución point back para $\Lambda^0 \Lambda^0$                                                 | 37        |
| 2.4          | Masa invariante de dos partículas $\Lambda^0$ en el mismo evento $\ldots \ldots \ldots \ldots$     | 38        |
| 2.5          | Ajuste de una gaussiana para dos partículas $\Lambda^0$                                            | 39        |
| 2.6          | Masa invariante de $p \neq \pi^-$ contra la masa invariante de $p \neq \pi^-$                      | 40        |
| 2.7          | Masa invariante de $p\pi^-$ , sin el paquete de datos pp                                           | 41        |
| 2.8          | Partícula $H^0$                                                                                    | 42        |
| 2.9          | Cortes en L/ $\sigma$ para $p\pi^-$ de 1.8 a 2.2                                                   | 43        |
| 2.10         | Cortes en L/ $\sigma$ para $p\pi^-$ de 1.8 a 2.2                                                   | 44        |
| 2.11         | Corte en L/ $\sigma$ para $p\pi^-$ de 1.9                                                          | 45        |
| 2.12         | Ajuste de una gaussiana para la masa invariante de $\Lambda^0 p \pi^-$                             | 46        |
| 2.13         | Masa invariante de $p \neq \pi^-$ ( $\Lambda^0$ ) $\neq p\pi^-$                                    | 48        |
| 2.14         | Distribucion de $\chi^2$ para el vértice secundario                                                | 49        |
| 2.15         | Cortes en L/ $\sigma$ para $\Lambda^0 p \pi^-$ de 2.7 a 3                                          | $50^{-0}$ |
| 2.16         | Masa invariante de dos partículas $\Lambda^0$ en el mismo evento                                   | 51        |
| 2.10<br>2.17 | Corte en L/ $\sigma$ para $m\pi^-$ de 1.9                                                          | 51        |
| 2.11         |                                                                                                    | 01        |
| 3.1          | Masa invariante del decaimiento $H^0 \rightarrow \Lambda^0 p \pi^-$ encontrada mediante simulación | 54        |
| 3.2          | Ajuste de una función gaussiana para cortes de $L/\sigma$ de 1.8 a 2.2                             | 55        |
| 3.3          | Ajuste de una función gaussiana para cortes de L $/\sigma$ de 2.3 a 2.9                            | 56        |
| 3.4          | Gráficas de los parámetros del ajuste de una Gaussiana conforme cambia $L/\sigma$ .                | 57        |
| 3.5          | Eventmixing para las entradas con rango de masa desde 2.19 a 2.24 $\text{GeV/c}^2$                 | 61        |
| 3.6          | Eventmixing para SUM con rango de masa desde 2.19 a 2.24 $\text{GeV}/\text{c}^2$                   | 62        |
| 3.7          | Eventmixing para las entradas con rango de masa desde 2.19 a $2.29 \text{GeV}/c^2$                 | 63        |
|              |                                                                                                    |           |

| 3.8  | Eventmixing para SUM con rango de masa desde 2.19 a 2.29 $\text{GeV}/\text{c}^2$       |   | 64 |
|------|----------------------------------------------------------------------------------------|---|----|
| 3.9  | Eventmixing para las entradas con rango de masa desde 2.19 a 4 $\text{GeV}/\text{c}^2$ |   | 65 |
| 3.10 | Event<br>mixing para SUM con rango de masa desde 2.19 a 4 ${\rm GeV/c^2}$              | • | 66 |

# Índice de cuadros

| 1.1 | Tabla de los blancos.                                      |  |  |   |  |  |   | 14 |
|-----|------------------------------------------------------------|--|--|---|--|--|---|----|
| 1.2 | Información de los tres imanes.                            |  |  |   |  |  |   | 20 |
| 1.3 | Datos tomados de SELEX utilizados en el análisis de datos. |  |  | • |  |  | • | 23 |

# Motivación

Para la física de partículas, los años 60 del siglo XX fueron confusos ya que se conocían cientos de partículas, incluidos varios hadrones.

En 1964 los físicos Gell-Man y Zweig, cada uno por separado, introdujeron un modelo en el que los hadrones no eran partículas elementales, más bien eran partículas que se formaban por combinación de quarks y antiquarks. Su modelo presentaba tres *sabores*, o tipos, de quarks: up(u), down(d) y strange (s). Desde entonces los quarks sólo se han observado en estado ligado con otros quarks, lo que permite la formación de hadrones, los cuales se clasifican en:

- 1. Mesones: formados por estados ligados de quark-antiquark
- 2. Bariones: formados por estados ligados de tres quarks.

Una manera formal de llamarle a este modelo es SU(3) flavor symmetry  $(SU(3)_f^2)$ . Por ejemplo: para los mesones formados con pares de los tres quarks (u, d, s) y tres antiquarks  $(\bar{u}, \bar{d}, \bar{s})$  conocidos hasta ese momento, se obtienen nueve combinaciones, que pueden ser nueve combinaciones con spin 0 y nueve combinaciones con spin 1; estas combinaciones se agrupan en un octete y un singlete. Esto coincide con los mesones que se han observado. Sin embargo, debido a la diferencia de masa entre los quarks, la simetría SU(3)<sub>f</sub> no es exacta.

Por esos años los quarks sólo eran modelos matemáticos utilizados para describir cosas, aún con la observación de los partones en la difracción profunda, es hasta 1974 cuando se detectó al quark charm (c) que todo cambió. Al incluir este nuevo quark,  $SU(3)_f$  cambia a  $SU(4)_f$ , siendo de igual manera una simetría inexacta y sólo se utiliza para clasificar las partículas compuestas por la combinación de los cuatro quarks conocidos (u, d, s y c).

 $<sup>^{2}</sup>$ *flavor*: sabor

Después por los años 70 del siglo pasado surgieron dos problemas, primero era necesario explicar porqué los quarks se mantenían unidos dentro de los hadrones y el otro problema que surgió fue el buscar un nuevo número cuántico.

Para solucionar el primer problema surgió la fuerza fuerte la cual es la responsable de mantener unidos a los quarks dentro de los hadrones y es transmitida entre dos quarks por partículas sin masa llamadas gluones. Esta fuerza es parte de otras tres interacciones fundamentales que son la fuerza débil, la fuerza electromagnética y la gravitacional.

La necesidad de otro número cuántico surgió con partículas como  $\Omega^-$  ó  $\Delta^{++}$  las cuales están formadas por tres quarks s y u, respectivamente y tienen spines paralelos. Como los quarks son fermiones esta combinación viola el principio de exclusión de Pauli. Para evitar esto, se agrega la propiedad llamada carga o *color*. El número cuántico *color* puede asumir tres valores diferentes: *rojo*, *azul* y *verde*<sup>3</sup>. Con esto podemos diferenciar a las tres s o a las tres u, que aunque sean del mismo sabor su color será diferente. De esta manera se cumple el principio de Pauli.

Ahora tenemos tres quarks  $u(u_r, u_g, u_b)$ , tres quarks s, etcétera, es decir los quarks pueden ser de cualquiera de los tres colores así como los antiquarks de los tres anticolores. Los gluones llevan color y anticolor simultáneamente. Para los gluones se tienen nueve combinaciones que forman dos estados: un octete y un singlete. Donde el singlete se construye simétricamente con los tres colores y los tres anticolores dando como resultado un blanco, del cual su carga neta de color es igual a cero.

Por ejemplo, para el barión  $\Delta^{++}$  sus tres quarks u siempre están cambiando su color mediante emisión y absorción de gluones para ser distintos entre sí y obtener una carga neta de color igual a cero, con lo que se obtiene un singlete. Otra forma del singlete es el color y anticolor que forman un mesón. Con esto se dice que todos los hadrones poseen una carga de color neta igual a cero, siendo singletes de color.

Todo lo anterior se resume con la cromodinámica cuántica (QCD<sup>4</sup>), la cual afirma que las combinaciones quark-antiquark, tres quarks o tres antiquarks, adentro de un hadrón dan como resultado un singlete de color del grupo  $SU(3)_c$ . La fuerza fuerte, los gluones y la carga de color ayudan a la explicación de porque sólo se han observado quarks en estados ligados y no libres.

 $<sup>^{3}</sup>Red$ , blue, green (r, b, g)

 $<sup>^4</sup>Quantum \ Chromodynamics$ 

En la actualidad se conocen seis sabores de quarks: up(u), down(d), strange(s), charm(c), bottom(b) y top(t) además de seis antiquarks, pero sólo se han observado mesones y bariones, es decir, no se han encontrado partículas con estados ligados de más de tres quarks.

Sin embargo existen hipótesis para producir hadrones formados por más de tres quarks, ya que se pueden formar singletes de color con más de tres quarks. Un ejemplo son los pentaquarks formados por cuatro quarks y un antiquark[4] ó las partículas formadas por seis quarks, como el dibarión  $H^0$  que predijo Jaffe en 1977[5]; las cuales no se han observado experimentalmente.

De ser posible encontrar  $H^0$  se estaría demostrando que los quarks pueden juntarse en grupos de más de tres quarks, y quedaría como trabajo a futuro saber porque no se han encontrado partículas formadas por cuatro o cinco quarks.

En 1996 surgió el experimento SELEX<sup>5</sup> en Fermilab, el cual era un experimento de blanco fijo que investigó, entre otras cosas, la producciones de partículas hadrónicas, como las partículas  $\Lambda^0$  junto con sus modos de decaimiento. Entre sus principales logros están: la primera observación del barión *double charmed*  $\Xi_{cc}^+$  [1][2] y la primera observación del mesón angosto *charm-strange*  $D_{s,I}^+$  [3].

Para este trabajo es necesario producir hiperones<sup>6</sup> y el experimento SELEX ofrece esta ventaja al contar con un haz ( $\Sigma^-$ ), el cual favorece a la formación de partículas con strangeness o "extrañas" (Lambda ( $\Lambda$ ), Sigma ( $\Sigma$ ), Xi ( $\Xi$ ), Omega ( $\Omega$ ) y tal vez la partícula H<sup>0</sup>), ya que las partículas "extrañas" tienen un tiempo de vida ~10<sup>-11</sup>s y es necesario producirlas en ese momento.

El presente trabajo de tesis tiene como objetivo buscar el dibarión  $H^0$ , el cual no ha sido observado hasta ahora, para esto:

1. Se utilizan los datos que provienen del experimento SELEX para estudiar las interacciones hadrónicas con  $\Lambda^0 \Lambda^0$  y  $\Lambda^0 p \pi^-$  en el estado final.

2. Se comparan estas interacciones con lo publicado por Jaffe.

<sup>&</sup>lt;sup>5</sup>Segmented Large  $x_F$  Baryon Spectrometer

<sup>&</sup>lt;sup>6</sup>bariones con uno o más quarks s

# Introduccion

Los quarks forman partículas llamadas hadrones y estás se dividen en dos: bariones, formados por tres quarks, y mesones, formados de un par quark-antiquark.

Sin embargo han surgido hipótesis sobre hadrones formados por estados ligados de más de tres quarks. Un ejemplo es el dibarión H<sup>0</sup>, que predijo Jaffe utilizando el modelo de hadrones como bolsa en 1977. El dibarión H<sup>0</sup> es una partícula formada de seis quarks *uuddss*, con <sup>7</sup>  $J^P=0^+$  y con una masa de 2150 MeV/c<sup>2</sup>, además de un estado excitado con  $J^P=1^+$  y una masa de 2335 MeV/c<sup>2</sup> [5].

El modelo de Jaffe menciona que el singlete de color para seis quarks se encuentra con una masa de 2150 MeV/ $c^2$ , y los que componen al octete se encuentran con masa de 2335 MeV/ $c^2$ , 2395-2465, 2220-2230 y 2480-2505 MeV/ $c^2$ .

Jaffe en su artículo menciona los siguientes rangos de masa para el estado base:

- 1.  $M(H^0) < 2055 \text{ MeV}/c^2$
- 2. 2055  ${\rm MeV/c^2} < {\rm M(H^0)} < 2230 \ {\rm MeV/c^2}$
- 3. 2230  $MeV/c^2 < M(H^0) < 2380 MeV/c^2$
- 4.  $M(H^0) > 2380 \text{ MeV/c}^2$

El autor descartó los casos 1 y 4, el primero por no ser favorecido por sus cálculos y el cuarto por estar encima del umbral del acoplamiento de dos bariones. Se centró en el segundo y tercer caso, que se resume como sigue:

<sup>&</sup>lt;sup>7</sup>J: momento angular total, P: paridad

- Si la masa H<sup>0</sup> > 2230 MeV/c<sup>2</sup>, la partícula H<sup>0</sup> tendrá un decaimiento fuerte en dos partículas Λ<sup>0</sup> (H<sup>0</sup> → Λ<sup>0</sup>Λ<sup>0</sup>). Esto significa que los seis quarks *uuddss* se rearreglan de la forma *uds uds*, y decaerá en dos Λ<sup>0</sup> (*uds*) ya que le sobra energía y la fuerza fuerte es la única que interviene. Al ser decaimiento donde interviene la fuerza fuerte se estima un tiempo de vida de 10<sup>-23</sup> s ~ 10<sup>-24</sup> s.
- Si la masa H<sup>0</sup> < 2230 MeV/c<sup>2</sup>, entonces H<sup>0</sup> no puede decaer fuerte, ya que la partícula Λ<sup>0</sup> es el barión más ligero con un quark s , es decir no va a decaer sólo por el arreglo de quarks. Por lo tanto actúa la fuerza débil, que es capaz de cambiar quarks, cambiando al quark s para que la partícula pueda decaer. El quark s cambiará a un quark u y en una partícula<sup>8</sup> W<sup>-</sup>, el cual a su vez decae en dos quarks: d y ū. Lo que nos deja con los quarks uuddudūs, estos se reacomodan para obtener otras partículas como: una Λ<sup>0</sup> (uds), un protón (uud) y un π<sup>-</sup> (dū). Lo que nos deja el siguiente decaimiento débil: H<sup>0</sup> → Λ<sup>0</sup>pπ<sup>-</sup>.

Al ser un decaimiento fuerte, en el caso donde  $M(H^0) > 2230 \text{ MeV/c}^2$ , su tiempo de vida es corto  $(10^{-24}s)$ , pero al ser la masa sólo un poco mayor a 2230 MeV/c<sup>2</sup>, se espera que su tiempo de vida sea más largo  $(10^{-23}s)$ , formando un "pico" menos ancho en la distribución de masa invariante y por lo tanto sea posible observarlo.

Para el decaimiento débil:  $H^0 \to \Lambda^0 p \pi^-$ , esta combinación de partículas,  $\Lambda^0$ , un protón y  $\pi^-$ , es la más ligera y por lo tanto es la que se eligió para este trabajo. Por lo tanto se espera un tiempo de vida de ~10<sup>-10</sup>s, similar al tiempo de vida de los hiperones.

Aún cuando el modelo de Jaffe no ha podido ser demostrado experimentalmente, el caso teórico de la partícula H<sup>0</sup> continúa vigente. Se observaron algunas  $\Lambda^0 \Lambda^0$  virtuales, relacionadas con el dibarión H<sup>0</sup> registradas en el laboratorio KEK [6], pero otras búsquedas produjeron resultados negativos [7],[8],[9] [10].

En este trabajo de tesis se utilizó la información obtenida por el experimento SELEX para buscar los productos de los decaimientos ya descritos y se espera observar por primera vez a la partícula  $H^0$ , en cualquiera de los dos decaimientos planteados:

- $\Lambda^0 \Lambda^0$
- $\Lambda^0 p \pi^-$

 $<sup>^{8}</sup>W^{\pm}$  y Z<sup>0</sup>: son las partículas encargadas de mediar la fuerza débil

# Capítulo 1

# **Experimento SELEX**

El experimento SELEX (Segmented Large  $x_F$  Baryon Spectrometer, también conocido como E781), se localizó en el Fermilab<sup>1</sup>, con él se recopilaron datos en los años 1996 y 1997. Fué un experimento de blanco fijo diseñado para realizar estudios con alta estadística de los mecanismos de producción y decaimiento de los bariones Charm [22]. Del experimento SELEX, (Figura 1.1), se obtuvieron los datos para la realización de este trabajo de tesis.

El experimento funcionó de manera general de la siguiente forma: un haz de protones proveniente del Tevatrón (acelerador circular), era dirigido hacia el experimento SELEX hacia el blanco de producción de hiperones para tener un haz de hiperones y después éste colisionaba con los blancos (de carbón y cobre). Las partículas que se producían de esta colisión viajaban en la dirección del haz hasta llegar al final del aparato. SELEX contó con espectrómetros en varias etapas, cada uno cumplía con una función diferente. Los imanes entre cada espectrómetro deflectaban a las partículas cargadas para obtener los momentos. La posición de las partículas se obtuvo de la combinación de la información obtenida de las cámaras de alambre y de los detectores de silicio. Y para la identificación de las partículas se utilizó el detector RICH<sup>2</sup>. El experimento también contó con un filtro en línea.

<sup>&</sup>lt;sup>1</sup>Fermi National Accelerator Laboratory

<sup>&</sup>lt;sup>2</sup>Ring Imaging Cherenkov Counter



# 1.1. Descripción de SELEX

El espectrómetro SELEX tuvo una longitud de 60 m, y en los hechos estuvo formado por cinco espectrómetros:

- El espectrómetro del haz
- El espectrómetro de vértices
- El espectrómetro M1
- El espectrómetro M2
- El espectrómetro M3

Cada espectrómetro, con excepción del espectrómetro de vértices, incluía detectores de partículas y un imán, con lo que fue posible calcular el momento de las partículas cargadas. La parte del vértice carecía de un campo magnético por que su diseño fue para una alta resolución de rastreo cerca del blanco de interacción (Figura 1.2).

Para el sistema de coordenas el eje de las z se seleccionó a lo largo de la dirección del haz, el eje de las y verticalmente hacia arriba, y el eje de las x completaba el sistema de coordenadas con el uso de la regla de la mano derecha. El origen del sistema de coordenadas se encontraba al final del último blanco (Figura 1.3).

A su vez, cada espectrómetro incluyó su propio sistema de coordenadas; estos sistemas estaban alineados en posición y ángulos con el sistema de coordenadas global. Sólo el origen sobre el eje de las z cambió; este nuevo origen se encontró en el centro magnético del imán de cada espectrómetro.

# 1.2. Espectrómetro del haz

El espectrómetro del haz se conformó de todo lo que se encontraba en la dirección del haz hasta los blancos de producción (Figura: 1.4).



Figura 1.2: Esquema de los espectrómetros de SELEX

#### 1.2.1. Haz de Hiperones

Del acelerador Tevatrón salía un haz de protones de 800 GeV/c, el cual era dirigido hacia un blanco de Berilio, que se encontraba a la entrada del canal de hiperones. Las partículas



Figura 1.3: Sistema de coordenadas de SELEX



Figura 1.4: Esquema del espectrómetro del Haz.

que se producían conformaban un haz secundario que entraba al canal de hiperones. Las paredes del canal de hiperones eran de tungsteno; este elemento absorbió las partículas que no interactuaron con el blanco de Berilio y sólo partículas con altos momentos,  $600 \pm 50$ GeV/c, pasaban a através del imán. Se necesitó de momentos altos para que la fracción relativa de hiperones en el haz secundario creciera junto con el momento. Este canal estrecho de 7.3 m de largo estaba ubicado adentro de un campo magnético de 3.5 Teslas, producido por el imán de hiperones. [11] La composición esperada del haz de acuerdo a un estudio que se realizó en el experimento de E761 con una energía de 600 GeV/c es: Para el haz negativo:

 $\approx 53 \%$  de  $\pi^-$ ,  $\approx 1.6 \%$  de K<sup>-</sup>,  $\approx 43 \%$  de  $\Sigma^-$ ,  $\approx 1.6 \%$  de  $\Xi^-$ ,  $\approx 0.04 \%$  de  $\Omega^-$ ,  $\approx 0.04 \%$  de  $\overline{p}$ . Para el haz positivo:  $\approx 2.8 \%$  de  $\pi^+$ ,  $\approx 0.8 \%$  de K<sup>+</sup>,  $\approx 2.8 \%$  de  $\Sigma^+$ ,  $\approx 94 \%$  de p. [12][13]. El haz de hiperones de SELEX ofreció la posibilidad única de medir la sección eficaz para protones,  $\pi^-$  y  $\Sigma^-$  en un ambiente poco contaminado.[14]

#### 1.2.2. Detector de radiación de transición del haz (BTRD)

El detector de radiación de transición (BTRD<sup>3</sup>) detectó una forma de radiación electromagnética llamada radiación de transición. Esta radiación se poduce en el momento en que las partículas cargadas cruzan la frontera entre dos medios con diferentes propiedades dieléctricas. La probabilidad de radiación es proporcional al factor  $\gamma$  de Lorentz de la partícula. Por lo que el mesón,  $\pi^-$ , produjo más señales en el BTRD que un barión,  $\Sigma^-$ ; ambas partículas tienen el mismo momento y se diferencian por su masa:  $\pi^-$  tienen menos masa que  $\Sigma^-$ . Las partículas que conformaron el haz de hiperones fueron etiquetadas en los 10 módulos idénticos del detector. Cada módulo contuvo un radiador de 200 láminas de polipropileno de 17  $\mu$ m de ancho y espaciadas a 500  $\mu$ m, seguidas por tres cámaras proporcionales de alambre (PWC), llenados con una mezcla gaseosa de Xe + 30 % CH<sub>4</sub> que detectaban la radiación de transición. Este gas ayudó a maximizar la absorción de fotones en la radiación.[15] Estas cámaras de alambre daban una señal de salida cuando detectaban energía por encima de un umbral fijo. El número de planos activados en el BTRD es igual a la suma de las señales de salida de todas las cámaras de alambre. Con esto el número total de señales en el BTRD fueron utilizadas para separar el componente barión del componente mesón del haz.

#### 1.2.3. Detectores de la trayectoria del haz (BSSD)

El detector de tiras de silicio del haz (BSSD<sup>4</sup>) se integró de ocho planos con tiras de silicio en un solo lado. Las tiras sirvieron para conocer la posición de la trayectoria del haz y la dirección del movimiento. Los planos estaban distribuidos en tres bloques de 3, 2 y 3 planos cada uno. Cada detector estaba formado por 1024 tiras de 20  $\mu$ m de separación entre ellas, y un área sensitiva de 4 cm<sup>2</sup>. La posición de la trayectoria del haz en los blancos de producción fue medida con una resolución de 4  $\mu$ m aproximadamente. La señal de salida de las tiras fue extraida por medio de chips (Figura 1.5).

<sup>&</sup>lt;sup>3</sup>Beam Transition Radiation Detector

<sup>&</sup>lt;sup>4</sup>Beam Silicon Strip Detector



Figura 1.5: Estaciones del detector de la trayectoria del haz.

# 1.3. Espectrómetro del vértice

Este espectrómetro (Figura 1.6), se encontraba justo al terminar el espectrómetro del haz y terminaba a la mitad del imán M1. El espectrometro estaba formado por dos partes principales: los blancos de producción y el detector de tiras de silicio del vértice.



Figura 1.6: Región del vértice.

| Blanco | Material | Anchura<br>(mm) | Posición<br>en el eje<br>z | Número<br>Atómico<br>A | Densidad. $g/cm^3$ | Rango<br>de interac-<br>ción.<br>% |
|--------|----------|-----------------|----------------------------|------------------------|--------------------|------------------------------------|
| 1      | cobre    | 1.6             | -6.13                      | 63.5                   | 8.96               | 1.06                               |
| 2      | cobre    | 1.016           | -4.62                      | 63.5                   | 8.96               | 0.76                               |
| 3      | diamante | 2.2             | -3.10                      | 12                     | 3.20               | 0.82                               |
| 4      | diamante | 2.2             | -1.61                      | 12                     | 3.20               | 0.82                               |
| 5      | diamante | 2.2             | -0.11                      | 12                     | 3.20               | 0.82                               |

Cuadro 1.1: Tabla de los blancos.

#### 1.3.1. Blancos de producción

Las partículas del haz interactuaron con uno de los cinco blancos, con una longitud de interacción combinada de 4.3 % casi 1 % de cada blanco, divididos de la siguiente manera: dos de cobre (Cu) y tres de diamante (C), la separación entre ellos fué de 1.5 cm (Cuadro 1.1)[11]. Se eligió usar varios blancos del mismo material no muy anchos, en lugar de usar sólo uno muy ancho, para evitar que el segundo vértice se confunda del producto de la interacción con el material con el decaimiento de las partículas.

#### 1.3.2. Detector de tiras de silicio del vértice (VSSD)

El detector VSSD<sup>5</sup> consistió de 20 planos montados en cinco estaciones; estos detectaron trayectorias secundarias con alta resolución espacial. Los primeros ocho detectores de las dos primeras estaciones tenían una separación entre tiras de 20  $\mu$ m, con un área efectiva de 5.1 x 5.0 cm<sup>2</sup>. Los últimos 12 detectores (detectores mosaico) tenían una separación entre tiras de 25  $\mu$ m y una región activa de 8.3 x 9.6 cm<sup>2</sup>. Los detectores estaban montados en una base óptica especial de granito. Cada estación tiene cuatro planos x, y, u y v, los últimos dos rotados 45<sup>0</sup>. Cada detector tenía una eficiencia mayor a 98 % y una resolución espacial de 6.5  $\mu$ m.

<sup>&</sup>lt;sup>5</sup>Vertex Silicon Strip Detector

## 1.4. Espectrómetro M1

Estaba conformado por el imán M1, y los detectores que se encontraban entre los imanes M1 Y M2. Fué diseñado para analizar partículas con momentos de 2.5 a 1.5 GeV/c (Figura 1.7). Este espectrómetro contó con tres cámaras de alambre (PWC<sup>6</sup>), dos cámaras de arrastre (DC<sup>7</sup>) y dos detectores de silicio de ángulo grande (LASD<sup>8</sup>).



Figura 1.7: Esquema del espectrómetro M1.

#### 1.4.1. Cámaras proporcionales de alambre (PWC)

Los alambres que formaban éstas cámaras tenían una separación de 3 mm entre ellos, que funcionaron como ánodos, y estaban centrados entre dos planos que actuaban como cátodos. Tenían una área efectiva de 2 x 2 m<sup>2</sup>. Las cámaras tenían una eficiencia de 90% y una resolución espacial de 0.9 mm. Cada una era llenada con una mezcla de gas que se ionizaba cuando una partícula cargada pasaba por éste. Los iones cargados positivamente eran arrastrados por el campo eléctrico hacia el cátodo y los electrones hacia el ánodo. Cuando los electrones estaban cerca del ánodo producían un efecto "avalancha", lo cual incrementaba la señal recolectada por el alambre. Esta señal era leída y así se determinaba la posición del alambre por la cual había pasado una partícula cargada. Contaban con cuatro planos sensitivos para las proyecciones x, y, u y v.

<sup>&</sup>lt;sup>6</sup>Proportional Wire Chamber

<sup>&</sup>lt;sup>7</sup>Drift Chambers

<sup>&</sup>lt;sup>8</sup>Large Area Silicon Detectors

#### 1.4.2. Cámara de arrastre (DC)

Para las cámaras de arrastre se mantuvo la geometría básica de las PWC, pero la distancia entre los alambres fué mayor (cm), y se utilizó el tiempo de arrastre de los electrones al alambre como información adicional. La velocidad de arrastre es constante en el gas bajo un campo eléctrico homogéneo y se mide en cm/ $\mu$ s[17]. El espectrómetro M1 tenía dos DC y éstos tenían dos planos sensitivos. Medían las señales de salida en la proyección x con un 80 % de eficiencia y 0.7 mm de resolución. Estas cámaras utilizaban los valores de la velocidad de arrastre y el tiempo que tarda la partícula en atravesar, entonces se podía obtener un valor mas fino para la posición[18].

#### 1.4.3. Detectores de silicio de ángulo grande (LASD)

Los LASD se utilizaron para obtener una alta resolución en el rastreo de partículas de altas energías en la región central del haz[14]. SELEX contaba con tres estaciones LASD: una se encontraba al final del imán M1 y las otras dos al principio y final del imán M2. Cada estación tenía dos detectores doble cara (DSD) con una distancia entre las tiras de 50  $\mu$ m y un área sensitiva de 3.2 x 2.6 cm<sup>2</sup>, estos planos medían en las proyecciones x e y. También contaba con dos planos de una sola cara (SSD), con una distancia entre las tiras de 50  $\mu$ m y un área sensitiva de 3.2 x 3.2 cm<sup>2</sup>, que medían las proyecciones u y v. La eficiencia para detectar los hits fue de 95 - 99 %. Cada LASD tenía una resolución de 14  $\mu$ m.

## 1.5. Espectrómetro M2

Estaba conformado por el iman M2 y todos los detectores que se encontraban entre los imánes M2 y M3. El iman M2 desviaba a las partículas con momentos menores a 15 GeV del vértice primario. Los detectores que forman a M2 son: un tercer módulo de detectores de silicio de ángulo grande (LASD3), siete cámaras proporcionales de multialambre (MPWC<sup>9</sup>), dos hodoscopios, un detector de luz Cherenkov (RICH<sup>10</sup>), seis planos de detectores de radiación de transición de electrones (ETRD<sup>11</sup>), y dos estaciones de cámaras de arrastre vectoriales (VDC<sup>12</sup>) (Figura 1.8).

<sup>&</sup>lt;sup>9</sup>Multiwire Proportional Chambers

 $<sup>^{10}\</sup>mathrm{Ring}$  Imaging Cherenkov Counter

<sup>&</sup>lt;sup>11</sup>Electron Transition Radiation Detector

 $<sup>^{12}\</sup>mathrm{Vector}$  Drift Chambers



Figura 1.8: Esquema del espectrómetro M2.

#### 1.5.1. Cámaras proporcionales multialambre (MPWC)

Las siete MPWC contaban con 2 mm de espacio entre alambres. Tres de las cámaras tenían una apertura de 60 x 60 cm<sup>2</sup> y las otras cuatro tenían una apertura de 60 x 100 cm<sup>2</sup>. Cada una de las cámaras tenía dos planos sensitivos en proyecciones ortogonales. Tenían una eficiencia de detección del 95 % y una resolución espacial de 0.6 mm (Figura 1.9).

#### 1.5.2. Hodoscopios

El objetivo de los dos hodoscopios H1 y H2 era el de eliminar eventos con varias trayectorias de manera rápida y así mandar una señal al hardware del mecanismo disparador[19]. Dichos hodoscopios usaron contadores de centelleo los cuales son usados para obtener el número de partículas y su momento.



Figura 1.9: Cámaras de alambre en M2.

## 1.5.3. Detectores de Radiación de Transición de los Electrones (ETRD)

Los seis módulos de ETRD tenían como función separar a los electrones de los hadrones. Enfrente de cada módulo estaban localizadas 200 láminas de polipropileno de 17  $\mu$ m de grueso las cuales generaban la radiación de transición. La radiación era detectada por cámaras de alambre(MPWC) con un área de 103 x 63 cm<sup>2</sup> con espacio entre sus alambre de 4 mm y una mezcla de gas formado de xenón y metano.[20][21]

### 1.5.4. Ring Imaging Cherenkov Counter (RICH)

La radiación Cherenkov ocurre cuando una partícula cargada con una velocidad v, mayor que la velocidad de la luz en un medio con un índice de refracción (c/n) emite luz en un ángulo fijo dado por la ecuación 1.1.

$$\cos\theta_c = \frac{1}{\frac{v}{c}n} = \frac{1}{\beta n} \tag{1.1}$$

El detector RICH estaba formado por tres partes[22]:

- Vasija: medía 10 m de largo y 2.4 m de diámetro, la vasija se llenó con gas neón puro (a 1 atm), por el cual las partículas cruzaban y al viajar más rápido que la luz en ese medio emitían luz Cherenkov.
- Espejos: el sistema consistía de 16 espejos esféricos de forma hexagonal, con un radio de curvatura de 20 m. Los espejos reflejaban la luz Cherenkov hacia una matriz de 2848 tubos fotomultiplicadores.
- Detección de fotones: esta parte estaba formada por una placa de soporte, tubos fotomultiplicadores y el equipo para la señal de salida.



Figura 1.10: Detector RICH.

La luz Cherenkov, que se emitía cuando la partícula entraba a la vasija, era reflejada en los espejos al final del tanque y éstos reflejaban la luz hacia los fotomultiplicadores (Figura 1.10). La luz Cherenkov reflejada formaba anillos en la superficie de los fotomultiplicadores. El radio de los anillos formados crecían con la velocidad de la partícula. Una partícula con  $\beta = 1$  generaba un anillo de radio 11.5 cm con 13.6 hits en el anillo, cada anillo fué medido con una resolución espacial de 5.5 mm [22][23]. La eficiencia del detector es bastante alta, sin embargo, disminuye a momentos grandes ya que el radio del anillo tiende a ser el mismo

#### 1.5.5. Cámaras de arrastre vectorial (VDC)

El experimento contaba con nueve VDC las cuales estaban distribuidas en tres estaciones, dos de ellas en M2 (VeeA y VeeB) y la otra en M3 (VeeC). Las estaciones medían trayectorias en las proyecciones x, y, u ó x, y, v, tenían una apertura de 116 x 116 cm<sup>2</sup> con una eficiencia de 90 % y una resolución de 100  $\mu$ m. Los planos midieron el vector de la trayectoria y no sólo la posición, cada cámara tenía ocho planos sensitivos en las celdas finas de la región central de la cámara y seis planos sensitivos en las celdas gruesas.[24]

# 1.6. Espectrómetro M3

El espectrómetro M3 estaba formado por el iman M3 y los detectores después de éste. Los detectores eran: tres MPWC (dos medían 64 x 64 cm<sup>2</sup> y el otro 115 x 89 cm<sup>2</sup>), un VDC (VeeC), un tercer detector de fotones y el calorímetro de neutrones (Figura 1.11). El propósito de este espectrómetro era el de medir los productos de los decaimientos que tardaban en ocurrir.



Figura 1.11: Espectrometro M3.

## 1.7. Imanes

Algunas características de los imanes M1, M2 y M3 estan resumidas en el Cuadro 1.2 [11].

| Iman | z (center pos.)<br>(cm) | B(T) | $p_T$ -kick (GeV/c) | Longitud<br>(cm) | Anchura<br>(cm) |
|------|-------------------------|------|---------------------|------------------|-----------------|
| M1   | 190                     | 1.35 | 0.7371              | 262.50           | 50.00           |
| M2   | 745                     | 1.54 | 0.8285              | 231.73           | 85.09           |
| M3   | 4240                    | 1.30 | 0.4170              | 231.73           | 85.09           |

Cuadro 1.2: Información de los tres imanes utilizados: posición, campo magnético, momento transversal kick, longitud y anchura.

Uno de los valores importantes es el  $p_T$ -kick, que es el valor del momento transversal adicional que se obtiene mientras que la partícula pasa por el iman. Se le denomina kick<sup>13</sup> por el aparentemente cambio de dirección que presenta y que sucedió en algún punto al pasar por el iman y que no se puede ver por falta de detectores adentreo del iman.

# **1.8.** Sistema disparador (Trigger)

El sistema disparador se utilizó para señalar cuándo se producía una interacción preseleccionada de las partículas con los blancos que produjeran o decayeran con un quark Charm. Si el evento era aceptado, se registraba y pasaba al filtro en línea, y se rechazaban todos los demás eventos. Este mecanismo estaba formado por un set de contadores de centelleo (S1-S4), contadores veto (VH1,VH2), contadores de interacción (IC) y dos hodoscopios (H1,H2) (Figura 1.12). El sistema contaba con cuatro niveles lógicos: los primeros tres niveles, T0, T1, y T2, estaban implementados en hardware, mientras que el cuarto T3 estaba implementado en software y en el filtro en tiempo real. Cada nivel era activado cuando el nivel anterior mandaba una señal positiva [25]



Figura 1.12: Elementos que participan en el trigger.

En el nivel T0 se define a una partícula del haz como la coincidencia de las señales de los contadores de centelleo, S1, S2 y S4, sin tener señal en los contadores veto, VH1 y VH2. Al tener una señal positiva se activaba el nivel T1. Este nivel utilizaba la información obtenida de los dos contadores de interacción IC, seleccionando eventos que tuvieran interacción en los blancos y produjeran un quark Charm. T1 utilizaba también la información del BTRD para identificar las partículas del haz, y por último las señales de los dos hodoscopios se utilizaban para seleccionar eventos cuyas trayectorias tuvieran su origen cerca de los blancos de producción. Los contadores IC generaban una señal de salida con la amplitud proporcional al número de partículas que los cruzaban. Esta señal era tomada como señal de interacción en los blancos siempre y cuando fuera mayor a la señal de tres partículas de mínima ionización.

 $<sup>^{13}</sup>$ kick patada

La señal del BTRD no se utilizó en las primeras corridas. Nuevamente una señal positiva de T1 activaba el nivel T2, éste utilizaba la información de los detectores centelladores Vee para seleccionar un decaimiento de una  $\Lambda^0$ .

# 1.9. Filtro en línea

El filtro en línea corría a la par del experimento para realizar un análisis en tiempo real de los datos obtenidos. Su principal función era la de filtrar eventos que no tuvieran evidencia de un vértice secundario. Primero se reconstruían trayectorias con momentos mayores a 15 GeV/c ya que son las trayectorias que lograban atravezar los imanes y llegar a las cámaras de alambre (PWC) que se econtraban en el espectrómetro M2. Las trayectorias reconstruidas eran extrapoladas desde las PWC al espectrómetro del vértice, después un programa de reconstrucción buscaba segmentos de las trayectorias en la región del vértice. Finalmente la trayectoria del haz y las trayectorias recontruidas de las cámaras y de la región del vértice fueron ajustadas a un vértice primario. Si el ajuste tenía una  $\chi^2$  aceptable, significaba que todas las trayectorias eran utilizadas y que todas provenían de un vértice común, por lo que esos eventos no se conservaban. Si por el contrario una o dos trayectorias apuntaban a un vértice diferente, éste evento era guardado por el filtro. El filtro en línea disminuyó el ruido en un factor ocho y fué 50 % eficiente para una señal típica de charm.

# 1.10. Datos del experimento SELEX

El experimento SELEX comenzó a tomar datos en julio de 1996. Las primeras corridas tuvieron los siguientes objetivos: verificar el disparador (trigger), revisar el aparato en general, establecer la eficiencia de las cámaras, calibrar el detector de fotones, optimizar el filtro en línea así como otras tareas similares, cuyo propósito era lograr una alta calidad en los datos que se escribirían en las cintas magnéticas.

La primera parte de los datos obtenidos se realizaron sin utilizar la señal del BTRD para el nivel T1 del trigger. Por lo que las interacciones de ambos  $\pi^-$  y  $\Sigma^-$  no fueron diferenciadas y se guardaron en las cintas (grupos pb y pc del Cuadro 1.3). En la segunda parte se utilizó la señal del BTRD en T1, obteniendo así la mayoría de las interacciones con  $\Sigma^-$  (grupos pd, pe, pf, pg, ph, px y pz). Por último, se invirtió la polaridad del haz de hiperones y se obtuvo un haz en su mayoría de protones (grupo pp). El total de las interacciones obtenidas se pueden

| Conjunto de datos | Corrida       |
|-------------------|---------------|
| pb1               | 5587 - 6312   |
| pb2               | 6313 - 7012   |
| pc1               | 7018 - 7381   |
| pd                | 7382 - 8079   |
| pe                | 8087 - 8673   |
| pf                | 8683 - 9046   |
| pg                | 9057 - 9411   |
| ph                | 9502 - 9789   |
| px                | 9806 - 10243  |
| pz                | 10244 - 10858 |
| pp                | 10876 - 11313 |

Cuadro 1.3: Datos tomados de SELEX utilizados en el análisis de datos.

ver en la Figura 1.13. La cantidad de interacciones almacenadas fué de  $1 \times 10^9$  de los  $15.2 \times 10^9$  de las interacciones totales<sup>14</sup>.



Total: 15.2 mil millones de interacciones

Figura 1.13: Toma de datos.

<sup>&</sup>lt;sup>14</sup>Total de interacciones: en EE.UU. 15.2 billions, en México 15.2 mil millones

# 1.11. Procesamiento de datos

### 1.11.1. SOAP

Se utilizó un programa de procesamiento de datos llamado SOAP<sup>15</sup> para realizar el análisis de todos los datos obtenidos por el experimento SELEX. Éste programa, como otros que se utilizan en este análisis, fué escrito por los investigadores que participaron en el proyecto, no son programas que hayan sido comprados. Este programa tiene 220861 líneas, está escrito en su mayoría en lenguaje de programación FORTRAN, y se divide en otros cinco paquetes, que se describen a continuación:

- UNPACK: El propósito de este paquete es desempacar los datos que están grabados en las cintas magnéticas. Las señales que se generaban en cada detector por algún cable, las tiras de silicio o los fotomultiplicadores, eran guardadas en una lista que creaba el hardware. Esta lista de señales es convertida por el software en una nueva lista de posiciones en el sistema de coordenadas local de cada detector.
- TRACKING: La finalidad de TRACKING es reconstruir las trayectorias que siguieron las partículas en su paso por los detectores. Para hacerlo el programa busca y mide los parámetros siguientes: tres coordenadas espaciales del punto donde fue observado por primera vez, tres vectores momento, el identificador de la partícula y la coordenada z donde fue vista por última vez.

El proceso que utiliza el programa es el siguiente:

- 1. Se prepara una lista de las coordenadas de las señales que se obtuvieron de cada espectrómetro y se prueba el hecho de que pueden ajustarse a una línea. Si el ajuste es bueno, las señales se guardan en una nueva lista como segmentos de la trayectoria que recorrió la partícula a través de cada espectrómetro
- 2. A los segmentos de cada espectrómetro se les une entre sí para formar un candidato a trayectoria entre detectores. El algoritmo utilizado para esta parte es similar al del paso 1. Los segmentos son ajustados por pares de espectrómetros a una trayectoria continua. Los segmentos pares que tengan un  $\chi^2$  aceptable son asignados como parte de la trayectoria.
- 3. Por último se calcula el momento de la trayectoria obtenida. Se realiza un ajuste a una función que describe la trayectoria de la partícula que atraviesa el campo magnético de los imanes y las PWC de los espectrómetros; como parámetro del ajuste se utiliza la curvatura de la trayectoria.

<sup>&</sup>lt;sup>15</sup>SELEX Off/Line Analysis Physics
- PARTID<sup>16</sup>: La información obtenida con TRACKING, de los detectores como BTRD, ETRD y RICH, es extrapolada a PARTID para la identificación de partículas. Para la presente tesis se utilizó la información obtenida de BTRD y RICH. Toda la información que identifica a las partículas se guarda en una tabla llamada *recpid*, ésta se encuentra en el archivo llamado *recdf.ocs*, del que se hablará más adelante. La información en esta tabla es: el nombre abreviado de la partícula, el sistema usado para su identificación (RICH, BTRD), los cortes en likelihood, los momentos mínimo y máximo, la distancia mínima y máxima, el mínimo y el máximo del momento transversal de la partícula. Estos sólo son cortes suaves para reducir la señal de salida y reducir el tiempo de cálculo de las computadoras, después se aplicarán cortes más duros con la ayuda de otros programas.
- VERTEX: El siguiente paso es encontrar las intersecciones de las trayectorias, esta intersección es llamada vértice. VERTEX encuentra las coordenadas de los vértices primarios y secundarios. El vértice primario indica la posición de la interacción del haz y alguno de los blancos y las trayectorias que se producen en este choque. Los vértices secunadrios son aquellos que muestran la posición del decaimiento de la partícula madre. Para encontrar estos vértices se cuenta con tres paquetes: v1, v2 y candidate. Para este trabajo se utilizaron v2 y candidate:
  - v2: este paquete hace una lista de todas las posibles trayectorias. Después hace un ajuste de las trayectorias junto con la del haz a un punto, este ajuste debe tener  $\chi^2$  menor a 3.5 para poder designar el punto como vértice primario. Las trayectorias que no pertenecen al vértice primario se toman para revisar si forman parte de un vértice secundario.
  - candidate(c): este paquete se basa en una lista de datos que crea el usuario con las especificaciones para el tipo de partículas que busca y no requiere que  $\chi^2$  sea mayor a 3.5,. Candidate revisa la información de PID y busca eventos que tengan las partículas solicitadas y revisa si proceden de algún punto común mediante un ajuste como la rutina anterior. Si el ajuste es bueno, guarda este punto como un vértice secundario. Para el vértice primario utiliza todas las trayectorias que no se utilizaron para el secundario.
- RECON: La finalidad de RECON es proporcionar un código estandar que se maneja con un lenguaje de alto nivel, con el cual se puedn reconstruir las partículas hipotéticas utilizando la información de los paquetes anteriores TRACKING, VERTEX y PID. Una hipótesis de una partícula reconstruida es el conjunto de trayectorias que se identificaron antes y que vienen de un punto común, es decir de un vértice. Los parámetros que se utilizan son: las coordenadas de los vértices primario y secundario con sus errores asociados (σ), la separación entre éstos vértices (L), el cuadrimomento (p<sub>μ</sub>), la masa (m) y error, el identificador de las trayectorias y la carga (q). RECON ejecuta

<sup>&</sup>lt;sup>16</sup>Particle Identification

un programa de alto nivel el cual esta almacenado en una tabla  $OCS^{17}$ , en este trabajo la tabla se encuentra en el archivo llamado *recdf.ocs* (Figura 1.14). Con los parámetros de esta tabla el programa busca los eventos que tienen una reconstrucción de una partícula que coincida con el criterio de búsqueda. El significado de cada línea de la tabla se explica a continuación [26]:

- id : número de identificación único para la reconstrucción.
- name : nombre de la reconstrucción.
- from : tipo de búsqueda.
- pr : número de prongs en la reconstrucción.
- q : carga de la partícula reconstruida.
- pid : partículas producto.
- ls\_min/max : rango de  $L/\sigma$ .
- mass\_min/max : rango de masa.
- out: bits para los datos de salida.

Se ve en la tabla *recdf.ocs* que para las partículas con id de 801 a 805, en la opción de from aparece rr, que quiere decir *recon\_recon*. Este es parte de RECON aquí se hacen dos reconstrucciones de partículas por separado (utiliza v1, v2 o c) y después las combina para obtener una reconstrucción completa.

Para controlar el uso de los paquetes y rutinas vistos anteriormente, se utiliza un archivo llamado *test.cmd*. En este archivo se encienden o apagan los paquetes por separado, también se activan o desactivan los diferentes cortes que contiene cada paquete. Además contiene la ubicación de los archivos a correr y la cantidad de eventos que se quiere analizar. Se puede ver un ejemplo de este para usar el paquete de datos pb1:

```
in soap_data_pass2.cmd.part
exec tracking vertex partid unpack recon
set off recon ftup1 ftup2 ftup3
set on recon ftup4
set off recon rec_refit2
set on recon rec_refit1
exec user
```

disk in l/strip-pass2.lambda.p2b01.charm\_run005587\_006021.out1

<sup>&</sup>lt;sup>17</sup>Open Constant System

disk in l/strip-pass2.lambda.p2b01.charm\_run006172\_006312.out1 0 0 fill anal v04.12 Jan 19 1998 14:31 psc ! pass11 mode recon list #recdf ! pass11 production - change from \_11: add vx\_vees to charm recons ls min ls max mass min mass max id name from pr q pid out L Strange states v2 2 0 5.0 800.0 1.090 \$000008 2 10 p+i-1.1401.090 v2 2 p-i+ \$100008 3 alam 0 5. 800. 1.1402 0 p+i-Ο. Ο. 1.060 4 12 С 1.112\$000008 2 a12 5 0 Ο. Ο. 1.060 1.112\$000008 С p-i+ I 801 dilambda 1010 Ο. rr 4 0 Ο. 2.0004.000\$000008 4.000802 adilambda rr 4 0 alamalam Ο. Ο. 2.000\$000008 10alam Ο. Ο. 2.000 \$000008 803 wrong 4 0 4.000rr 804 H 4 0 1012 Ο. Ο. 2.000 4.000\$000008 rr 805 aH 2.000 0 alamal2 4.000rr. 4 Ο. Ο. \$000008 I \*end Т 0 0 fill anal v04.2 21-Nov-1997 23:00 psc ! Particle id list #recpid I pmin pmax mdistmin mdistmax ptmin ptmax spectro logic 0. 0. 0. 0. 0. 0. m2 none name system cut e>0.5 default electron е etrd none ! rich i<0.1 Ο. Ο. Ο. Ο. Ο. Ο. not ! not non-pi if in rich any i Ο. Ο. Ο. Ο. Ο. Ο. ! not non-pi if in rich i1 none none any none Ο. Ο. Ο. Ο. Ο. Ο. k rich k/i>=1 m2 none 1 default Kaon Ο. Ο. Ο. Ο. Ο. Ο. rich p/i>=1 m2 none default proton р è1 Ο. Ο. 0.0020 0.0500 0.300 2.000etrd e>0.5 vxm2 none I non-pvtx electron k1 none none Ο. Ο. 0. Ο. Ο. Ο. any none any track k2 0. any track not a K k/i>=1 Ο. Ο. Ο. Ο. Ο. rich any not k3 k<0.1 rich Ο. Ο. Ο. Ο. Ο. Ο. not non-k if in rich any not p1 rich p/i>2. 100. 600. Ο. Ο. Ο. Ο. any none p2 Ο. Ο. Ο. Ο. Ο. Ο. m1m2 lambda daughter proton rich p/i>2. none - 1 pЗ Ο. Ο. Ο. Ο. Ο. Ο. any track none none any none m1\_kink m1\_kink 30. 600. Ο. Ο. Ο. Ο. s none none vxm1nm2 none ļ 600. 30. Ο. Ο. х none none Ο. Ο. vxm1nm2 none 30. 600. Ο. Ο. vxm1nm2 none m1\_kink none Π. Π. 0 none phot none 2. 8. Ο. Ο. m1m2m3 gg2 Ο. Ο. none 1 any 2. gg3 phot none 8. Ο. Ο. Ο. Ο. m2m3 none \*end

disk in l/strip-pass2.lambda.p2b01.charm\_run006022\_006171.out1

Figura 1.14: Tabla *recdf.ocs*.

#### 1.11.2. Pass

Pass es el procesamiento de los datos crudos utilizando SOAP, que mediante cortes suaves y algoritmos de reconstrucción redujo el tamaño de los datos y con esto se facilitó el análisis posterior. Los datos del experimento se corrieron dos veces, cada uno tardó en correr medio año:

- pass1: este es el primer procesamiento que se realizó. Se generaron cinco archivos donde se guardaron las reconstrucciones:
  - 1. Mesones con quarks Charm.
  - 2. Bariones con quarks Charm.
  - 3. Decaimientos semileptónicos.
  - 4. Estados extraños.
  - 5. Partículas exóticas.

si alguna reconstrucción se repetía en dos o más grupos de la lista, esta era guardada en cada uno de los grupos a los que pertenecía, lo cual provocaba que el tamaño de los archivos fuera mayor. La información obtenida se guardó en archivos llamados *ftuples*, los cuales tienen un tamaño fijo. En los *ftuples* se guardó la información en 82 variables, en las cuales encontramos información acerca de los vértices, trayectorias, masa, momento, etc. Los datos procesados con pass1 fueron llamados como a los datos brutos (pb01, pb02, etc)

pass2: alguna de las diferencias con el procesamiento anterior es la manera como se guardó la información, los archivos que se generaron fueron llamados vtuples que son archivos de tamaño variable. Estos pueden guardar un número no constante de variables y esto ayuda a ahorrar espacio, además guardaban información extra como de los vees y kins. Se incluyeron más tipos de reconstrucciones. Si al menos una reconstrucción de la lista fue encontrada el evento fue guardado en un archivo de salida llamado out1 y aquellas reconstrucciones que no aparecían en la lista fueron guardadas en otro archivo de salida llamado out2. Para nombrar a los datos procesados con pass2 se cambió p por p2. Por ejemplo de pb01 pasó a ser p2b01.

#### 1.11.3. Strip

Otra etapa es el strip, que siguió después del pass, que se usa cuando se necesita calcular mejor, por ejemplo algunas veces usando los *vtuples* o *ftuples* la información puede no servir o ser insuficiente. El control de todo el proceso en el SOAP se realiza por medio de un archivo de comandos (strip). Cualquier paquete de SOAP puede ser ejecutado o no ejecutado utilizando este strip, así como también se puede usar para activar o desactivar diferentes opciones de cada paquete y además puede usarse para aplicar cortes sobre diferentes variables en cada paquete.[12]

Por ejemplo para buscar eventos con una partícula  $\Lambda^0$ , no era conveniente correr todos los datos. Para esto se escribió un programa de análisis especial que buscara partículas  $\Lambda^0$  y escribiera estos eventos en un archivo aparte, guardando el número de corrida (run number) y el número de evento (event number). Se tiene entonces una lista con todos los eventos que tienen una partícula  $\Lambda^0$ , a este archivo se le conoce como ftupselect. Para que lea la lista se coloca un switch en el archivo .cmd. Si el archivo de salida es muy grande se abre otro archivo. Para este trabajo se utilizó la información guardada en la dirección ../strip-pass2.lambda.p2b01.charm\_run005587\_006021.out1, con los paquetes desde p2b01 hasta p2z01.

## 1.12. Simulación

El principal objetivo de la simulación es revisar la aceptancia del aparato SELEX, así como para revisar que los programas funcionen. Para este trabajo se utilizó la simulación para obtener más información de la partícula a estudiar. La simulación puede ser dividida en dos pasos: generar los eventos y la incrustación de éstos en rutinas de SELEX. Para la producción de eventos se utiliza el generador de eventos Embedding (EDG<sup>18</sup>) de SELEX [31] llamado QQ.

La producción de eventos se especifica en un archivo de control que contiene la siguiente información: número de eventos a generar, identificación de la partícula a generar, identificación de la partícula del haz, momento de la partícula del haz, forma de la distribución  $x_F$ y forma de la distribución  $p_T$ . La forma de las distribuciones de  $x_F$  y  $p_T$  se especifican por medio de los parámetros n y b de la ecuación (1.2)

$$\frac{d\sigma}{fx_f dp_T^2} = A * (1 - x_F)^n * exp(-bp_T^2)$$
(1.2)

Donde b y n son parámetros libres,  $p_T$  es la magnitud del momento transversal definido por  $p_T = \sqrt{p_x^2 + p_y^2}$  y  $x_F$  es la variable de escalamiento de Feynman que se define como  $x_F = p_z/p_{max}$ ,  $p_{max}$  es el momento máximo que puede tener la partícula producida.

<sup>&</sup>lt;sup>18</sup>Embedded Data Generator

El archivo que se obtiene es un archivo con extención .*emb*, el cual contiene información de los productos del decaimiento de los eventos que se generaron. La información la presenta en forma de tabla: en la primera línea se especifica el número de partículas y la carga eléctrica de cada una. Las siguientes líneas se dividen en ocho columnas: en las primeras tres columnas, siendo el vértice primario en (0,0,0) se obtiene el punto donde se generó la partícula con las tres coordenadas (x,y,z), las siguientes tres columnas son los cosenos directores  $(\alpha, \beta, \gamma)$  y el momento y masa de la partícula son las últimas dos columnas. Después se utiliza el programa llamado Embedding que se encuentra integrado en SOAP. Este programa simula eventos en todo el aparato SELEX [27]. Embedding utiliza los eventos que se generaron con EDG y encuentra un vértice primario de un evento real. Después utiliza el vértice primario (0,0,0)y las trayectorias del evento generado y realiza una traslación al vértice primario del evento real. Y así es como se realiza la simulación con Embedding.

#### 1.13. Physics Analisis Workstation (PAW)

Una herramienta de análisis que desarrolló el CERN<sup>19</sup> y que se utiliza en este trabajo de tesis fué PAW. PAW es una herramienta interactiva que permite el análisis, visualización y presentación de datos experimentales en la computadora.

Este utiliza los archivos de salida, con extensión .*hbk*, que se producen al analizar los *ftuples*. Los archivos con extensión .*hbk*, contienen la lista de todos los histogramas generados. PAW permite visualizar estos histogramas, y además cuenta con herramientas que permite su manipulación. Los comandos para manipular a los histogramas pueden ser especificados en un archivo .*kumac* que puede ser ejecutado en PAW. Algunas de las aplicaciones de las herramientas de PAW son: operaciones aritméticas con los histogramas, ajuste de funciones a las distribuciones estadísticas, gráficas de funciones, gráficas de resultados para usarlos en presentaciones o publicaciones etc, [28][29]

<sup>&</sup>lt;sup>19</sup>European Organization for Nuclear Research

# Capítulo 2

# Análisis

En la sección 1.11.1 del capítulo 1 se describió el programa SOAP, así como los diferentes paquetes que lo forman, los cuales se utilizaron para el procesamiento de los datos obtenidos del experimento SELEX.

Uno de los paquetes de SOAP, RECON, incluye el programa  $recon\_recon.F$ . Este programa realiza dos reconstrucciones de partículas, sólo para partículas diferentes entre sí, cada una por separado, ya sea utilizando v2 o c, y después las combina para obtener una reconstrucción completa.

Para este trabajo de tesis en el que se buscaron las partículas del decaimiento  $H^0 \rightarrow \Lambda^0 \Lambda^0$ , era necesario que el programa encontrara dos partículas iguales en el mismo evento, por lo que se estudió todo el programa *recon\_recon*.*F* para poder realizar una mejora. Finalmente se mejoró agregando unos renglones al programa, se puede ver el programa *recon\_recon*.*F* completo con esta mejora en el apéndice B. Los renglones agregados permiten reconstruir dos partículas del mismo tipo:

```
If (pid_double(irecdf)) Then
    If (nirecn.lt.nr(irecdf)) Then ! nothing found
    Goto 900
    EndIf
Else
    If (No_recn) Then ! nothing found
    Goto 900
    EndIf
EndIf
EndIf
```

Como se mencionó anteriormente estos programas fueron escritos por los mismos investigadores que participaron en el experimento SELEX. El programa RECON está escrito de una manera general, lo que lo hace flexible para poderlo modificar y así poder analizar las partículas.

También se elaboró la tabla *recdf.ocs*. Se crearon las siguientes partículas (Figura 1.14):

- $\Lambda^0$  (l0): su reconstrucción se llevó a cabo con el paquete de VERTEX v2, con las partículas de decaimiento  $p \ge \pi^-$ . Con un rango de L/ $\sigma$  de 5 a 800 y con un rango en la masa invariante de 1.09 a 1.140 GeV/c<sup>2</sup> (la masa invariante de  $\Lambda^0$  es de 1.1156 GeV/c<sup>2</sup>). La reconstrucción de esta partícula  $\Lambda^0$  se utilizó para la reconstrucción de la partícula  $\Lambda^0 \Lambda^0 \ge \Lambda^0 p \pi^-$ .
- $p\pi^-$  (l2): para su reconstrucción se utilizó el paquete *c* de VERTEX, de igual manera con las partículas de decaimiento  $p \ge \pi^-$ . En esta ocasión no se dió un rango para  $L/\sigma \ge$  se le dió una masa de 1.06 a 1.112 GeV/c<sup>2</sup>, ligeramente por debajo del valor conocido de la masa invariante de  $\Lambda^0$ .
- $\Lambda^0 \Lambda^0$  (dilambda): aquí se utiliza el programa mejorado *recon\_recon.F*, que utiliza la reconstrucción de dos partículas  $\Lambda^0$  (l0), sin rango en L/ $\sigma$  y rango en masa de 2 a 4 GeV/c<sup>2</sup>.
- $\Lambda^0 p \pi^-$  (H): igualmente utiliza el programa mejorado *recon\_recon.F*, utilizando la reconstrucción de las partículas  $\Lambda^0$  (l0) y  $p\pi^-$  (l2). Nuevamente sin rango en L/ $\sigma$  y rango en masa de 2 a 4 GeV/c<sup>2</sup>.

La partícula  $\Lambda^0$  tiene mucho tiempo de vida y con el boost de Lorentz, una partícula  $\Lambda^0$  típica, puede volar en promedio 8 m. Sin embargo ésta partícula se recontruye con el paquete v2 y éste sólo encuentra partículas en 12 cm, es decir sólo encuentra como 1 % de todas las  $\Lambda^0$  que se generan en el experimento, por lo que para el decaimiento  $\Lambda^0 \Lambda^0$  sólo encontrará el cuadrado de 1 %. Para corregir ésto se necesitan de paquetes má avanzados y quedará como trabajo a futuro.

Se creó un subdirectorio por cada paquete de datos desde p2b01 hasta p2z01 y se corrió el programa SOAP en cada subdirectorio para evitar que se sobreescribiera la información. Se utilizó el archivo *test.cmd* (página 26). Los archivos de salida que se obtuvieron, se guardaron juntos en una carpeta para el análisis siguiente, con nombres como: recon.ftup4.p2b01, etc.

Los datos que se obtuvieron se analizaron con un programa llamado anal.F (Apéndice C), así como los programas que fueron escritos por los investigadores. El programa anal.F fue desarrollado por la autora de este trabajo de tesis, por lo que se puede modificar para que sea específico para cada análisis que se necesite. En éste programa se utilizan algunas de las 82 variables de los *ftuples* para realizar cortes más específicos. Las variables sobre las cuales se realizaron los cortes y algunas especificaciones son las siguientes:

- $L/\sigma$ : la partícula  $\Lambda^0$  tiene un tiempo de vida largo,  $2.63 \times 10^{-10}$ s y el ruido es generado por partículas con tiempo de vida corto, las cuales decaen inmediatamente por la fuerza fuerte cerca del vértice primario. Por lo tanto el corte  $L/\sigma$  es uno de los cortes más importantes debido a que ayuda a reducir el ruido, este se compone de:
  - L: es la distancia que existe entre el vértice primario (donde se genera la partícula madre) y el vértice secundario (donde ocurre el decaimiento) sobre el eje z (L= $z_{sec} z_{prim}$ ).
  - $\sigma$ : es la combinación de errores del ajuste de los vértices:  $\sigma = \sqrt{\sigma_p^2 + \sigma_s^2}$ , donde  $\sigma_p^2$ y  $\sigma_s^2$  miden la incertidumbre de la medición de la posición de los vértices primario y secundario.
- Pointback (*pvtx*): Es una medida de que tan bien el vector momento de la partícula madre apunta hacia el vértice primario. Esto se calcula sumando los vectores momento de las partículas hijas generando un vector resultante, el cual se extrapola hasta el plano donde se encuentra el vértice primario. Después se mide la distancia entre la extrapolación y el vértice primario. El pointback es esta distancia al cuadrado dividida por su error.
- $\chi^2$ : Un valor pequeño de esta variable, indica que el ajuste realizado es bueno.
- Masa invariante: cuando una partícula decae en varias partículas (como en este caso), el cuadrado del cuadrimomento correspondiente a la partícula madre se calcula de la siguiente manera

$$P^2 = P^{\mu}P_{\mu} = \frac{E^2}{c^2} - \vec{p}^2 = m^2 c^2$$

entonces:

$$P^2 = m^2 c^2$$

Finalmente, se despeja m y queda:

$$m = \frac{\sqrt{P^2}}{c}$$

esta *m* simboliza la *masa invariante*. La variable  $P^2$  es la suma del cuadrimomento de todas las partículas hijas. La información de las partículas hijas se obtienen de los diferentes detectores de SELEX , por ejemplo para el momento se utiliza el detector de partículas y los campos magnéticos.

## **2.1.** Partícula $\Lambda^0$

Para reconstruir a la partícula  $\Lambda^0$  se usan las partículas de su decaimiento  $p \ge \pi^-$  (Figura 2.1), estas partículas son seleccionadas con las condiciones que se dieron en la tabla *recdf*: con el paquete RECON, usando  $v^2 \ge u$  norte de  $L/\sigma > 5$ .



Figura 2.1: Esquema de la reconstrucción de una  $\Lambda$  [30]

Al graficar la masa invariante de los candidatos a  $\Lambda^0$  se obtiene una distribución centrada alrededor del valor 1115.6 MeV/c<sup>2</sup> con un ruido a los costados del pico que se comporta como una recta (polinomio de orden 1). Para conocer el número de partículas se realiza el ajuste de una función gaussiana más una recta (Ecuación (2.1)).

$$gauss(x1) = \frac{b}{\sqrt{2\pi}} \frac{p_1}{p_3} exp\left(\frac{-1}{2}\left(\frac{x1}{p_3}\right)^2\right) + p_4 + p_5 x1$$
(2.1)

- $x_1 = x p_2$  es una traslación a dónde se encuentra el máximo de la gaussiana
  - x: masa invariante de la partícula
  - $p_2$ : es el punto máximo de la gaussiana, el cual se espera sea igual a la masa invariante de la partícula
- b: ancho del bin<sup>1</sup>
- $p_1$ : número de eventos debajo de la curva gaussiana y arriba del ruido
- $p_3$ : es  $\sigma$ , donde su valor al cuadrado es la varianza de la gaussiana
- $p_4$  y  $p_5$  son los parámetros de la recta
  - $p_4$ : es el valor donde la recta cruza al eje vertical, es decir, nos da la altura del ruido y con la traslación se tiene este valor en el punto máximo de la gaussiana
  - $p_5$ : es la pendiente

La función está normalizada al número de eventos en la señal,  $p_1$ . Al realizar este ajuste tenemos que el número de partículas  $\Lambda^0$  es: 1.4 millones (Figura 2.2).

<sup>&</sup>lt;sup>1</sup>Bin son los intervalos en los que se divide el eje x. El ancho del bin es el ancho de estos intervalos



Figura 2.2: Masa invariante de p y  $\pi^-,$  la acumulación en el valor 1.115 GeV/c² es la partícula  $\Lambda^0$ 

# **2.2.** Decaimiento en $\Lambda^0 \Lambda^0$

De acuerdo con la predicción de Jaffe, para la partícula  $H^0$ , si la masa de la partícula  $H^0 > 2230$  MeV/c<sup>2</sup> el decaimiento que se presenta es fuerte. El decaimiento fuerte sería  $H^0 \to \Lambda^0 \Lambda^0$ . Para esto se buscó a dos partículas  $\Lambda^0$  que se encontraran en el mismo evento.

Con un proceso de análisis similar al que se utilizó para la masa invariante de  $p\pi^-$  se busca la masa invariante para dos partículas  $\Lambda^0$  de un mismo evento, con las condiciones que se dieron en la tabla *recdf*: con el paquete RECON, usando el mejorada *recon\_recon.F* y sin corte en L/ $\sigma$  ya que es un decaimiento fuerte, tiene poco tiempo de vida y este corte no permitiría verlo.

Para este análisis fue necesario recalcular el pointback, ya que el valor de pointback que se obtiene de los *ftuples* se calcula sin verificar que las partículas hijas apunten a un mismo vértice primario.

Para asegurar que las partículas vengan del mismo vértice, se realiza lo siguiente: se guarda la información del vértice primario (pvx) de la partícula madre en una nueva variable (lpv). También se guarda la información de los vértices secundarios (svx) de las partículas hijas en nuevas variables (lsv). Y así, junto con los errores de posición de los vértices (svx\_s) y los momentos (p), se realiza el cálculo para el nuevo pointback (lpvtx). Después se grafica la distribución de este nuevo pointback (Figura 2.3).

Con esto se obtiene el corte: Pvtx < 5.

Si la diferencia entre el valor para la masa de  $\Lambda^0$  entre el obtenido en el análisis y el valor conocido (1.1156 GeV/c<sup>2</sup>) es menor a 0.005, se usará para los siguientes cálculos el valor 1.1156 GeV/c<sup>2</sup> (Figura: 2.6).

Por último se calculó la masa efectiva, su cálculo es:  $E^2 = p^2 + m^2$ , al despejar se obtiene  $m^2 = E^2 - p^2$ , este cálculo se realiza con doble precisión ya que la diferencia entre los valores de E y p es muy pequeña y en la resta se podrían eliminar.

La gráfica de masa invariante para dos partículas  $\Lambda^0$  que comparten el mismo evento se muestra en la figura 2.4. El pico representa a una partícula que decae en  $\Lambda^0 \Lambda^0$  y tiene una masa alrededor de 2340 MeV/c<sup>2</sup>. Se aprecia que de 277 eventos sólo se tienen alrededor de 20 partículas que decaen en  $\Lambda^0 \Lambda^0$ . Se realizó el ajuste de una función gaussiana, donde se ve que el ancho es de 14 ± 0.001973 MeV (Figura 2.5).

También se muestra una gráfica de la masa invariante de  $p \ge \pi^-$  contra la masa invariante de otros  $p \ge \pi^-$  (Figura 2.6), y de ahi tomamos los datos que se encuentran en el centro (la parte



Figura 2.3: Distribución de point back de las partículas  $\Lambda^0 \Lambda^0$  del mismo evento

sombreada) que puede que sean partículas  $\Lambda^0\Lambda^0,$ y las usamos para aplicar el método de la masa invariante.



Figura 2.4: Masa invariante de dos partículas  $\Lambda^0$  en el mismo evento



Figura 2.5: Ajuste de una gaussiana a la masa invariante de dos partículas  $\Lambda^0$  en el mismo evento



Figura 2.6: Masa invariante de p y  $\pi^-$  contra la masa invariante de p y  $\pi^-,$  para obtener partículas  $\Lambda^0\Lambda^0$ 

# **2.3.** Decaimiento en $\Lambda^0 p \pi^-$

Siguiendo con la predicción de Jaffe, si la masa de la partícula  $H^0 < 2230 \text{ MeV/c}^2$  esta no puede decaer fuerte. Entonces sólo puede actuar la fuerza débil la cual puede cambiar quarks. El decaimiento débil sería entonces  $H^0 \rightarrow \Lambda^0 p \pi^-$ .

La partícula que decae en  $\Lambda^0 p \pi^-$  está formada por una partícula  $\Lambda^0$  y un par de partículas  $p\pi^-$ , cuya distribución de masa invariante da un valor ligeramente por abajo del valor conocido de la masa invariante de  $\Lambda^0$  (Figura 2.7). En la gráfica se observa un escalón el cual está dado porque en los archivos *strip* la partícula  $\Lambda^0$  tiene un corte en el valor de masa invariante y al cambiar este valor para generar  $p\pi^-$ , con masa menor, éste corte ya implícito genera el escalón.



Figura 2.7: Masa invariante de  $p\pi^-$ , sin el paquete de datos pp

Si la diferencia entre el valor para la masa de la partícula hija  $\Lambda^0$  entre el obtenido en el análisis y el valor conocido (1.1156 GeV/c<sup>2</sup>) es menor a 0.005, se usará para los siguientes cálculos el valor 1.1156 GeV/c<sup>2</sup>.

En este decaimiento ( $\mathrm{H}^0 \to \Lambda^0 p \pi^-$ ),  $\mathrm{H}^0$  decae en  $\Lambda^0$ ,  $p \ge \pi^-$ , posteriormente  $\Lambda^0$  decae en  $p \ge \pi^-$ , (Figura 2.8). Se guarda la posición de los vértices secundarios sobre el eje z (svx\_z) de estas partículas hijas en nuevas variables (sv) y se hace el corte L2 > L1, para diferenciar las partículas hijas de  $\mathrm{H}^0$ ,  $p \ge \pi^-$ , de las partículas hijas de  $\Lambda^0$ .



Figura 2.8: Partícula H<sup>0</sup>

Después, de igual manera que para  $\Lambda^0 \Lambda^0$ , se calculó la masa efectiva.

Por último se realizó, con varios valores, el corte de  $L/\sigma$  sobre la partícula hija<sup>2</sup>  $p\pi^-$  (Figuras 2.9 y 2.10) y fue en valor de corte  $L/\sigma = 1.9$  (Figura 2.11) donde se presentó una acumulación en el valor de la masa invariante de alrededor de 2215 MeV/c<sup>2</sup>. Se realizó el ajuste de una función gaussiana donde se ve que el ancho es de  $1.9 \pm 0.001262$  MeV (Figura 2.17).

<sup>&</sup>lt;sup>2</sup>Para la partícula hija  $\Lambda^0$  ya se había realizado un corte de L/ $\sigma > 5$ .



Figura 2.9: Masa invariante  $\Lambda^0 p \pi^-$  con cortes en L/ $\sigma$  para  $p \pi^-$  de 1.8 a 2.2



Figura 2.10: Masa invariante  $\Lambda^0 p \pi^-$  con cortes en L/ $\sigma$  para  $p \pi-$  de 2.3 a 2.9



Figura 2.11: Corte en L/ $\sigma$ para  $p\pi^-$  de 1.9



Figura 2.12: Corte en L/ $\sigma$ para  $p\pi^-$  de 1.9, con el ajuste de la función gaussiana

Después de estos análisis, se observó en todos los cortes de  $L/\sigma$  una acumulación. Se eligió el valor del corte de  $L/\sigma > 1.9$ , porque se puede observar mejor este *pico*, el cual es una partícula con número bariónico dos (por  $\Lambda^0$  y p), esto quiere decir que esa partícula tiene seis quarks como la partícula que predijo Jaffe. Como este *pico* no había sido observado nunca, es de llamar la atención, por ello se decidió correr todos los paquetes de datos nuevamente, incluyendo el paquete del haz positivo pp (Cuadro 1.3), que anteriormente no se había analizado para comprobar que el *pico* es real. Para usar el paquete pp, se cambió su archivo *test.cmd* correspondiente, ya que en el experimento al usar un haz positivo se cambió la polaridad de los imánes, y este cambio también se debe ver en el programa de análisis.

Las líneas agregadas y cambiadas en el archivo *test.cmd* para el paquete de datos pp se ven a continuación:

set on recon rec\_refit2
set on recon rec\_refit1
set cut recon cand\_csec 9.
set cut tracking ptm1 -0.7371
set cut tracking ptm2 -0.8285

Para el resto de los paquetes de datos (pb a pz), se agregó a *test.cmd* las líneas set on recon rec\_refit2 y set cut recon cand\_csec 9. Siendo importante la línea set on recon rec\_refit2 pues con este se hace un refit al segundo vértice de la partícula buscada y no solo al primero.

Al correr todos los datos junto con las modificaciones, el número de eventos aumenta, es decir, aumenta la estadística. Se muestran las nuevas gráficas para la masa invariante de  $p \ge pi^- \ge 10^{-1}$  y la masa invariante de  $p\pi^-$  (Figura: 2.13).



Figura 2.13: Masa invariante de p y  $\pi^-$  ( $\Lambda^0$ ) y  $p\pi^-$ , con todos los paquetes de datos incluidos el grupo pp

Estos nuevos datos fueron analizados con ayuda de un programa anal. F, el cual es diferente al primero que se presentó y nuevamente fue desarrollado por la autora de este trabajo de tesis. Para la partícula  $\Lambda^0 p\pi^-$  se volvieron a realizar los cortes y análisis ya explicados, sólo se agregó un nuevo corte sobre  $\chi^2$  para el vértice secundario. Se puede ver la distribución de  $\chi^2$  en la figura 2.14. El corte fué  $\chi^2 < 5$ .



Figura 2.14: Distribucion de  $\chi^2$  para el vértice secundario

También se volvieron a utilizar los cortes  $L/\sigma$ . En esta ocasión es un corte sobre la partícula  $\Lambda^0 p\pi$  y no sólo sobre la partícula hija  $p\pi^-$  ya que al hacer el segundo refit ahora se toma en cuenta también la trayectoria de la partícula hija  $\Lambda$ . El valor de L cambiará muy poco pues sólo es la posición sobre el eje z, pero el valor de  $\sigma$  debe ser menor, el error debe ser menor.

Se muestran algunas de las gráficas con todos estos cortes en la figura 2.15.



Figura 2.15: Masa invariante  $\Lambda^0 p \pi^-$  con cortes en L/ $\sigma$  para  $\Lambda^0 p \pi^-$  de 2.7 a 3

Resumiendo. Se encontraron dos acumulaciones importantes, en la figura 2.16; primero se ve una acumulación alrededor del valor de masa invariante de 2340 MeV/c<sup>2</sup>, esta acumulación representa a una partícula con un decaimiento en dos partículas  $\Lambda^0$ . En la figura 2.17 se ve una acumulación alredor del valor de masa invariante de 2215 MeV/c2, que representa una partícula con un decamiento en  $\Lambda^0 p \pi^0$ . Es la primera vez que se observan estas acumulaciones.



Figura 2.16: Masa invariante de dos partículas  $\Lambda^0$  en el mismo evento



Figura 2.17: Corte en L/ $\sigma$  para  $p\pi^-$  de 1.9

# Capítulo 3

# Estudios Sistemáticos

En el capítulo anterior, en la gráfica de la masa invariante de  $\Lambda^0 p\pi^-$  se encontró un "pico" relevante al realizar el corte L/ $\sigma$  >1.9 para  $p\pi^-$  (Figura 2.11). Para demostrar que esta acumulación no es una manifestación de ruido o algún otro error, se hicieron varios estudios sistemáticos.

## 3.1. Comprobación mediante simulación

La simulación se realiza porque al tener varios picos similares en el histograma se desconoce cual es el pico que representa a la partícula que se está buscando ó el ancho de este pico<sup>1</sup>. Se simuló el decaimiento  $\Lambda^0 p \pi^-$  con embedding (ver 1.12), usando en la fórmula para n = 4.3 y para b =  $1/\frac{GeV}{c^2}$ , que son los valores típicos en la recosntrucción de partículas. Se reconstruyó por el método de masa invariante y se obtuvo un "pico" que se obtendría si esta partícula existiera, se realizó un ajuste y se obtuvo un ancho de 2.9 MeV (Figura 3.1, parámetro P3), lo que justifica la selección del ancho de 2 MeV para el decaimiento  $\Lambda^0 p \pi^-$ (Figura 2.11); ya que el ancho coincide con la resolución del experimento, se afirma que el experimento SELEX es adecuado para hacer estas mediciones.

 $<sup>^1\</sup>mathrm{El}$ ancho es igual a la resolución



Figura 3.1: Masa invariante del decaimiento  ${\rm H}^0\to \Lambda^0 p\pi^-$ encontrada mediante simulación

# 3.2. Estabilidad del pico contra diferentes cortes de ${\rm L}/\sigma$

Se realizó el ajuste de una función gaussiana a las diferentes gráficas obtenidas (Figuras 2.9 y 2.10) y se observó el cambio en las variables del ajuste mientras cambia la variable  $L/\sigma$  para  $p\pi^-$ .



Figura 3.2: Ajuste de una función gaussiana a gráficas del decaimiento  $H^0 \rightarrow \Lambda^0 p \pi^-$  con cortes en L/ $\sigma$  de 1.8 a 2.2 para  $p \pi^-$ 



Figura 3.3: Ajuste de una función gaussiana a gráficas del decaimiento  $H^0 \to \Lambda^0 p \pi^-$  con cortes en L/ $\sigma$  de 2.3 a 2.9 para  $p \pi^-$ 

Cada parámetro de los ajustes (el número de partículas, la media,  $\sigma$ , la constante y la pendiente), fue graficado y se verificó que el valor de estas variables se mantienen constantes con los diferentes cortes en L/ $\sigma$  (Figura 3.4).



Figura 3.4: Gráficas de los parámetros del ajuste de una Gaussiana conforme cambia  $L/\sigma$ .

Al ver que los valores no presentan cambios abruptos, se mantienen más o menos constante, podemos decir que el pico es real.

## 3.3. Revisión de eventos repetidos

Hay ocasiones en que una partícula al tener poco momento (como un  $\pi^-$ ), provoca una difracción múltiple, es decir, camina en zig-zag, este tipo de trayectoria tendrá errores de parámetros de ajuste muy grandes cuando se le ajuste una recta. Si se junta el resultado del ajuste con los errores se obtiene un cilindro muy ancho, y esto tiene como consecuencia que cualquier ajuste de vértices que se realize en éste, funcionará. Si se tienen 10 o más de estas partículas con poco momento, cuando se realize el método de la masa invariante, los valores obtenidos para cada partícula serán casi los mismos y formarán un "pico" muy claro.

Para comprobar que la acumulación encontrada en este trabajo no fuera como el caso descrito, se guardó una lista con los datos: número de corrida, número de evento, masa (se obtiene de SOAP) y masa invariante; los datos se tomaron del histograma que se generó después de todos los cálculos y cortes y se comprobó que las entradas son de eventos diferentes, lo que descartó el caso visto anteriormente. La lista tiene 3461918 entradas con 98 líneas. Se muestra sólo una parte de la lista a continuación:

| 5788. | 1202714. | 2.2253747  | 2.22625732 |
|-------|----------|------------|------------|
| 6063. | 604585.  | 2.23559666 | 2.23070765 |
| 6148. | 1228403. | 2.20272756 | 2.2036202  |
| 6170. | 906388.  | 2.2128315  | 2.21283627 |
| 6170. | 1210637. | 2.23754334 | 2.23296762 |
| 6418. | 1152901. | 2.23452878 | 2.23328543 |
| 6539. | 903872.  | 2.22838426 | 2.22678924 |
| 6560. | 403959.  | 2.22680163 | 2.22774911 |
| 6713. | 604587.  | 2.23939824 | 2.23882151 |
| 6802. | 1144372. | 2.23804021 | 2.23830128 |

## 3.4. Estudio del ruido con event-mixing

Una prueba importante en este estudio es la descripción del ruido, ya que al tener pocos eventos que analizar, la estadística que se obtiene del decaimiento no es suficiente, , provocando que el ruido pueda ser producto de algún error en el análisis. Para poder definir al ruido se utilizó el método *event-mixing*.

El método *event-mixing* se basa en afirmar que el ruido está formado por accidentes, es decir, partículas que no comparten el mismo vértice pero que aparecen en el histograma ó de partículas que no pertenecen al decaimiento buscado. Básicamente consiste en ignorar los datos que forman

la acumulación y concentrarse en los accidentes. Con este método se evitan dos problemas, uno es evitar la búsqueda de una función o modelo matemático que nos permita hacer un buen ajuste y el segundo es el quitar la incógnita de como se comporta el ruido adentro del "pico", porque como no habrá "pico" se podrá ver el comportamiento del ruido en todo el rango de datos.

Por lo que primero se corre el programa SOAP y después se selecciona un evento con candidatos a  $p\pi^-$  y de otro evento candidatos a  $\Lambda^0$  que no tengan nada que ver uno con el otro, es decir, no deben pertenecer al decaimiento buscado  $\Lambda^0 p\pi^-$  de cumplir esta condición, se guarda cuando más un candidato por evento.

Se utiliza una tabla parecida a la de embedding para reconstruir el decaimiento  $\Lambda^0 p \pi^-$ , pero utilizando la información de los  $p\pi^-$  y  $\Lambda^0$  que se seleccionaron. La diferencia entre mixing y embedding, es que mixing utiliza partículas reales, no simulaciones de estas, por lo que se esperan resultados reales.

Se corren los datos 25 veces para aumentar la cantidad de eventos para realizar un análisis estadístico más acertado, lo que da una precisión del ruido cinco veces mejor, es decir, el efecto del ruido al error total es de  $1/25 \sim 4\%$ , siempre y cuando el ruido sea igual a la señal. Los resultados se guardan en un histograma. Como estas partículas no pueden producir el decaimiento  $\Lambda^0 p \pi^-$ , producen ruido, es decir, el ruido será formado sólo por puros accidentes [3].

Estos nuevos datos son analizados con el programa anal.F, pero para que revise sólo los datos del ruido se debe agregar al principio del programa la siguiente línea, donde primero se genera la lista de los eventos que conforman el pico y luego se pide que no se tomen en cuenta y así tener la seguridad de que se esta analizando sólo datos que pertenecen al ruido:

```
Open(11,File='events.list')
     nb = 0
 111
     Continue
      nb = nb + 1
      Read(11,*,end=112) brun(nb),bevent(nb)
       Write(*,*) nb,brun(nb),bevent(nb)
С
      Goto 111
     Continue
 112
      Close(11)
      nb = 0
      ievent = event
      irun = run
 Do ib=1,nb
  if (ievent.eq.bevent(ib) .and. irun.eq.brun(ib)) Goto 10
 EndD0
```

Con lo anterior tenemos dos tipos de datos: los creados con *event-mixing*,llamados mix, y los datos que se obtuvieron después de correr todos los paquetes de datos, incluyendo el paquete pp llamados originales.

Para el siguiente análisis se tomó la siguiente información de los histogramas:

- ENTRIES: El número de entradas, es la suma de todos los eventos que entran en el rango de masa invariante que se definió en el programa *anal.F* y los que no.
- SUM ó ALLCHAN: son sólo los eventos que entran en el rango de masa invariante que se definió en el programa anal.F.

Para realizar un estudio sistemático se llevó acabo un cálculo utilizando los datos mix y originales, para tres rangos diferentes de masa (2.19 a 2.24 GeV/c<sup>2</sup>, 2.19 a 2.29 GeV/c<sup>2</sup> y de 2.19 a 4 GeV/c<sup>2</sup>), para cada corte diferente de L/ $\sigma$  (ningún corte, 0, 1, 2, 3 y 4) y para cada uno de los tipos de información obtenidos de los histogramas (ENTRIES y SUM).

Se ejemplifica un cálculo realizado con el rango de masa de 2.19 a 2.24 GeV/c<sup>2</sup>, con corte de  $L/\sigma=0$  con información de ENTRIES, usando los dos tipos de datos (mix y originales).

Primero se buscó el error con la fórmula 3.1.

$$error relativo = \frac{valor medido - 25 * valor real}{valor real}$$
(3.1)

Donde valor medido son los datos mix; y valor real son los datos originales. Se puede ver el programa sc.kumac con el que se realizó el cálculo en el apéndice D.

Con este número calculado, se utiliza su inverso para escalar un vector que toma la información de los histogramas generados con *event-mixing*. Se hace este cálculo por cada rango de masa, y corte en  $L/\sigma$ , y por tipo de información, para finalmente combinar los histogramas de los datos originales y mix (Figuras 3.5, 3.6, 3.7, 3.8, 3.9), y ver como se comporta el ruido, el ruido aparece de color rojo en las gráficas. Todo esto se realizó con otro programa llamado *mix.kumac* que se puede ver en el apéndice E.

Por lo tanto después de realizar el *event-mixing* se tiene bien descrito el ruido en todas las combinaciones de masa y rangos de ésta, y después de combinar estos resultados podemos ver el *"pico"* es real.


Figura 3.5: Entradas tomadas de los datos mix (rojo) y originales. Rango de masa desde 2.19 a 2.24  $\rm GeV/c^2$ 



Figura 3.6: Contenidos de los histogramas (SUM) tomados de los datos mix (rojo) y originales. Rango de masa desde 2.19 a 2.24  $\rm GeV/c^2$ 



Figura 3.7: Entradas tomadas de los datos mix (rojo) y originales. Rango de masa desde 2.19 a 2.29  ${\rm GeV/c^2}$ 





Figura 3.8: Contenidos de los histogramas (SUM) tomados de los datos mix (rojo) y originales. Rango de masa desde 2.19 a 2.29  $\rm GeV/c^2$ 



Figura 3.9: Entradas tomadas de los datos mix (rojo) y originales. Rango de masa desde 2.19 a 4 $\rm GeV/c^2$ 



Figura 3.10: Contenidos de los histogramas (SUM) tomados de los datos mix (rojo) y originales. Rango de masa desde 2.19 a 4 $\rm GeV/c^2$ 

### Capítulo 4

## Conclusiones

En el presente trabajo de tesis se buscó partículas hadrónicas que decaen a su estado final en  $\Lambda^0 \Lambda^0$  y  $\Lambda^0 p \pi^-$ , donde se encontraron dos acumulaciones para cada decaimiento:

- Para  $\Lambda^0 \Lambda^0$  se buscó eventos que presentaran dos partículas  $\Lambda^0$  donde se encontró una acumulación en la gráfica de la masa invariante con un valor de 2340 MeV/c<sup>2</sup> y un ancho de 14 ± 0.001973 MeV; es decir, se encontró una partícula que decae en  $\Lambda^0 \Lambda^0$ .
- Para  $\Lambda^0 p \pi^-$  se encontró una acumulación en la gráfica de la masa invariante con un valor de 2215 MeV/c<sup>2</sup> y un ancho de 1.9 ± 0.001262 MeV; es decir, se encontró una partícula que decae en  $\Lambda^0 p \pi$ -.

Se verificó que estas acumulaciones fueran reales y no algún error de análisis.

Estos resultados coinciden con lo que propuso Jaffe en 1977 sobre una nueva partícula que llamó H<sup>0</sup> formada de seis quarks (*uussdd*) y tiene una masa de 80 MeV/c<sup>2</sup> por debajo de  $2m_{\Lambda}$ , es decir, una masa alrededor de 2230 MeV/c<sup>2</sup>. También predijo un estado excitado con una masa de 2335 MeV/c<sup>2</sup>.

Con esto podemos decir que se encontró una nueva partícula con masa de 2215  $MeV/^2$  y su estado excitado con masa de 2340  $MeV/^2$ , que coinciden aproximadamente con el modelo de Jaffe.

Como trabajo a futuro que da corregir algunos de los paquetes, para poder tener una cantidad más grande de datos que analizar y realizar una mejor reconstrucción de las partículas, como  $\Lambda^0$ , para obtener una estadística más confiable de estos decaimientos.

# Apéndice A

## Colaboración SELEX

E. Gülmez Bogazici University, Bebek 80815 Istanbul, Turkey

 R. Edelstein, S.Y. Jun, A.I. Kulyavtsev<sup>1</sup>, A. Kushnirenko<sup>2</sup>, D. Mao<sup>3</sup>, P. Mathew<sup>4</sup>, M. Mattson, M. Procario<sup>5</sup>, J. Russ, J. You<sup>1</sup>
 Carnegie-Mellon University, Pittsburgh, PA 15213, U.S.A.

A.M.F. Endler Centro Brasileiro de Pesquisas Físicas, Rio de Janeiro, Brazil

P.S. Cooper, J. Kilmer, J. Lach, L. Stutte Fermi National Accelerator Laboratory, Batavia, IL 60510, U.S.A.

V.P. Kubarovsky, V.F. Kurshetsov, A.P. Kozhevnikov, L.G. Landsberg<sup>6</sup>, V.V. Molchanov, S.B. Nurushev, S.V. Petrenko, A.N. Vasiliev, D.V. Vavilov, V.A. Victorov Institute for High Energy Physics, Protvino, Russia

M.Y. Balatz<sup>6</sup>, G.V. Davidenko, A.G. Dolgolenko, G.B. Dzyubenko<sup>6</sup>, A.V. Evdokimov, M.A. Kubantsev, I. Larin, V. Matveev, A.P. Nilov<sup>6</sup>, V.A. Prutskoi, A.I. Sitnikov, V.S. Verebryusov<sup>6</sup>, V.E. Vishnyakov Institute of Theoretical and Experimental Physics, Moscow, Russia

> U. Dersch<sup>7</sup>, I. Eschrich<sup>8</sup>, I. Konorov<sup>9</sup>, H. Krüger<sup>10</sup>, J. Simon<sup>11</sup>, K. Vorwalter<sup>12</sup> Max-Planck-Institut für Kernphysik, 69117 Heidelberg, Germany

#### I.S. Filimonov<sup>6</sup>, E.M. Leikin, A.V. Nemitkin, V.I. Rud Moscow State University, Moscow, Russia

 A.G. Atamantchouk<sup>6</sup>, G. Alkhazov, N.F. Bondar, V.L. Golovtsov, V.T. Kim, L.M. Kochenda,
 A.G. Krivshich, N.P. Kuropatkin<sup>1</sup>, V.P. Maleev, P.V. Neoustroev, B.V. Razmyslovich<sup>13</sup>, V. Stepanov<sup>13</sup>, M. Svoiski<sup>13</sup>, N.K. Terentyev<sup>14</sup>, L.N. Uvarov, A.A. Vorobyov
 Petersburg Nuclear Physics Institute, St. Petersburg, Russia

> M.A. Moinester, A. Ocherashvili<sup>15</sup>, V. Steiner **Tel Aviv University, 69978 Ramat Aviv, Israel**

J. Amaro-Reyes, A. Blanco-Covarrubias, J. Engelfried, N. Estrada, A. Flores-Castillo, G. López-Hinojosa, A. Morelos, J.L. Sánchez-López, I. Torres<sup>16</sup>, E. Vázquez-Jáuregui<sup>17</sup>

Universidad Autónoma de San Luis Potosí, San Luis Potosí, México

V.J. Smith University of Bristol, Bristol BS8 1TL, United Kingdom

U. Akgun, A.S. Ayan, M. Kaya<sup>18</sup>, E. McCliment, C. Newsom, Y. Onel, S. Ozkorucuklu<sup>19</sup> University of Iowa, Iowa City, IA 52242, U.S.A.

#### L.J. $Dauwe^6$

University of Michigan-Flint, Flint, MI 48502, U.S.A.

M. Iori University of Rome "La Sapienza" and INFN, Rome, Italy

L. Emediato, C.O. Escobar<sup>20</sup>, F.G. Garcia<sup>1</sup>, P. Gouffon, T. Lungov, M. Srivastava, R. Zukanovich-Funchal University of São Paulo, São Paulo, Brazil

> A. Penzo University of Trieste and INFN, Trieste, Italy

<sup>&</sup>lt;sup>1</sup>Now at Fermi National Accelerator Laboratory, Batavia, IL 60510, U.S.A.

<sup>&</sup>lt;sup>2</sup>Now at Institute for High Energy Physics, Protvino, Russia

<sup>&</sup>lt;sup>3</sup>Present address: Lucent Technologies, Naperville, IL

<sup>&</sup>lt;sup>4</sup>Present address: Baxter Healthcare, Round Lake IL

<sup>&</sup>lt;sup>5</sup>Present address: DOE, Germantown, MD

 $<sup>^{6}</sup>$ deceased

<sup>&</sup>lt;sup>7</sup>Present address: Advanced Mask Technology Center, Dresden, Germany

<sup>&</sup>lt;sup>8</sup>Present address: University of California at Irvine, Irvine, CA 92697, USA

<sup>&</sup>lt;sup>9</sup>Present address: Physik-Department, Technische Universität München, 85748 Garching, Germany

<sup>&</sup>lt;sup>10</sup>Present address: The Boston Consulting Group, München, Germany

<sup>&</sup>lt;sup>11</sup>Present address: Siemens Healthcare, Erlangen, Germany

<sup>&</sup>lt;sup>12</sup>Present address: Allianz Insurance Group IT, München, Germany

<sup>&</sup>lt;sup>13</sup>Present address: Solidum, Ottawa, Ontario, Canada

<sup>&</sup>lt;sup>14</sup>Now at Carnegie-Mellon University, Pittsburgh, PA 15213, U.S.A.

<sup>&</sup>lt;sup>15</sup>Present address: NRCN, 84190 Beer-Sheva, Israel

<sup>&</sup>lt;sup>16</sup>Present address: Instituto Nacional de Astrofísica, Óptica y Electrónica, Tonantzintla, Mexico

<sup>&</sup>lt;sup>17</sup>Present address: SNOLAB

<sup>&</sup>lt;sup>18</sup>Present address: Kafkas University, Kars, Turkey

<sup>&</sup>lt;sup>19</sup>Present address: Süleyman Demirel Universitesi, Isparta, Turkey

<sup>&</sup>lt;sup>20</sup>Present address: Instituto de Física da Universidade Estadual de Campinas, UNICAMP, SP, Brazil

# Apéndice B

### Programa *recon\_recon.F*

A continuación se presenta el programa mejorado de recon\_recon.F.

```
subroutine recon_recon(irecdf)
```

```
$Id: recon_recon.F,v 1.34 2010/08/04 14:32:36 jurgen Exp $
*
     $Author: jurgen $
*
     Search for all instances in an event which match the several
*
      already done reconstructions
      defined in the list of reconstruction definitions (recdf).
*
     from: pid = rr: recn1recn2 - add two reconstructions.
     examples:
         0 0 fill anal v01.0 25-Jul-1997 08:42 psc ! track recon
*#recdf
   examples
*name from pr q pid
                       ls_min ls_max mass_min mass_max pvtx_min pvtx_max
   bit
     rr 3 +1 i+d0_kpi
                          0.0
                                 0.0
                                        1.000
                                                 4.000
                                                            0.0
                                                                     0.0 $8
*
       Jurgen Engelfried
                              19 January 1998
*
       V. Matveev May 1999
*
     & ntracks, tracks(mtrk)
                                  ,! number, track list intern
*
          store negative index in track list in case of gamma
*
     implicit none
```

\* Include files

```
#include "control.inc"
```

```
#include "drv_lun.inc"
#include "part_cbk.inc"
#include "recdf_cbk.inc"
#include "recn_bk.inc"
#include "recon_par.inc"
#include "spec_pos_cbk.inc"
#include "trk_bk.inc"
#include "tseg_bk.inc"
#include "vtx2_bk.inc"
#include "vertex_par.inc"
#include "tgt_pos_cbk.inc"
#include "tgt_sz_cbk.inc"
#include "virt_trk.inc"
*
      arguments
```

Integer irecdf

```
! index in recon def
```

```
Local declarations
*
```

#### logical

first , bad\_pid , no\_recn , already\_used , & & do\_refit\_prim , do\_refit\_sec , & pid\_double(mrecdf) ! identical ids? character\*12& from ,! local "from" string ! local "pid" string & pid real\*8 & p(4) ,! 4 vector for mass calc ! calculated (fixed) mass mass\_result \* Real & chi2\_prim, ! primary vertex chi2 & ,! point-back rchi2 recon\_pvtx & chi2\_sec ! secondary vertex chi2 integer & blklen ,! from util & , ! address of recnn & , ! for r snirecn, iirecn (mrecn) & ntracks , tracks (mtrk) ,! number, track list intern pid\_id(max\_objs\_recn,mrecdf), & ! pointer to id\_recdf & ! is it vk1?pid\_type (0:max\_objs\_recn, mrecdf), & nr(mrecn), ! how many r & perm\_array(mrecn), ! for permutations & npass , ! for primary fit & , ! location for prim fit nvtxp & , ! location for sec fit nvtxs & , ! first prim vertex ivtx & , ! target tgt , ! tracks for sec. & ntrackssec , trackssec (mtrk)

```
, ! vertex fit.
      ntrackssec2, trackssec2(mtrk)
&
      i, irecn, itrk, jtrk, jrecdf, r, itgt ! loop index
&
 Integer
&
      vtracks(mtrk),
                                  ! for virtual tracks
      nptracks
&
 Integer jprim, jprim2, i_pvtx, i_pvtx2, jsec, jsec2, isegsec,
      ndof, i_svtx, i_svtx2
&
 Real xsec, ysec, zsec, zsec2, r_tmp
 Real pxsect, pysect, pzsect, ttx, tty, pxsec, pysec, pzsec, tx, ty,
      param, bx, by, z1, z2, w1, wt, zt, zp, sig_zp, chi2, zd, sigma
&
 Save first, nr, pid_id, chi2_prim, npass, chi2_sec, pid_type
 Save do_refit_prim, do_refit_sec, pid_double
 Data first /. True. /
 integer XFF00, X100, X1F, X1000000
 parameter (XFF00='FF00'x, X100='100'x, X1F='1F'X,
&
             X1000000 = '1000000 'x)
 If (first) Then
   First = .False.
   call vzeroi(pid_id, max_objs_recn*mrecdf)
   If (cuts(c_rec_cpri,p_recon).le.0.) Then
     If (cuts(c_vtx1, p_vertex).gt.0.) Then
       chi2\_prim = cuts(c\_vtx1, p\_vertex)
     Else
       chi2_prim = 4.
     EndIf
   Else
     chi2_prim = cuts(c_rec_cpri, p_recon)
   EndIf
   If (cuts(c_rec_csec,p_recon).le.0.) Then
     If (cuts(c_vtx2, p_vertex).gt.0.) Then
       chi2\_sec = cuts(c\_vtx2, p\_vertex)
     Else
       chi2\_sec = 5.
     EndIf
   Else
     chi2\_sec = cuts(c\_rec\_csec,p\_recon)
   EndIf
   If (cuts(c_rec_npass, p_recon).le.0.) Then
     If (cuts(c_npass2, p_vertex).gt.0.) Then
       npass = cuts(c_npass2, p_vertex)
     Else
       npass = 5
     EndIf
   Else
     npass = cuts(c_rec_npass, p_recon)
   EndIf
   Write(LUNSOUT, 1101) chi2_prim, chi2_sec, npass
```

```
Write(LUNLOG,1101) chi2_prim, chi2_sec, npass
   If (control(s_rec_refit2, p_recon)) Then
      do\_refit\_prim = .True.
      do\_refit\_sec = .True.
     Write(LUNSOUT, 1103) ', ', ', ',
     Write(LUNLOG, 1103) ', ', ', ',
   ElseIf (control(s_rec_refit1, p_recon)) Then
      do\_refit\_prim = .True.
      do\_refit\_sec = .False.
     Write(LUNSOUT, 1103) ', ', ', not,'
     Write(LUNLOG, 1103) '., '. not.'
   Else
      do_refit_prim = .False.
      do\_refit\_sec = .False.
     Write(LUNSOUT,1103) '_not_', '_not_'
     Write(LUNLOG, 1103) '_not_', '_not_'
   EndIf
 EndIf
 ivtx = 0
 If (n_dir_vtx2(1, single_vtx2).le.1) Then
   ivtx=0
                                            ! no primary vertex
 Else
   If (n_dir_vtx2(1, single_vtx2).le.2) Then
              = beg_dir_vtx2(1, single_vtx2) ! first single vertex
     ivtx
   Else
              = beg_dir_vtx2(1, single_vtx2)+2 ! third single vertex
     ivtx
   Endif
 Endif
 If (ivtx.gt.0) Then
   If (nt_vtx2(1, ivtx)) = 0 ivtx = 0 ! no tracks in primary
 Else
   ivtx = 0
 EndIf
 fill recn table - apply recdf cuts
    print *, 'RR: _enter_recon_recon , irecdf , nrecn=', irecdf , nrecn
    write(*,*) pid_id(1,irecdf)
                                           ! do the compilation
 If (pid_id(1, irecdf).eq.0) Then
   Bad_pid = .False.
                                           ! local "from" string
   from
               = from_recdf(1, irecdf)
   pid
              = pid_recdf(1, irecdf)
                                           ! local "pid" string
   nr(irecdf) = blklen(from_recdf(1, irecdf))
   If (nr(irecdf).lt.2) Bad_pid = .True.
   Write(LUNSOUT, 1001) id_recdf(1, irecdf), nr(irecdf)
   Write(LUNLOG, 1001) id_recdf(1, irecdf), nr(irecdf)
   \mathbf{Do} \mathbf{r} = 1, \mathrm{nr}(\mathrm{irecdf})
                                           ! compile recons
     Do jrecdf = 1, irecdf -1
                                            ! loop over all prev. defs
        If (pid(1:blklen(name_recdf(1,jrecdf)))
&
             .eq. name_recdf(1, jrecdf)
```

\*

 $\mathbf{c}$ 

 $\mathbf{c}$ 

```
&
                  (1: blklen (name_recdf(1, jrecdf)))) Then
               pid_id(r, irecdf) = id_recdf(1, irecdf)
               Write(LUNSOUT, 1002) id_recdf(1, jrecdf)
               Write(LUNLOG, 1002) id_recdf(1, jrecdf)
               If (from_recdf(1, jrecdf)(1:3).eq.'vk1') Then
                 pid_type(r, irecdf) = 1
               Else
                 pid_type(r, irecdf) = 0
               EndIf
               pid = pid(blklen(name_recdf(1, jrecdf))+1:)
               Goto 10
             EndIf
          EndDo
 10
        EndDo
        Write(LUNSOUT, *) '_'
        Write(LUNLOG, *) ',','
        pid_type(0, irecdf) = 0
        pid_double(irecdf) = .False.
        Do r = 1, nr(irecdf)
           If (pid_type(r, irecdf).eq.1) pid_type(0, irecdf) = 1
           If (pid_id(r, irecdf).eq.0) Bad_pid = .True.
           If (r.ge.2) Then
            Do i = 1, r-1
               If (pid_id(r, irecdf).eq.pid_id(i, irecdf))
     &
                    pid_double(irecdf) = .True.
            EndDo
          EndIf
        EndDo
        If (Bad_pid) Then
          Write(LUNSOUT, *) 'RECON_RECON: _Bad_definition_',
     &
                pid_recdf(1, irecdf)
           Write(LUNLOG, *)
                             'RECON_RECON: _Bad_definition_',
     &
                pid_recdf(1, irecdf)
           pid_id(1, irecdf) = -1
                                                 ! bad definition
        EndIf
      EndIf
                                                 ! compilation
       Write(*,*) 'pid_id', (pid_id(r, irecdf), r=1, nr(irecdf))
      If (pid_id(1, irecdf).eq.-1) Goto 900 ! bad definition
      nirecn = 0
       Write(*,*) 'id_recon', nrecn, (id_recn(1, irecn), irecn=1, nrecn)
       Write(*,*) (pid_id(r,irecdf),r=1,nr(irecdf)),pid_double(irecdf)
\mathbf{c}
      Do r = 1, nr(irecdf)
        No\_recn = .True.
        Do irecn = 1, nrecn
                                                 ! find matching recon
           If (id_recn(1, irecn).eq. pid_id(r, irecdf)) then ! matching recon
             already\_used = .False.
            \mathbf{Do} i = 1, \text{nirecn}
               If (iirecn(i).eq.irecn) already_used = .True.
```

с

с

```
c Write(*,*) i, irecn, iirecn(i)
EndDo
If (.not.already_used) Then
    nirecn = nirecn + 1
    iirecn(nirecn) = irecn
c Write(*,*) 'iirecn_',r, nirecn,(iirecn(i),i=1,nirecn)
    perm_array(nirecn) = nirecn
    No_recn = .False.
EndIf
EndIf
EndDo
```

La mejora en el programa fueron las siguientes lineas:

```
If (No_recn .and. .not.pid_double(irecdf)) Then ! nothing found
с
          If (No_recn .and. .not.pid_double(irecdf)
с
               .and. nirecn.lt.nr(irecdf)) Then ! nothing found
\mathbf{c}
      &
          If (No_recn) Then ! nothing found
С
         If (pid_double(irecdf)) Then
          If (nirecn.lt.nr(irecdf)) Then ! nothing found
             Write (*,*) 'Did_not_find_', r, pid_id (r, irecdf), already_used
\mathbf{c}
             Goto 900
          EndIf
         Else
          If (No_recn) Then
                               ! nothing found
с
                Write (*,*) 'Did_not_find_', r, pid_id (r, irecdf), already_used
               Goto 900
          EndIf
         EndIf
      EndDo
\mathbf{c}
       print *, 'found_matching_recons_#', nirecn
       Write(*,*) 'Doing_Permus'
\mathbf{c}
       Write(*,*) (iirecn(irecn),irecn=1,nirecn)
с
      \operatorname{perm}_\operatorname{array}(1) = 0
      Call Combi(perm_array, nirecn, nr(irecdf))
                                                  ! Loop over permutation
      Do While (perm_array(1).ne.0)
         Write(*,*) (perm_array(r), r=1, nr(irecdf))
с
         ntracks = 0
         ntrackssec = 0
         ntrackssec2 = 0
        Do r = 1, nr(irecdf)
           If (id_recn(1, iirecn(perm_array(r))).ne.
     &
                pid_id(r,irecdf)) Goto 150 ! wrong permu
           Do itrk = 1, pr_recdf(1, recdf_recn(1, iirecn(perm_array(r))))
             ntracks = ntracks + 1
             tracks(ntracks) =
                   iand (pmtrk_recn(itrk, iirecn(perm_array(r))),
     &
```

& XFF00)/X100 vtracks(ntracks) = tracks(ntracks)**if**(iand(pmtrk\_recn(itrk, iirecn(perm\_array(r))), & X1000000).ne.0) ! gamma tracks(ntracks) = -tracks(ntracks) ! make neg.index& ccc get tracks from first rr if (r.eq.1.and.pid\_type(0,iirecn(perm\_array(r))).eq.0) Then ntrackssec = ntrackssec +1! first secondary trackssec(ntrackssec) = tracks(ntracks) Endif if  $(r.eq.2.and.pid_type(0,iirecn(perm_array(r))).eq.0)$  Then ntrackssec2 = ntrackssec2 + 1 ! second secondary trackssec2(ntrackssec2) = tracks(ntracks) endif ccc end get tracks from ... EndDo EndDo Write(\*,\*) 'RR: trks: ',(tracks(itrk),itrk=1,ntracks) с **Do** itrk = 1, ntracks -1**Do** jtrk = itrk+1, ntracksIf (tracks(itrk).eq.tracks(jtrk)) Goto 150 ! same tracks EndDo EndDo If (nrecn.ge.mrecn-nr(irecdf)) Then ! Overflow  $overflow\_recn = overflow\_recn + 1 + nr(irecdf)$ **Goto** 900 ! we are done here Else = nrecn + 1 ! Get next recn entry n EndIf **call** vzeror(recn(1,n), lrecn) ! clear entry calculate invariant mass (later allow for fixed mass via partnumber) с **Do** r = 1, nr(irecdf) $p(4) = pz\_recn(1, iirecn(perm\_array(r)))$  $p(3) = py\_recn(1, iirecn(perm\_array(r)))$  $p(2) = px\_recn(1, iirecn(perm\_array(r)))$ If (id\_recn(1, iirecn(perm\_array(r))).ne.12) Then с  $mass\_result = dble(mass\_recn(1, iirecn(perm\_array(r))))$ \*\* code for recons containing ds vees/kinks (should use for vees only)  $\mathbf{c}$ if (from\_recdf(1, recdf\_recn(1, iirecn(perm\_array(r))))(1:3)  $\mathbf{c}$ & .eq.'vk1') **then** с **If** (pid\_type(1, iirecn(perm\_array(r))).eq.1) **Then** ! vk1 \*\* check charm cuts on hyperon (use l/sig area in recdf)  $\mathbf{c}$ **if**(mass\_recn(1, iirecn(perm\_array(r))).gt. & ls\_max\_recdf(1, recdf\_recn(1, iirecn(perm\_array(r))))

```
&
             )then
          goto 150
                                      ! fail cut-do next combination
        else if (mass_recn(1, iirecn(perm_array(r))).lt.
&
               ls_min_recdf(1, recdf_recn(1, iirecn(perm_array(r))))
&
               )then
         goto 150
                                 ! fail cut-do next combination
        else
       end if
        ** load table particle mass instead of recn mass
        if (id_recn(1, iirecn(perm_array(r))).eq.20) Then
          mass\_result = mass\_part(1, kaon0\_long\_pid)
        elseif (id_recn(1, iirecn(perm_array(r))).eq.21 .or.
               id_recn(1, iirecn(perm_array(r))).eq.22)
                                                            then
*
          mass_result = mass_part(1, lambda_pid)
        elseif (id_recn(1, iirecn(perm_array(r))).eq.23 .or.
               id_recn(1, iirecn(perm_array(r))).eq.24) then
*
          mass\_result = mass\_part(1, sigma\_minus\_pid)
        elseif (id_recn(1, iirecn(perm_array(r))).eq.25 .or.
               id_recn(1, iirecn(perm_array(r))).eq.26) then
*
          mass_result = mass_part(1, sigma_plus_pid)
        elseif (id_recn(1, iirecn(perm_array(r)))).eq.27.or.
               id_recn(1, iirecn(perm_array(r))).eq.28) then
*
          mass_result = mass_part(1, xi_minus_pid)
        elseif (id_recn(1, iirecn(perm_array(r))).ge.29 .and.
               id_recn(1, iirecn(perm_array(r))). le. 34) then
*
          mass_result = mass_part(1, omega_pid) ! parent is omega for these
              kinks
        else
          print *, 'REC_REC: _warning_vee/kink_recdf_not_#20-34'
        endif
     endif
                                           ! vk1
     p(1) = sqrt((mass_result) **2 +
&
           p(2) **2 + p(3) **2 + p(4) **2
                                           ! energy E = sqrt(m * *2 + p * *2)
   print *, 'p, mass_result: ', p(1), mass_result
      Else
        p(1) = sqrt(1.115D0**2 +
 &
            p(2) **2 + p(3) **2 + p(4) **2
      EndIf
     Do i = 1.4
        e_{recn}(i,n) = e_{recn}(i,n) + p(i)
                 ! doing 4-vector E=e_recn(1), px=e_recn(2), etc
     EndDo
   EndDo
   mass_recn(1,n) = sqrt(max(0.D0, e_recn(1,n)) **2
&
        - px_{recn}(1, n) **2
&
        - py_{recn}(1, n) **2
        - pz_recn(1,n) * * 2))
&
   print *, 'n, mass: ', n, mass_recn(1, n)
```

 $\mathbf{c}$ 

 $\mathbf{c}$ 

с

 ${}^{\mathrm{c}}_{\mathrm{c}}$ 

 $\mathbf{c}$ 

 $\mathbf{c}$ 

```
if (
                                                   ! mass cuts
              mass_min_recdf(1, irecdf).ge.
     *
              mass_max_recdf(1, irecdf) .or.
                                                   ! mass cuts enabled
     *
              (mass_recn(1,n) .ge. mass_min_recdf(1,irecdf) ! min mass
     *
              . and .
     *
              mass_recn(1,n) .le. mass_max_recdf(1,irecdf)) ! max mass
     *
              ) then
                                                   ! We have reconstruction
      fill this reconstruction
\mathbf{c}
           id_recn(1,n)
                               = id\_recdf(1, irecdf)
           Call ucopyii(tgt_recn(1, iirecn(perm_array(1))),
     &
                 tgt\_recn(1,n),6)
                                                   ! sec. vertex
         print *, 'n, id_recn, mass: ', n, id_recn (1, n), mass_recn (1, n)
\mathbf{c}
           print *, 'svx_tgt_recon_1:6: ', tgt_recn(1,n), q_recn(1,n),
С
      &
            recdf_recn(1,n), bit_recn(1,n), pmtrk_recn(1,n)
\mathbf{c}
                               = q_recdf(1, irecdf)
           q_recn(1,n)
           recdf_recn(1,n)
                               = irecdf
            Write(*,*) recdf_recn(1,n)
c
                              = out_recdf(1, irecdf) ! mode bits
           bit_recn(1,n)
           print *, 'q, recdf, bit, nr: ', q_recn(1,n),
\mathbf{c}
      &
            recdf_recn(1,n), bit_recn(1,n), nr(irecdf)
\mathbf{c}
           Do r = 1, nr(irecdf)
             link_recn(r,n) = recn_t_recn + iirecn(perm_array(r)) ! link to
                 recon
             pmtrk_recn(r,n) = 0
                                                   ! later put partnumber
           print *, 'r, iirecn, link: ', r, link_recn(r, n), iirecn(perm_array(r)),
\mathbf{c}
      &
            iirecn (perm_array(r))
с
```

```
EndDo
```

| If (.not.do_refit_prim) Goto 140                                  |                                                                    |
|-------------------------------------------------------------------|--------------------------------------------------------------------|
| <pre>If (nr(irecdf).lt.lkrecn) Then     If (ivtx.ne.0) Then</pre> | ! otherwise no space for link<br>! have tracks from primary vertex |
| If $(nvtx2+2.le.mvtx2)$ Then                                      | ! space left in vtx2                                               |
| nvtxp = nvtx2 + 1<br>nvtxs = nvtx2 + 2                            | ! get next free entry vtx2<br>! get next free entry vtx2           |

```
Call ucopyii(nt_vtx2(1,ivtx),nt_vtx2(1,nvtxp), ! copy primary
&
                 nt_vtx2(1,ivtx)+1)
           Do itrk = 1, nt_vtx2(1, nvtxp) ! negate secondary tracks
             Do i = 1, ntracks
                If (tracks(i).gt.0) Then
                  If (list_vtx2(itrk,nvtxp).eq.tracks(i)) then
                    list_vtx2(itrk, nvtxp) =
&
                         -list_vtx2(itrk,nvtxp)
                  EndIf
                EndIf
             EndDo
           EndDo
           Call vertex2(nvtxp,npass,chi2_prim) ! primary fit
           If (status_vtx2(1,nvtxp).ne.0 .and. ! good fit
&
                 chi2_vtx2(1,nvtxp).le.chi2_prim) Then
             status_vtx2(1, nvtxp) = ior(status_vtx2(1, nvtxp)),
&
                   recon_s_vtx2+ primary_s_vtx2)
             tgt = 1
             Do itgt = 2, ntgt_pos
                                         ! primary tgt
                If (abs(z_vtx2(1, vtxp)-z_tgt_pos(1, itgt))).lt.
                     abs(z_vtx2(1, vtxp) - z_tgt_pos(1, tgt)))
&
&
                     tgt = itgt
             EndDo
                                          ! primary tgt
             nbeam_vtx2(1,nvtxp) = nbeam_vtx2(1,ivtx) ! save nbeam
             id_vtx2(1, nvtxp) = tgt ! save primary target
              tgt\_recn(1,n) = tgt
                                         ! save prim target
             link_recn(nr(irecdf)+1,n) = pvtx2_t_recn + nvtxp
                   - beg_dir_vtx2(1, recon_vtx2)+1
&
              If (beg_dir_vtx2(1, recon_vtx2).eq.0)
                   beg_dir_vtx2(1, recon_vtx2) = nvtxp
&
              end_dir_vtx2(1, recon_vtx2) = nvtxp
              n_dir_vtx2(1, recon_vtx2) =
                   end_dir_vtx2(1,recon_vtx2) -
&
&
                   beg_dir_vtx2(1, recon_vtx2)+1
              If (.not.do_refit_sec .or.
&
                   pid_type(0, irecn).eq.1)
                                             Then
                nvtxs = 0
               Do i = 1, lkrecn
                  if (
&
                       link_recn(i,mod(link_recn(1,n)),
&
                       shift_link_recn))/svtx2_t_recn
&
                       (eq.1) ! we have a sec. vertex link
&
                       nvtxs = mod(link\_recn(i,
&
                       mod(link\_recn(1,n), shift\_link\_recn)),
&
                         shift_link_recn )
               EndDo
                If (nvtxs.eq.0) Goto 150
```

```
nvtxs = nvtxs + beg_dir_vtx2(1, recon_vtx2) - 1
               EndIf
             Else
                                             ! prim fit failed
                Write(*,*) 'Primary_vertex_fit_failed '
               Goto 150
             EndIf
          Else
                                             ! space in vtx2
            Goto 900
          EndIf
                                             ! space in vtx2
        Else
                                             ! have tracks from primary
          Goto 900
        Endif
                                             ! have tracks from primary
      Else
                                             ! space in link
        Goto 900
      EndIf
                                             ! space in link
      If (do_refit_sec .and. pid_type(0, irecn).eq.0) Then
        If (nr(irecdf).lt.lkrecn-1) Then
                                             ! otherwise no space for link
           if (ntrk+1.le.mtrk) Then ! space in trk
             if (ntseg+1.le.mtseg) Then !space in tseg
               jprim = mod(link\_recn(1, iirecn(perm\_array(2)))),
&
                    shift_link_recn)
                                             !400
               lcnvtx_virt = link_recn(1, iirecn(perm_array(2))) +
&
                    beg_dir_vtx2(1,recon_vtx2)-1-pvtx2_t_recn+1
               i_{pvtx} = jprim + beg_dir_vtx2(1, recon_vtx2) - 1
               jsec = mod(link\_recn(2, iirecn(perm\_array(2)))),
&
                    shift_link_recn )
                                             !400
               i_svtx = jsec + beg_dir_vtx2(1, recon_vtx2) - 1 ! 400
               xsec = x_vtx2(1, i_svtx)
               ysec = y_vtx2(1, i_svtx)
               zsec = z_vtx2(1, i_svtx)
                                             !z 400
               jprim 2 = mod(link\_recn(1, iirecn(perm\_array(1)))),
&
                    shift_link_recn)
                                             !400
               i_{pvtx2} = jprim2 + beg_dir_vtx2(1, recon_vtx2) - 1 ! 500
               jsec2 = mod(link_recn(2, iirecn(perm_array(1)))),
&
                    shift_link_recn )
                                             !500
               i_{svtx2} = jsec2 + beg_dir_vtx2(1, recon_vtx2) - 1
               z \sec 2 = z_v \operatorname{tx} 2 (1, i_s \operatorname{vtx} 2) \quad !z \quad 500
               ztt_virt = zsec - zsec2
               pxsect = 0.
               pysect = 0.
               pzsect = 0.
               ttx = 0.
               tty = 0.
               sigx_virt = 0.
               sigy_virt = 0.
calculate x, y intercept and x y slope for virtual track
               Do i=1, ntrackssec2
                 r_tmp = curv_trk(1, trackssec2(i))
```

 $\mathbf{c}$ 

с

```
isegsec = seg_trk(vx_spec, trackssec2(i))
                  pzsec = abs(1./sqrt(1+tx_tseg(1, isegsec)) **2)
 &
                       /r_tmp
                                             ! pz
                  pxsec = pzsec*tx\_tseg(1, isegsec) ! px
                  pysec = pzsec * ty_tseg(1, isegsec) / py
                  tx = pzsec * tx_tseg(1, isegsec)
                  ty = pzsec * ty_tseg(1, isegsec)
                  ttx = tx + ttx
                  tty = ty + tty
                  pxsect = pxsec + pxsect
                  pysect = pysec + pysect
                  pzsect = pzsec + pzsect
                  sigx_virt = (pzsec **2) * stx_tseg(1, isegsec) +
  &
                       sigx_virt
                  sigy_virt = (pzsec **2) * sty_tseg(1, isegsec) +
  &
                       sigy_virt
               End do
                sigx_virt = sigx_virt/pzsect**2 ! err**2 in theta x for v trk
                sigy_virt = sigy_virt/pzsect **2 ! err **2 in theta y for v trk
                param = -zsec/pzsect
                xsec = xsec + (pxsect*param)
                ysec = ysec + (pysect*param)
                zsec = 0
                bx = ttx/pzsect
                by = tty/pzsect
                nptracks = nt_vtx2(1, nvtxp) ! tracks in prim vertex
                ntrackssec = ntrackssec + 1
                trackssec(ntrackssec) = ntrk+1 ! add new track
                seg_trk(vx_spec,ntrk+1) = ntseg + 1 !add vx segment for vtrk
                status_trk(1,ntrk+1)= ior(virt_s_trk,
 &
                     status_trk(1,ntrk+1))
                nptracks = nptracks + 1
                ntseg = ntseg + 1
                list_vtx2(nptracks, nvtxp) = -(ntrk+1)
adding ax, ay, bx and by to common block
                x\_tseg(1, seg\_trk(vx\_spec, ntrk+1)) = xsec
                y_tseg(1, seg_trk(vx_spec, ntrk+1)) = ysec
                tx\_tseg(1, seg\_trk(vx\_spec, ntrk+1)) = bx
                ty\_tseg(1, seg\_trk(vx\_spec, ntrk+1)) = by
               Do i = 1, ntrackssec
                  list_vtx2(i, nvtxs) = trackssec(i)
               EndDo
                nt_vtx2(1, nvtxs) = ntrackssec
                Call vertex2(nvtxs,1,chi2_sec) ! virtual trk fit
                if (status_vtx2(1,nvtxs).ne.0.and.
 &
                     chi2_vtx2(1, nvtxs).le.chi2_sec) Then !good fit \setminus w vtrk
                  status_vtx2(1, nvtxs) = ior(status_vtx2(1, nvtxs)),
```

с

```
&
                          recon_s_vtx2+ secondary_s_vtx2)
                     link\_recn(nr(irecdf)+2,n) =
     &
                          svtx2_t_recn + nvtxs
     &
                          - beg_dir_vtx2(1, recon_vtx2) + 1 !update link to svtx
                     Call ucopyrr(x_vtx2(1,nvtxs),x_recn(1,n),3) !copy vtx
                         location
                   ELSE
c
                      Write(*,*) 'RECON_RECON_NO_GOOD_FIT_WITH_VTRK'
      &
                           , chi2_vtx2(1, nvtxs)
с
                                                ! clear tseg
                     ntseg = ntseg -1
                     nt_vtx2(1, nvtxs) = nt_vtx2(1, nvtxs) - 1 ! clear number of
                         trks
                     Goto 150
                   Endif
                                                !good fit with vtrk
                   ntseg = ntseg -1
                                                ! clear tseg
                   nt_vtx2(1, nvtxs) = nt_vtx2(1, nvtxs) - 1 ! clear number of trks
                 Else ! space in tseg
                    Write(*,*) 'RECON_RECON_NO_SPACE_IN_TSEG_FOR_VTRK'
\mathbf{c}
                   Goto 900
                 Endif
                                                ! space in tseg
              ELSE
                                                ! space in track
                  Write(*,*) 'RECON_RECON_NO_SPACE_IN_TRK_FOR_VTRK'
с
                 Goto 900
              Endif
                                                ! space in trk
            Else
                                                ! otherwise no space for link
              Goto 900
                                                ! otherwise no space for link
            EndIf
          EndIf
                                                ! do secondary vertex refit
c Recalculate 1 and sigma
          z1 = z_vtx2(1, nvtxp)
          z2 = z_vtx2(1, nvtxs)
          w1 = 1./max(1.e-6, verr_vtx2(9, nvtxp))
          wt = 3./z_tgt_sz(1, lksz_tgt_pos(1, tgt)) **2
          zt
                = z_tgt_pos(1, tgt)
                =(w1*z1+wt*zt)/(w1+wt)
          zp
          sig_z p = 1./sqrt(w1+wt)
          ndof = 1
          chi2 = wt * (zt-zp) * 2 + w1 * (z1-zp) * 2
                = z2 - zp
                                                ! redefine L
          zd
          sigma =
                sqrt(max(1.e-6, verr_vtx2(9, nvtxs))) +
     &
     &
                sig_zp * * 2)
                                                ! L error
          l\_recn(1,n) = zd
          sigma_recn(1,n) = sigma
          chi2\_recn(1,n) = chi2
          ndof_recn(1,n) = ndof
          pvtx\_recn(1,n) = recon\_pvtx(n) ! pointback rchi2
          nvtx2 = nvtx2 + 2
                                                !update pointer
```

```
140
           Continue
          Do r = 1, nr(irecdf)
                                                 ! fill all sub-reconstruction
             Call ucopyrr(recn(1, iirecn(perm_array(r))),
     &
                  recn(1,n+r), lrecn)
             bit_recn(1,n+r) = ior(bit_recn(1,n+r)),
                  iand (out_recdf(1, irecdf), X1F)) ! transfer output bits
     &
             id_recn(1,n+r) = id_recdf(1,irecdf)*1000
     &
                                           + id_recn(1, n+r)
          EndDo
           nrecn = n + nr(irecdf)
                                                 ! update size of recn
        EndIf
                                                 ! mass cut
 150
        Continue
        Call Combi(perm_array, nirecn, nr(irecdf)) ! CERNLIB V201
      EndDo
                                                 ! loop over all permutation
        900 print *, 'exiting_recon_recon'
\mathbf{c}
 900
      Continue
      return
 1001 Format ('_Recon_Recon_Pid_', I3, ':_Combining_', I1, '_recons:_',$)
 1002 Format(I3, '., ', )
 1101 Format('_In_Recon_Recon:__Using_',F4.1,'_for_primary_and_',
           F4.1, '_for_secondary_chi2_cut, _', I2, '_for_pruning_pass')
     &
 1103 Format ('_In_Recon_Recon: __Will', A, 'refit_primary_and_will', A,
            'refit_secondary_vertex')
     &
      end
с
   $Log: recon_recon.F,v $
с
   Revision 1.34 2010/08/04 14:32:36
                                          jurgen
с
   declare recon_pvtx
\mathbf{c}
с
   Revision 1.33 2010/08/03 00:17:18
                                          jurgen
с
   calculate pointback
\mathbf{c}
с
   Revision 1.32 2008/12/10 16:06:56
                                          jurgen
\mathbf{c}
   remove unused variables and includes
с
с
   Revision 1.31 2007/06/15 18:28:48 jurgen
\mathbf{c}
   do not overwrite last entry in recn, but rather leave in case of overflow
С
с
   Revision 1.30 2007/06/12 16:56:57 jurgen
\mathbf{c}
   move nvtxs by beg_dir for no sec. fit
\mathbf{c}
с
   Revision 1.29 2007/06/11 00:21:32
                                          jurgen
с
   fix again identical ids
с
\mathbf{c}
   Revision 1.28 2007/06/07 21:57:42
с
                                          jurgen
   fix handling of identical subrecons
с
```

```
Revision 1.27
                    2007/06/06 22:50:52 jurgen
С
   fix loop over links, use typesafe vzero and ucopy
с
c
   Revision 1.26
                    2007/05/04 13:09:44 jurgen
с
   fix typo
\mathbf{c}
\mathbf{c}
c
   Revision 1.25 2007/05/03 18:12:15 jurgen
   fix bug when using same recons, improve printouts
с
c
   Revision 1.24 2006/08/28 22:05:32 jurgen
с
   fix indirect reference
с
с
   Revision 1.23 2006/08/25 16:25:10
                                            jurgen
с
   make code cleaner
\mathbf{c}
с
   Revision 1.22 2006/08/01 14:50:11
                                            jurgen
\mathbf{c}
   better printout, fix boundary check
\mathbf{c}
\mathbf{c}
   Revision 1.21 2006/02/03 03:15:16
                                            jurgen
с
   fix endif order with printouts
\mathbf{c}
с
   Revision 1.19 2006/01/28 18:44:43 jurgen
с
   add sec vertex chi2, adoprt for larger vtx2 block
\mathbf{c}
c
   Revision 1.18
                    2006/01/28 03:06:34 jurgen
с
   add secondary vertex fit to recon_recon (code by I. Torres)
С
\mathbf{c}
   Revision 1.17 2003/03/06 19:48:37 jurgen
\mathbf{c}
   get prim. vertex in rr now from calculation
С
С
   Revision 1.16 2003/03/05 00:30:09 jurgen
\mathbf{c}
   make primary vertex fit in recon_recon
с
\mathbf{c}
   Revision 1.15 2002/12/18 01:35:42
                                            jurgen
с
   add writeouts in compilation
с
с
   Revision 1.14 2000/06/26 23:08:48 braunger
с
   1. Removed obsolete/unused pmtrk pointers for vees/kinks
с
   2. Added cut on vee/kink hyperon mass to make baryons; using
с
   the l/sigma area in recdf table.
\mathbf{c}
С
   Revision 1.13 2000/03/11 05:16:06 braunger
с
   For rr of vees: store hyperon delta mass in dmass_recn
\mathbf{c}
   & rel likelihood in pmtrk5/6 in order to put cuts on vee to improve charm
\mathbf{c}
\mathbf{c}
   Revision 1.12 2000/02/23 22:35:17 braunger
\mathbf{c}
   corrected parent id for kinks 29-34 (is omega, not xi-)
с
\mathbf{c}
   Revision 1.11 1999/11/05 16:00:50
с
                                            syjun
   more fix hex operation for linux
\mathbf{c}
```

С

```
с
   Revision 1.10 1999/11/05 15:54:51
\mathbf{c}
                                           syjun
   fix hex operation for linux
\mathbf{c}
с
   Revision 1.9 1999/10/26 22:41:44
                                         syjun
\mathbf{c}
   merge linux-port
\mathbf{c}
\mathbf{c}
   Revision 1.8 1999/08/17 00:07:06 syjun
с
   store negative index in track list in case of gamma
\mathbf{c}
с
   Revision 1.6.2.1 1999/08/02 21:47:57 procario
\mathbf{c}
  Linux port
с
С
\mathbf{c}
  Revision 1.7 1999/07/22 16:10:16 pgouffon
   fix call to vzero with a comma instead of a * (flagged as wrong number of
\mathbf{c}
   arguments during Linux port
с
\mathbf{c}
c Revision 1.6 1999/06/10 22:59:48 newsom
c Add protection for vee/kink nonusers if they use vee/kink id
с
c Revision 1.5
                1999/06/09 20:41:23 newsom
c Use particle table hyperon masses in mass calculations.
с
c Revision 1.4 1998/01/29 18:30:50
                                         jurgen
c fix constant to double precision
с
c Revision 1.3 1998/01/29 18:13:05
                                         jurgen
c put correct id in id word of used recon
\mathbf{c}
c Revision 1.2 1998/01/28 21:51:59 pcooper
c collected changes and bug fixes for pass11_7
с
c Revision 1.1 1998/01/22 18:26:24
                                         jurgen
c Add recon_recon
```

# Apéndice C

## Programa anal.F

A continuación se presenta el programa de anal.F.

Program anal Implicit none Character\*256 ftupfile Integer entries, PawSize, HMEMOR

#include "recon\_ntuple.inc"

Logical ftup\_open Integer iargc,narg Integer idi,ilam,nlam,plam Real mass\_l\_nom,p,z,gamma,ctau,lmass(2) Real ppa(4,2),pout(4),efms,ams(2),c,dc,rki

Integer nbinmom, nbinz, ihist (6) Real maxmom, maxz

c Esto es lo nuevo: Real lpv(3),lpvxs(2),x,y,dx,dy,wx,wy,lsv(3),lsvxs(2),sx,sy Real lpvtx(2),lp(3),en(2), llmass, ene(2), mass2 Real pp2(3), hls, sv(2), massl

c Data mass\_l\_nom/1.1159/ Data mass\_l\_nom/1.1156/ Data ctau/7.89/

External ftup\_open

**Parameter** (PawSize=400000) COMMON/PAWC/HMEMOR(PawSize)

```
Write(*,*) 'Usage: _anal_ftup_file(s)'
   Call Exit(1)
 EndIf
 Call HLIMIT (PawSize)
 Call HBOOK1(2, 'Lambda', 100, 1.090, 1.140, 0.)
 Call HBOOK1(3, 'antiLambda', 100, 1.090, 1.140, 0.)
 Call HBOOK1(4, 'proton, pion-', 100, 1.06, 1.112, 0.)
 Call HBOOK1(5, 'proton -, pion', 100, 1.06, 1.112, 0.)
 Call HBOOK1(801, 'Lambda Lambda', 100, 2.15, 3., 0.)
 Call HBOOK1(802, 'aLambda_aLambda', 100, 2.15, 3., 0.)
 Call HBOOK1(803, 'Lambda_aLambda', 100, 2.15, 3., 0.)
 Call HBOOK1(804, 'H', 100, 2., 2.4, 0.)
 Call HBOOK1(805, 'H2', 100, 2., 2.4, 0.)
 Call HBOOK1(1801, 'pointback_ll', 100, 0., 30., 0.)
 Call HBOOK1(1802, 'pointback_aa', 100, 0., 30., 0.)
 Call HBOOK1(1803, 'pointback_la', 100,0.,30.,0.)
 Call HBOOK1(3801, 'Lambda Lambda', 500, 2.2, 3.5, 0.)
 Call HBOOK1(3802, 'aLambda_aLambda', 500, 2.2, 3.5, 0.)
 Call HBOOK1(3803, 'Lambda_aLambda', 500, 2.2, 3.5, 0.)
 Call HBOOK1(4801, 'Lambda Lambda', 200, 2.2, 3.5, 0.)
 Call HBOOK1(4802, 'aLambda _aLambda', 200, 2.2, 3.5, 0.)
 Call HBOOK1(4803, 'Lambda _aLambda ' ,200,2.2,3.5,0.)
 Call HBOOK1(5801, 'Lambda Lambda', 100, 2.2, 3.5, 0.)
 Call HBOOK1(5802, 'aLambda_aLambda', 100, 2.2, 3.5, 0.)
 Call HBOOK1(5803, 'Lambda_aLambda', 100, 2.2, 3.5, 0.)
 Call HBOOK1(6801, 'Lambda Lambda', 50, 2.2, 3.5, 0.)
 Call HBOOK1(6802, 'aLambda_aLambda', 50, 2.2, 3.5, 0.)
 Call HBOOK1(6803, 'Lambda_aLambda', 50, 2.2, 3.5, 0.)
 Call HBOOK1(7801, 'Lambda Lambda', 66, 2.2, 3.5, 0.)
 Call HBOOK2(2801, 'Lambda_vs_Lambda',
&
       100, 1.090, 1.140, 100, 1.090, 1.140, 0.)
 Call HBOOK2(2802, 'Antilambda_vs_Antilambda',
       100, 1.090, 1.140, 100, 1.090, 1.140, 0.)
&
 Call HBOOK2(2803, 'Lambda_vs_Antilambda',
       100, 1.090, 1.140, 100, 1.090, 1.140, 0.)
&
 Call HBOOK1(8804, 'l/sigma_H', 100, -10., 10., 0.)
 Call HBOOK1(8805, '1/sigma_H2', 100, -10., 10., 0.)
 Call HBOOK1(3804, 'Lambda_ppi', 5, 2.1, 2.5, 0.)
 Call HBOOK1(3805, 'aLambda_p-pi', 5, 2.1, 2.5, 0.)
 Call HBOOK1(4804, 'Lambda_ppi', 10, 2., 2.4, 0.)
```

If (iargc().lt.1) Then

```
Call HBOOK1(4805, 'aLambda_p-pi', 10, 2., 2.4, 0.)
 Call HBOOK1(5804, 'Lambda_ppi', 15, 2., 2.4, 0.)
 Call HBOOK1(5805, 'aLambda_p-pi', 15, 2., 2.4, 0.)
 Call HBOOK1(6804, 'Lambda_ppi', 20, 2.1, 2.5, 0.)
 Call HBOOK1(6805, 'aLambda_p-pi', 20, 2.1, 2.5, 0.)
 Call HBOOK1(7804, 'Lambda_ppi', 30, 2.1, 2.5, 0.)
 Call HBOOK1(7805, 'aLambda_p-pi', 30, 2.1, 2.5, 0.)
 Call HBOOK2(2804, 'HvsH',
       100, 1.060, 1.112, 100, 1.060, 1.112, 0.
&
 Call HBOOK2(2805, 'H2_vs_H2',
       100, 1.060, 1.112, 100, 1.060, 1.112, 0.)
&
 Call HBOOK1(9804, 'Lambda_ppi', 25, 2.19, 2.24, 0.)
 Call HBOOK1(9805, 'aLambda_p-pi', 25, 2.19, 2.24, 0.)
 Call HBOOK1(10804, 'Lambda_ppi', 25, 2.19, 2.24, 0.)
 Call HBOOK1(10805, 'aLambda_p-pi', 25, 2.19, 2.24, 0.)
 Call HBOOK1(11804, 'Lambda_ppi', 25, 2.19, 2.24, 0.)
 Call HBOOK1(11805, 'aLambda_p-pi', 25, 2.19, 2.24, 0.)
 Call HBOOK1(12804, 'Lambda_ppi', 25, 2.19, 2.24, 0.)
 Call HBOOK1(12805, 'aLambda_p-pi', 25, 2.19, 2.24, 0.)
 Call HBOOK1(13804, 'Lambda_ppi', 25, 2.19, 2.24, 0.)
 Call HBOOK1(13805, 'aLambda_p-pi', 25, 2.19, 2.24, 0.)
 Call HBOOK1(14804, 'Lambda_ppi', 25, 2.19, 2.24, 0.)
 Call HBOOK1(14805, 'aLambda_p-pi', 25, 2.19, 2.24, 0.)
 Call HBOOK1(15804, 'Lambda_ppi', 25, 2.19, 2.24, 0.)
 Call HBOOK1(15805, 'aLambda_p-pi', 25, 2.19, 2.24, 0.)
 Call HBOOK1(16804, 'Lambda_ppi', 25, 2.19, 2.24, 0.)
 Call HBOOK1(16805, 'aLambda_p-pi', 25, 2.19, 2.24, 0.)
 Call HBOOK1(17804, 'Lambda_ppi', 25, 2.19, 2.24, 0.)
 Call HBOOK1(17805, 'aLambda_p-pi', 25, 2.19, 2.24, 0.)
 Call HBOOK1(18804, 'Lambda_ppi', 25, 2.19, 2.24, 0.)
 Call HBOOK1(18805, 'aLambda_p-pi', 25, 2.19, 2.24, 0.)
 Call HBOOK1(19804, 'Lambda_ppi', 25, 2.19, 2.24, 0.)
 Call HBOOK1(19805, 'aLambda_p-pi', 25, 2.19, 2.24, 0.)
 Call HBOOK1(20804, 'Lambda_ppi', 25, 2.19, 2.24, 0.)
 Call HBOOK1(20805, 'aLambda_p-pi', 25, 2.19, 2.24, 0.)
 Call HBOOK1(21804, 'Lambda_ppi', 25, 2.19, 2.24, 0.)
 Call HBOOK1(21805, 'aLambda_p-pi', 25, 2.19, 2.24, 0.)
```

**Call** HBOOK1(22804, 'Lambda\_ppi', 25, 2.19, 2.24, 0.) **Call** HBOOK1(22805, 'aLambda\_p-pi', 25, 2.19, 2.24, 0.) Call HBOOK1(23804, 'Lambda\_ppi', 25, 2.19, 2.24, 0.) Call HBOOK1(23805, 'aLambda\_p-pi', 25, 2.19, 2.24, 0.) **Call** HBOOK1(24804, 'Lambda\_ppi', 25, 2.19, 2.24, 0.) Call HBOOK1(24805, 'aLambda\_p-pi', 25, 2.19, 2.24, 0.) Call HBOOK1(25804, 'Lambda\_ppi', 25, 2.19, 2.24, 0.) Call HBOOK1(25805, 'aLambda\_p-pi', 25, 2.19, 2.24, 0.) **Call** HBOOK1(26804, 'Lambda\_ppi', 25, 2.19, 2.24, 0.) **Call** HBOOK1(26805, 'aLambda\_p-pi', 25, 2.19, 2.24, 0.) Call HBOOK1(27804, 'Lambda\_ppi', 25, 2.19, 2.24, 0.) Call HBOOK1(27805, 'aLambda\_p-pi', 25, 2.19, 2.24, 0.) Call HBOOK1(28804, 'Lambda\_ppi', 25, 2.19, 2.24, 0.) **Call** HBOOK1(28805, 'aLambda\_p-pi', 25, 2.19, 2.24, 0.) **Call** HBOOK1(29804, 'Lambda\_ppi', 25, 2.19, 2.24, 0.) **Call** HBOOK1(29805, 'aLambda\_p-pi', 25, 2.19, 2.24, 0.) **Call** HBOOK1(30804, 'Lambda\_ppi', 25, 2.19, 2.24, 0.) Call HBOOK1(30805, 'aLambda\_p-pi', 25, 2.19, 2.24, 0.) Call HBOOK1(31804, 'Lambda\_ppi', 25, 2.19, 2.24, 0.) **Call** HBOOK1(31805, 'aLambda\_p-pi', 25, 2.19, 2.24, 0.) **Call** HBOOK1(32804, 'Lambda\_ppi', 25, 2.19, 2.24, 0.) Call HBOOK1(32805, 'aLambda\_p-pi', 25, 2.19, 2.24, 0.) Call HBOOK1(33804, 'Lambda\_ppi', 25, 2.19, 2.24, 0.) Call HBOOK1(33805, 'aLambda\_p-pi', 25, 2.19, 2.24, 0.) **Call** HBOOK1(34804, 'Lambda\_ppi', 25, 2.19, 2.24, 0.) **Call** HBOOK1(34805, 'aLambda\_p-pi', 25, 2.19, 2.24, 0.) **Call** HBOOK1(35804, 'Lambda\_ppi', 25, 2.19, 2.24, 0.) **Call** HBOOK1(35805, 'aLambda\_p-pi', 25, 2.19, 2.24, 0.) **Call** HBOOK1(36804, 'Lambda\_ppi', 25, 2.19, 2.24, 0.) Call HBOOK1(36805, 'aLambda\_p-pi', 25, 2.19, 2.24, 0.) **Call** HBOOK1(37804, 'Lambda\_ppi', 25, 2.19, 2.24, 0.) **Call** HBOOK1(37805, 'aLambda\_p-pi', 25, 2.19, 2.24, 0.) Call HBOOK1(38804, 'Lambda\_ppi', 25, 2.19, 2.24, 0.) Call HBOOK1(38805, 'aLambda\_p-pi', 25, 2.19, 2.24, 0.)

```
Call HBOOK1(39804, 'Lambda_ppi', 25, 2.19, 2.24, 0.)
 Call HBOOK1(39805, 'aLambda_p-pi', 25, 2.19, 2.24, 0.)
 Call HBOOK1(40804, 'Lambda_ppi', 25, 2.19, 2.24, 0.)
 Call HBOOK1(40805, 'aLambda_p-pi', 25, 2.19, 2.24, 0.)
 Call HBOOK1(94804, 'Lambda_ppi', 25, 2.19, 2.24, 0.)
 Call HBOOK1(94805, 'aLambda_p-pi', 25, 2.19, 2.24, 0.)
 entries = 0
 Do narg = 1, iargc()
   Call getarg(narg, ftupfile)
   If (.not.Ftup_Open(10,ftupfile)) Goto 999
   Do While (. True.)
     read(10, end=12, err=11) tuple
     If (run.le.0) Goto 12
     entries = entries + 1
     idi = id
     If (idi.ge.2.and.idi.le.5) Then
          Call HFILL(idi, mass, 0., 1.)
     EndIf
     If (idi.ge.801 .and. idi.le.805)Then
        vertice primario
          lpv(1) = pvx_x
          lpv(2) = pvx_y
          lpv(3) = pvx_z
        errores del primer vertice
          lpvxs(1) = pvx_sx
          lpvxs(2) = pvx_sy
           massl = mass
          nlam = 0
          ilam = 0
          plam = 0
        Call HFILL(idi , mass , 0. , 1.)
     EndIf
     If (idi.eq.801002 .or. idi.eq.802003 .or.
&
           idi.eq.803002 .or. idi.eq.803003.or.
           idi.eq.804002 .or. idi.eq.805003.or.
&
&
           idi.eq.804004 .or. idi.eq.805005)Then
        nlam = nlam + 1
```

 $\mathbf{c}$ 

 $\mathbf{c}$ 

 $\mathbf{c}$ 

```
lmass(nlam) = mass
              vertice secundario
\mathbf{c}
                lsv(1) = svx_x
                lsv(2) = svx_y
                lsv(3) = svx_z
              errores del segundo vertice
\mathbf{c}
                lsvxs(1) = svx\_sx
                lsvxs(2) = svx_sy
             momento
\mathbf{c}
                lp(1) = px
                lp(2) = py
                lp(3) = pz
\mathbf{c}
              Calculo de point back
                sx = lp(1)/lp(3)
                sy = lp(2)/lp(3)
                x = lsv(1) - lpv(1)
                y = lsv(2) - lpv(2)
                z = lsv(3) - lpv(3)
                dx = lsvxs(1) **2 + lpvxs(1) **2
                dy = lsvxs(2) **2 + lpvxs(2) **2
                wx = 1./max(dx, 1.e-8)
                wy = 1./max(dy, 1.e-8)
                lpvtx(nlam) = (wx*(x-sx*z)**2 + wy*(y-sy*z)**2)/2
              If (idi.eq.804002.or.idi.eq.805003) Then
                 sv(1) = svx_z
             EndIf
              If (idi.eq.804004.or.idi.eq.805005) Then
                 sv(2) = svx_z
             EndIf
              If (idi.eq.804004 .or. idi.eq.805005) Then
                  ilam = ilam + 1
                  \operatorname{ams}(\operatorname{ilam}) = \operatorname{mass}
                  ppa(1, ilam) = px
                  ppa(2, ilam) = py
                  ppa(3, ilam) = pz
                  hls = L/sigma
             Else
                  If (abs(mass-mass_l_nom).lt.0.005) Then
                      ilam = ilam + 1
                      ams(ilam) = mass_l_nom
                      ppa(1, ilam) = px
                      ppa(2, ilam) = py
                      ppa(3, ilam) = pz
                  EndIf
             EndIf
```

If (idi.eq.801002 .or. idi.eq.802003.or.

```
idi.eq.803002 .or. idi.eq.803003)Then
 If (abs (mass-mass_l_nom).lt.0.005) Then
       plam = plam + 1
       ams(plam) = mass_l_nom
       ppa(1, plam) = px
       ppa(2, plam) = py
       ppa(3, plam) = pz
 EndIf
EndIf
If (nlam.eq.2) then
  Call HFILL(2000+idi/1000, lmass(1), lmass(2), 1.)
  Call HFILL(1000+idi/1000, lpvtx, 0., 1.)
EndIf
If (plam.eq.2) then
   If (lpvtx(1).gt.5.or.lpvtx(2).gt.5) Goto 10
   Call efmass (2, ams, ppa, efms, pout)
    Call HFILL(3000+idi/1000, efms, 0., 1.)
    Call HFILL(4000+idi/1000, efms, 0., 1.)
    Call HFILL(5000+idi/1000, efms, 0., 1.)
    Call HFILL(6000+idi/1000, efms, 0., 1.)
    Call HFILL(7000+idi/1000, efms, 0., 1.)
EndIf
```

```
If (ilam.eq.2) Then
   \mathbf{If}(\mathrm{sv}(2), \mathrm{gt}, \mathrm{sv}(1)) Goto 10
   Call efmass (2, ams, ppa, efms, pout)
   If (hls.ge.1.) Then
       Call HFILL(9000+idi/1000, efms, 0., 1.)
   EndIf
   If (hls.ge.1.1) Then
       Call HFILL(10000+idi/1000, efms, 0., 1.)
   EndIf
   If(hls.ge.1.15) Then
       Call HFILL(11000+idi/1000, efms, 0., 1.)
   EndIf
   If(hls.ge.1.2) Then
       Call HFILL(12000+idi/1000, efms, 0., 1.)
   EndIf
   If (hls.ge.1.3) Then
       Call HFILL(13000+idi/1000, efms, 0., 1.)
```

&

#### EndIf

```
If (hls.ge.1.4) Then
   Call HFILL(14000+idi/1000, efms, 0., 1.)
EndIf
If (hls.ge.1.5) Then
   Call HFILL(15000+idi/1000, efms, 0., 1.)
EndIf
If (hls.ge.1.6) Then
   Call HFILL(16000+idi/1000, efms, 0., 1.)
EndIf
If (hls.ge.1.7) Then
   Call HFILL(17000+idi/1000, efms, 0., 1.)
EndIf
If (hls.ge.1.8) Then
   Call HFILL(18000+idi/1000, efms, 0., 1.)
EndIf
If (hls.ge.1.9) Then
   Call HFILL(19000+idi/1000, efms, 0., 1.)
      If (efms.le.2.24 .and. idi/1000.eq.804)
          Write(*,*) run, event, massl, efms
EndIf
If (hls.ge.1.94) Then
   Call HFILL(94000+idi/1000, efms, 0., 1.)
EndIF
If (hls.ge.2.) Then
   Call HFILL(20000+idi/1000, efms, 0., 1.)
EndIF
If (hls.ge.2.1) Then
   Call HFILL(21000+idi/1000, efms, 0., 1.)
EndIF
If (hls.ge.2.2) Then
   Call HFILL(22000+idi/1000, efms, 0., 1.)
EndIF
If(hls.ge.2.3) Then
   Call HFILL(23000+idi/1000, efms, 0., 1.)
EndIF
If(hls.ge.2.4) Then
   Call HFILL(24000+idi/1000, efms, 0., 1.)
EndIF
```

 ${}^{\mathrm{c}}_{\mathrm{c}}$ 

&
```
If (hls.ge.2.5) Then
   Call HFILL(25000+idi/1000, efms, 0., 1.)
EndIF
If (hls.ge.2.6) Then
   Call HFILL(26000+idi/1000, efms, 0., 1.)
EndIF
If(hls.ge.2.7) Then
   Call HFILL(27000+idi/1000, efms, 0., 1.)
EndIF
If(hls.ge.2.8) Then
   Call HFILL(28000+idi/1000, efms, 0., 1.)
EndIF
If(hls.ge.2.9) Then
   Call HFILL(29000+idi/1000, efms, 0., 1.)
EndIF
If(hls.ge.3.) Then
   Call HFILL(30000+idi/1000, efms, 0., 1.)
EndIF
If (hls.ge.3.1) Then
   Call HFILL(31000+idi/1000, efms, 0., 1.)
EndIF
If (hls.ge.3.2) Then
   Call HFILL(32000+idi/1000, efms, 0., 1.)
EndIF
If (hls.ge.3.3) Then
   Call HFILL(33000+idi/1000, efms, 0., 1.)
EndIF
If(hls.ge.3.4) Then
   Call HFILL(34000+idi/1000, efms, 0., 1.)
EndIF
If(hls.ge.3.5) Then
   Call HFILL(35000+idi/1000, efms, 0., 1.)
EndIF
If (hls.ge.3.6) Then
   Call HFILL(36000+idi/1000, efms, 0., 1.)
EndIF
If(hls.ge.3.7) Then
   Call HFILL(37000+idi/1000, efms, 0., 1.)
```

#### EndIF

```
If (hls.ge.3.8) Then
             Call HFILL(38000+idi/1000, efms, 0., 1.)
          EndIF
          If (hls.ge.3.9) Then
             Call HFILL(39000+idi/1000, efms, 0., 1.)
          EndIF
          If (hls.ge.4.) Then
             Call HFILL(40000+idi/1000, efms, 0., 1.)
          EndIF
      EndIf
    EndIf
    Continue
  EndDo
  Continue
  Write(*,*) 'Error_reading_file , continuing '
  Continue
  \mathbf{Close}(10)
EndDo
Continue
```

999 Continue Close(10) Write(\*,\*) 'Read', entries, '\_Entries'

Call HRPUT(0, 'anal.hbk', 'NT') ! write all histograms to file

End

10

11

12

# Apéndice D

# Programa *sc.kumac*

A continuación se presenta el programa *sc.kumac*.

```
h/file 1 anal.hbk.mix
 hrin 0
close 1
*entradas de proton/pion
anone = HINFO(55804004, 'ENTRIES')
acero = HINFO(50804004, 'ENTRIES')
auno = HINFO(51804004, 'ENTRIES')
       = $HINFO(52804004, 'ENTRIES')
ados
atres = HINFO(53804004, 'ENTRIES')
acuatro = $HINFO(54804004, 'ENTRIES')
*entradas y allchan de H con masa de 2.19 a 2.24
cnone = HINFO(45804, 'ENTRIES')
ccero = $HINFO(41804, 'ENTRIES')
       = $HINFO(9804, 'ENTRIES')
cuno
       = $HINFO(20804, 'ENTRIES')
cdos
 ctres = $HINFO(30804, 'ENTRIES')
ccuatro = $HINFO(40804, 'ENTRIES')
dnone = HINFO(45804, 'SUM')
dcero = HINFO(41804, 'SUM')
duno
        = $HINFO(9804, 'SUM')
        = $HINFO(20804, 'SUM')
ddos
 dtres = HINFO(30804, 'SUM')
dcuatro = $HINFO(40804, 'SUM')
```

\*entradas y allchan de H con masa de 2.19 a 2.29

```
= $HINFO(65804, 'ENTRIES')
gnone
gcero
         = $HINFO(60804, 'ENTRIES')
guno
         = $HINFO(61804, 'ENTRIES')
gdos
         = $HINFO(62804, 'ENTRIES')
 gtres
         = $HINFO(63804, 'ENTRIES')
gcuatro = $HINFO(64804, 'ENTRIES')
hnone
         = $HINFO(65804, 'SUM')
hcero
         = $HINFO(60804, 'SUM')
huno
         = $HINFO(61804, 'SUM')
hdos
         = $HINFO(62804, 'SUM')
         = $HINFO(63804, 'SUM')
htres
hcuatro = $HINFO(64804, 'SUM')
*entradas y allchan de H con masa de 2.19 a 4.
knone
         = $HINFO(85804, 'ENTRIES')
kcero
         = $HINFO(80804, 'ENTRIES')
kuno
         = $HINFO(81804, 'ENTRIES')
kdos
         = $HINFO(82804, 'ENTRIES')
         = $HINFO(83804, 'ENTRIES')
 ktres
kcuatro = $HINFO(84804, 'ENTRIES')
lnone
         = $HINFO(85804, 'SUM')
lcero
         = $HINFO(80804, 'SUM')
luno
         = $HINFO(81804, 'SUM')
         = $HINFO(82804, 'SUM')
ldos
         = $HINFO(83804, 'SUM')
 ltres
 lcuatro = $HINFO(84804, 'SUM')
h/del 0
h/file 1 anal.hbk.strip
 hrin 0
 close 1
*entradas de proton/pion
         = $HINFO(55804004, 'ENTRIES')
bnone
bcero
         = $HINFO(50804004, 'ENTRIES')
buno
         = $HINFO(51804004, 'ENTRIES')
bdos
         = $HINFO(52804004, 'ENTRIES')
btres
         = $HINFO(53804004, 'ENTRIES')
bcuatro = $HINFO(54804004, 'ENTRIES')
*entradas y allchan de H con masa de 2.19 a 2.24
         = $HINFO(45804, 'ENTRIES')
enone
 ecero
         = $HINFO(41804, 'ENTRIES')
         = $HINFO(9804, 'ENTRIES')
euno
         = $HINFO(20804, 'ENTRIES')
edos
         = $HINFO(30804, 'ENTRIES')
 \operatorname{etres}
 ecuatro = $HINFO(40804, 'ENTRIES')
```

```
fnone
         = $HINFO(45804, 'SUM')
 fcero
         = $HINFO(41804, 'SUM')
funo
         = $HINFO(9804, 'SUM')
 fdos
         = $HINFO(20804, 'SUM')
         = $HINFO(30804, 'SUM')
 ftres
 fcuatro = $HINFO(40804, 'SUM')
*entradas y allchan de H con masa de 2.19 a 2.29
inone
         = $HINFO(65804, 'ENTRIES')
         = $HINFO(60804, 'ENTRIES')
icero
         = $HINFO(61804, 'ENTRIES')
iuno
         = $HINFO(62804, 'ENTRIES')
idos
itres
         = $HINFO(63804, 'ENTRIES')
icuatro = $HINFO(64804, 'ENTRIES')
         = $HINFO(65804, 'SUM')
jnone
jcero
         = $HINFO(60804, 'SUM')
         = $HINFO(61804, 'SUM')
juno
idos
         = $HINFO(62804, 'SUM')
         = $HINFO(63804, 'SUM')
jtres
jcuatro = $HINFO(64804, 'SUM')
*entradas y allchan de H con masa de 2.19 a 4.
         = $HINFO(85804, 'ENTRIES')
mnone
         = $HINFO(80804, 'ENTRIES')
mcero
         = $HINFO(81804, 'ENTRIES')
muno
         = $HINFO(82804, 'ENTRIES')
mdos
         = $HINFO(83804, 'ENTRIES')
mtres
mcuatro = $HINFO(84804, 'ENTRIES')
         = $HINFO(85804, 'SUM')
nnone
         = $HINFO(80804, 'SUM')
ncero
         = $HINFO(81804, 'SUM')
nuno
         = $HINFO(82804, 'SUM')
ndos
 ntres
         = $HINFO(83804, 'SUM')
ncuatro = $HINFO(84804, 'SUM')
*proton pion
        = ([acero] -25.*[bcero])
                                        / [bcero]
cero
sigma da = sqrt (1./[acero] + 1./[bcero]) * [cero]
a = da
mess [a] [acero] [bcero]
        = ([auno] -25.*[buno])
                                         / [buno]
uno
sigma db = sqrt(1./[auno] + 1./[buno]) * [uno]
b = db
mess [b] [auno] [buno]
                                          / [bdos]
dos
        = ([ados] -25.*[bdos])
sigma dc = \operatorname{sqrt}(1./[\operatorname{ados}] + 1./[\operatorname{bdos}]) * [\operatorname{dos}]
c = dc
```

```
mess [c] [ados] [bdos]
 tres = ([atres] -25.*[btres]) / [btres]
 sigma dd = \operatorname{sqrt}(1./[\operatorname{atres}] + 1./[\operatorname{btres}]) * [\operatorname{tres}]
 d = dd
 mess [d] [atres] [btres]
 cuatro = ([acuatro] -25.*[bcuatro]) / [bcuatro]
 sigma de = \operatorname{sqrt}(1./[\operatorname{acuatro}] + 1./[\operatorname{bcuatro}]) * [\operatorname{cuatro}]
 e = de
 mess [e] [acuatro] [bcuatro]
 none = ([anone] -25.*[bnone]) / [bnone]
 sigma df = sqrt (1./[anone] + 1./[bnone]) * [none]
 f = df
 mess [f] [anone] [bnone]
 mess [none] [cero] [uno] [dos] [tres] [cuatro]
* l/sigma entradas 2.19 a 2.24
 ocero = ([ccero] - 25.*[ecero])
                                            / [ecero]
 sigma dg = sqrt (1./[ccero] + 1./[ecero]) * [ocero]
 g = dg
 mess [g] [ccero] [ecero]
        = ([\operatorname{cuno}] -25.*[\operatorname{euno}])
                                             / [euno]
 ouno
 sigma dh = \operatorname{sqrt}(1./[\operatorname{cuno}] + 1./[\operatorname{euno}]) * [\operatorname{ouno}]
 h = dh
 mess [h] [cuno] [euno]
        = ([cdos] -25.*[edos]) / [edos]
 odos
 sigma di = sqrt (1./[cdos] + 1./[edos]) * [odos]
 i = di
 mess [i] [cdos] [edos]
 otres = ([ctres] - 25.*[etres]) / [etres]
 sigma dj = sqrt (1./[ctres] + 1./[etres]) * [otres]
 j = dj
 mess [j] [ctres] [etres]
 ocuatro = ([ccuatro] - 25.*[ccuatro]) / [ccuatro]
 sigma dk = sqrt(1./[ccuatro] + 1./[ecuatro]) * [ocuatro]
 k = dk
 mess [k] [ccuatro] [ecuatro]
 onone = ([cnone] -25.*[enone]) / [enone]
 sigma dl = sqrt(1./[cnone] + 1./[enone]) * [onone]
 l = dl
 mess [1] [cnone] [enone]
 mess [onone] [ocero] [ouno] [odos] [otres] [ocuatro]
```

```
*1/sigma allchan 2.19 a 2.24
 pcero = ([dcero] -25.*[fcero]) / [fcero]
 sigma dm = sqrt (1./[dcero] + 1./[fcero]) * [pcero]
m = dm
 mess [m] [dcero] [fcero]
 puno = ([duno] -25.*[funo]) / [funo]
 sigma dn = sqrt (1./[duno] + 1./[funo]) * [puno]
 n \;=\; dn
 mess [n] [duno] [funo]
 pdos = ([ddos] -25.*[fdos])
                                        / [fdos]
 sigma do = \operatorname{sqrt}(1./[\operatorname{ddos}] + 1./[\operatorname{fdos}]) * [\operatorname{pdos}]
 o = do
 mess [o] [ddos] [fdos]
 ptres = ([dtres] - 25.*[ftres]) / [ftres]
 sigma dp = sqrt (1./[dtres] + 1./[ftres]) * [ptres]
 p = dp
 mess [p] [dtres] [ftres]
 pcuatro = ([dcuatro] - 25.*[fcuatro]) / [fcuatro]
 sigma dq = sqrt(1./[dcuatro] + 1./[fcuatro])*[pcuatro]
 q = dq
 mess [q] [dcuatro] [fcuatro]
 pnone = ([dnone] -25.*[fnone]) / [fnone]
 sigma dr = \operatorname{sqrt}(1./[\operatorname{dnone}] + 1./[\operatorname{fnone}]) * [\operatorname{pnone}]
 r = dr
 mess [r] [dnone] [fnone]
 mess [pnone] [pcero] [puno] [pdos] [ptres] [pcuatro]
*1/sigma entries 2.19 a 2.29
                                        / [icero]
 qcero = ([gcero] - 25.*[icero])
 sigma ds = sqrt(1./[gcero] + 1./[icero]) * [qcero]
 s = ds
 mess [s] [gcero] [icero]
        = ([guno] -25.*[iuno])
                                         / [iuno]
 quno
 sigma dt = \operatorname{sqrt}(1./[\operatorname{guno}] + 1./[\operatorname{iuno}]) * [\operatorname{quno}]
 t = dt
 mess [t] [guno] [iuno]
 qdos = ([gdos] -25.*[idos]) / [idos]
 sigma du = \operatorname{sqrt}(1./[\operatorname{gdos}] + 1./[\operatorname{idos}]) * [\operatorname{qdos}]
 u = du
 mess [u] [gdos] [idos]
 qtres = ([gtres] - 25.*[itres]) / [itres]
```

```
sigma dv = sqrt(1./[gtres] + 1./[itres]) * [qtres]
v = dv
mess [v] [gtres] [itres]
qcuatro = ([gcuatro] - 25.*[icuatro]) / [icuatro]
sigma dw = sqrt (1./[gcuatro] + 1./[icuatro]) * [qcuatro]
w = dw
mess [w] [gcuatro] [icuatro]
qnone = ([gnone] -25.*[inone]) / [inone]
sigma dx = sqrt(1./[gnone] + 1./[inone]) * [qnone]
x = dx
mess [x] [gnone] [inone]
mess [qnone] [qcero] [quno] [qdos] [qtres] [qcuatro]
*1/sigma sum 2.19 a 2.29
rcero = ([hcero] -25.*[jcero]) / [jcero]
sigma dy = sqrt (1./[hcero] + 1./[jcero]) * [rcero]
y = dy
mess [y] [hcero] [jcero]
      = ([huno] -25.*[juno])
                                      / [juno]
runo
sigma dz = sqrt(1./[huno] + 1./[juno]) * [runo]
z = dz
mess [z] [huno] [juno]
        = ([hdos] -25.*[jdos]) / [jdos]
rdos
sigma daa = \operatorname{sqrt}(1./[\operatorname{hdos}] + 1./[\operatorname{jdos}]) * [\operatorname{rdos}]
aa = daa
mess [aa] [hdos] [jdos]
rtres = ([htres] - 25.*[jtres]) / [jtres]
sigma dab = sqrt(1./[htres] + 1./[jtres]) * [rtres]
ab = dab
mess [ab] [htres] [jtres]
rcuatro = ([hcuatro] -25.*[jcuatro]) / [jcuatro]
sigma dac = sqrt (1./[hcuatro] + 1./[jcuatro]) *[rcuatro]
ac = dac
mess [ac] [hcuatro] [jcuatro]
rnone = ([hnone] -25.*[jnone]) / [jnone]
sigma dad = sqrt(1./[hnone] + 1./[jnone]) * [rnone]
ad = dad
mess [ad] [hnone] [jnone]
mess [rnone] [rcero] [runo] [rdos] [rtres] [rcuatro]
*l/sigma entries 2.19 a 4.
scero = ([kcero] - 25.*[mcero]) / [mcero]
```

```
sigma dae = \operatorname{sqrt}(1./[\operatorname{kcero}] + 1./[\operatorname{mcero}]) * [\operatorname{scero}]
ae = dae
mess [ae] [kcero] [mcero]
suno = ([kuno] -25.*[muno]) / [muno]
sigma daf = \operatorname{sqrt}(1./[\operatorname{kuno}] + 1./[\operatorname{muno}]) * [\operatorname{suno}]
af = daf
mess [af] [kuno] [muno]
sdos = ([kdos] -25.*[mdos]) / [mdos]
sigma dag = \operatorname{sqrt}(1./[\operatorname{kdos}] + 1./[\operatorname{mdos}]) * [\operatorname{sdos}]
ag = dag
mess [ag] [kdos] [mdos]
stres = ([ktres] - 25.*[mtres]) / [mtres]
sigma dah = \operatorname{sqrt}(1./[\operatorname{ktres}] + 1./[\operatorname{mtres}]) * [\operatorname{stres}]
ah = dah
mess [ah] [ktres] [mtres]
scuatro = ([kcuatro] - 25.*[mcuatro]) / [mcuatro]
sigma dai = sqrt(1./[kcuatro] + 1./[mcuatro]) * [scuatro]
ai = dai
mess [ai] [kcuatro] [mcuatro]
snone = ([knone] - 25.*[mnone]) / [mnone]
sigma daj = \operatorname{sqrt}(1./[\operatorname{knone}] + 1./[\operatorname{mnone}]) * [\operatorname{snone}]
aj = daj
mess [aj] [knone] [mnone]
mess [snone] [scero] [suno] [sdos] [stres] [scuatro]
*1/sigma sum 2.19 a 4.
tcero = ([lcero] -25.*[ncero]) / [ncero]
sigma dak = sqrt(1./[lcero] + 1./[ncero]) * [tcero]
ak = dak
mess [ak] [kcero] [mcero]
tuno = ([luno] -25.*[nuno]) / [nuno]
sigma dal = \operatorname{sqrt}(1./[\operatorname{luno}] + 1./[\operatorname{nuno}]) * [\operatorname{tuno}]
al = dal
mess [al] [luno] [nuno]
tdos = ([ldos] -25.*[ndos]) / [ndos]
sigma dam = \operatorname{sqrt}(1./[\operatorname{ldos}] + 1./[\operatorname{ndos}]) * [\operatorname{tdos}]
am = dam
mess [am] [ldos] [ndos]
ttres = ([ltres] -25.*[ntres]) / [ntres]
sigma dan = \operatorname{sqrt}(1./[\operatorname{ltres}] + 1./[\operatorname{ntres}]) * [\operatorname{ttres}]
an = dan
mess [an] [ltres] [ntres]
```

```
tcuatro = ([lcuatro] -25.*[ncuatro]) / [ncuatro]
sigma dao = sqrt(1./[lcuatro] + 1./[ncuatro])*[tcuatro]
ao = dao
mess [ao] [lcuatro] [ncuatro]
tnone = ([lnone] -25.*[nnone]) / [nnone]
sigma dap = sqrt(1./[lnone] + 1./[nnone])*[tnone]
ap = dap
mess [ap] [lnone] [nnone]
mess [tnone] [tcero] [tuno] [tdos] [ttres] [tcuatro]
```

# Apéndice E

#### Programa mix.kumac

A continuación se presenta el programa *mix.kumac*.

\*H de 2.19 a 2.24 entries bscn = 1./503.94bsc0 = 1./452.059bsc1 = 1./633.406bsc2 = 1./865.355bsc3 = 1./1097.75bsc4 = 1./1135.68\*H de 2.19 a 2.24 sum cscn = 1./483.43 $\csc 0 = 1./452.051$  $\csc 1 = 1./557.94$  $\csc 2 = 1./715.457$  $\csc 3 = 1./780.019$  $\csc 4 = 1./830.08$ \*H de 2.19 a 2.29 entries dscn = 1./503.94dsc0 = 1./492.87dsc1 = 1./633.406dsc2 = 1./865.355dsc3 = 1./1097.75dsc4 = 1./1135.68\*H de 2.19 a 2.29 sum escn = 1./480.289esc0 = 1./482.57esc1 = 1./605.622esc2 = 1./824.044

esc3 = 1./1010.38esc4 = 1./897.767\*H de 2.19 a 4. entries fscn = 1./503.94fsc0 = 1./492.987fsc1 = 1./633.406fsc2 = 1./865.355fsc3 = 1./1097.75fsc4 = 1./1135.68\*H de 2.19 a 4 sum gscn = 1./503.934gsc0 = 1./492.981gsc1 = 1./633.398gsc2 = 1./865.343gsc3 = 1./1097.73gsc4 = 1./1135.65\*Proton pion easc = 1./500.\*H de 2.19 a 2.24 entries ebsc = 1./500\*H de 2.19 a 2.24 sum ecsc = 1./500\*H de 2.19 a 2.29 entries edsc = 1./500\*H de 2.19 a 2.29 sum eesc = 1./500\*H de 2.19 a 4. entries efsc = 1./500\*H de 2.19 a 4. sum egsc = 1./500close 1 h/del 0vec/del \* h/file 1 anal.hbk.mix hrin 0 close 1 \* H de 2.19 a 2.24 bbin = \$HINFO(41804, `XBINS')vec/crea bnone([bbin]) r

```
vec/crea bcero([bbin]) r
vec/crea buno([bbin]) r
 vec/crea bdos([bbin]) r
 vec/crea btres([bbin]) r
 vec/crea bcuatro([bbin]) r
vec/crea benone([bbin]) r
 vec/crea becero([bbin]) r
vec/crea beuno([bbin]) r
vec/crea bedos([bbin]) r
 vec/crea betres([bbin]) r
 vec/crea becuatro([bbin]) r
 get_vec/cont 45804 bnone
 get_vec/err
              45804 benone
 get_vec/cont 41804 bcero
 get_vec/err
              41804 becero
 get_vec/cont 9804
                     buno
 get_vec/err
              9804
                     beuno
 get_vec/cont 20804 bdos
 get_vec/err
              20804 bedos
 get_vec/cont 30804 btres
 get_vec/err
              30804 betres
 get_vec/cont 40804 bcuatro
 get_vec/err
              40804 becuatro
*ENTRIES
 vec/op/vscale bnone
                         [bscn]
                               noneb
vec/op/vscale bcero
                         bsc0]
                               cerob
vec/op/vscale buno
                         bsc1]
                               unob
vec/op/vscale bdos
                         bsc2]
                               dosb
 vec/op/vscale btres
                         bsc3]
                               tresb
 vec/op/vscale bcuatro
                        [bsc4] cuatrob
vec/op/vscale benone
                          ebsc]
                                enoneb
 vec/op/vscale becero
                          ebscl
                                ecerob
vec/op/vscale beuno
                          ebscl
                                eunob
vec/op/vscale bedos
                          ebsc]
                                edosb
 vec/op/vscale betres
                                etresb
                          ebsc]
 vec/op/vscale becuatro
                          [ebsc] ecuatrob
*SUM
 vec/op/vscale bnone
                         cscn
                               nonec
 vec/op/vscale bcero
                         csc0]
                               ceroc
vec/op/vscale buno
                         csc1]
                               unoc
vec/op/vscale bdos
                         csc2]
                               dosc
 vec/op/vscale btres
                         csc3]
                               tresc
 vec/op/vscale bcuatro
                         \left[ \csc 4 \right]
                               cuatroc
vec/op/vscale benone
                          ecsc] enonec
 vec/op/vscale becero
                         [ecsc] eceroc
```

vec/op/vscale beuno [ecsc] eunoc [ecsc] edosc vec/op/vscale bedos vec/op/vscale betres [ecsc] etresc vec/op/vscale becuatro [ecsc] ecuatroc \*ENTRIES h/copy 45804 -45804  $h/put\_vec/cont -45804$  noneb  $h/put_vec/err$  -45804 enoneb h/copy 41804 -41804  $h/put_vec/cont -41804$  cerob  $h/put_vec/err$  -41804 eccrob h/copy 9804 -9804  $h/put_vec/cont -9804$  unob  $h/put_vec/err$  -9804 eunob h/copy 20804 -20804  $h/put_vec/cont -20804$  dosb  $h/put_vec/err$  -20804 edosb h/copy 30804 -30804  $h/put_vec/cont -30804$  tresb  $h/put_vec/err = -30804$  etresb h/copy 40804 -40804 h/put\_vec/cont -40804 cuatrob h/put\_vec/err -40804 ecuatrob \*SUM h/copy 45804 -245804  $h/put\_vec/cont -245804$  nonec  $h/put_vec/err$  -245804 enonec h/copy 41804 -241804  $h/put_vec/cont -241804$  ceroc  $h/put_vec/err$  -241804 eceroc h/copy 9804 -29804  $h/put_vec/cont -29804$  unoc  $h/put_vec/err$  -29804 eunoc h/copy 20804 -220804  $h/put_vec/cont -220804$  dosc  $h/put_vec/err$  -220804 edosc h/copy 30804 -230804  $h/put_vec/cont -230804$  tresc  $h/put_vec/err$  -230804 etresc

```
h/copy 40804 -240804
h/put_vec/cont -240804 cuatroc
h/put\_vec/err -240804 ecuatroc
h/del 45804
h/del 41804
h/del 9804
h/del 20804
h/del 30804
h/del 40804
*H de 2.19 a 2.29
 cbin=$HINFO(60804, 'XBINS')
vec/crea cnone([cbin]) r
vec/crea ccero([cbin]) r
vec/crea cuno([cbin]) r
 vec/crea cdos([cbin]) r
 vec/crea ctres([cbin]) r
 vec/crea ccuatro([cbin]) r
vec/crea cenone([cbin]) r
 vec/crea cecero([cbin]) r
vec/crea ceuno([cbin]) r
vec/crea cedos([cbin]) r
 vec/crea cetres([cbin]) r
 vec/crea cecuatro([cbin]) r
 get_vec/cont 65804 cnone
              65804 cenone
 get_vec/err
 get_vec/cont 60804 ccero
 get_vec/err
              60804 cecero
 get_vec/cont 61804 cuno
 get_vec/err
              61804 ceuno
 get_vec/cont 62804 cdos
 get_vec/err 62804 cedos
 get_vec/cont 63804 ctres
 get_vec/err
              63804 cetres
 get_vec/cont 64804 ccuatro
 get_vec/err
              64804 cecuatro
*ENTRIES
vec/op/vscale cnone
                        [dscn] noned
vec/op/vscale ccero
                        dsc0] cerod
vec/op/vscale cuno
                        dsc1] unod
vec/op/vscale cdos
                        dsc2] dosd
vec/op/vscale ctres
                        dsc3]
                              tresd
 vec/op/vscale ccuatro
                        [dsc4] cuatrod
                         [edsc] enoned
vec/op/vscale cenone
 vec/op/vscale cecero
                         edsc] ecerod
 vec/op/vscale ceuno
                         [edsc] eunod
```

```
vec/op/vscale cedos
                        [edsc] edosd
vec/op/vscale cetres
                         [edsc] etresd
vec/op/vscale cecuatro [edsc] ecuatrod
*SUM
vec/op/vscale cnone
                        [escn] nonee
vec/op/vscale ccero
                        esc0] ceroe
vec/op/vscale cuno
                        esc1] unoe
vec/op/vscale cdos
                        esc2] dose
vec/op/vscale ctres
                        [esc3] trese
vec/op/vscale ccuatro [esc4] cuatroe
vec/op/vscale cenone
                        [eesc] enonee
vec/op/vscale cecero
                         eesc
                               eceroe
vec/op/vscale ceuno
                         eesc
                               eunoe
vec/op/vscale cedos
                         eesc
                               edose
vec/op/vscale cetres
                         eesc] etrese
vec/op/vscale cecuatro
                        [eesc] ecuatroe
*ENTRIES
h/copy 65804 -65804
h/put\_vec/cont -65804 noned
h/put_vec/err = -65804 enoned
h/copy 60804 -60804
h/put_vec/cont -60804 cerod
h/put_vec/err -60804 ecerod
h/copy 61804 -61804
h/put_vec/cont -61804 unod
h/put_vec/err -61804 eunod
h/copy 62804 -62804
h/put_vec/cont -62804 dosd
h/put_vec/err = -62804 edosd
h/copy 63804 -63804
h/put_vec/cont -63804 tresd
h/put_vec/err -63804 etresd
h/copy 64804 -64804
h/put_vec/cont -64804 cuatrod
h/put_vec/err -64804 ecuatrod
*SUM
h/copy 65804 -265804
h/put_vec/cont -265804 nonee
h/put\_vec/err -265804 enonee
h/copy 60804 -260804
h/put_vec/cont -260804 ceroe
```

```
h/put_vec/err -260804 eceroe
h/copy 61804 -261804
h/put\_vec/cont -261804 unoe
h/put\_vec/err -261804 eunoe
h/copy 62804 -262804
h/put_vec/cont -262804 dose
h/put_vec/err -262804 edose
h/copy 63804 -263804
h/put_vec/cont -263804 trese
h/put\_vec/err -263804 etrese
h/copy 64804 -264804
h/put_vec/cont -264804 cuatroe
h/put_vec/err -264804 ecuatroe
h/del 65804
h/del 60804
h/del 61804
h/del 62804
h/del 63804
h/del 64804
*H de 2.19 a 4.
dbin=$HINFO(80804, 'XBINS')
vec/crea dnone([dbin]) r
vec/crea dcero([dbin]) r
vec/crea duno([dbin]) r
vec/crea ddos([dbin]) r
vec/crea dtres([dbin]) r
vec/crea dcuatro([dbin]) r
vec/crea denone([dbin]) r
vec/crea decero([dbin]) r
vec/crea deuno([dbin]) r
vec/crea dedos([dbin]) r
vec/crea detres([dbin]) r
vec/crea decuatro([dbin]) r
get_vec/cont 85804 dnone
get_vec/err 85804 denone
get_vec/cont 80804 dcero
get_vec/err 80804 decero
get_vec/cont 81804 duno
get_vec/err 81804 deuno
get_vec/cont 82804 ddos
get_vec/err 82804 dedos
get_vec/cont 83804 dtres
```

get\_vec/err 83804 detres get\_vec/cont 84804 dcuatro get\_vec/err 84804 decuatro \*ENTRIES vec/op/vscale dnone [fscn] nonef vec/op/vscale dcero fsc0] cerof vec/op/vscale duno fsc1] unof vec/op/vscale ddos fsc2] dosf vec/op/vscale dtres fsc3] tresf vec/op/vscale dcuatro [fsc4] cuatrof vec/op/vscale denone [efsc] enonef vec/op/vscale decero efsc] ecerof vec/op/vscale deuno efsc] eunof vec/op/vscale dedos efsc] edosf vec/op/vscale detres efsc] etresfvec/op/vscale decuatro [efsc] ecuatrof \*SUM vec/op/vscale dnone [gscn] noneg vec/op/vscale dcero gsc0] cerog vec/op/vscale duno gsc1] unog vec/op/vscale ddos gsc2dosg vec/op/vscale dtres gsc3 | tresg vec/op/vscale dcuatro [gsc4] cuatrog vec/op/vscale denone [egsc] enoneg vec/op/vscale decero egsc] ecerog vec/op/vscale deuno egsc] eunog vec/op/vscale dedos egsc] edosg vec/op/vscale detres egsc] etresg vec/op/vscale decuatro [egsc] ecuatrog \*ENTRIES h/copy 85804 -85804 h/put\_vec/cont -85804 nonef h/put\_vec/err -85804 enonef h/copy 80804 -80804 h/put\_vec/cont -80804 cerof h/put\_vec/err -80804 ecerof h/copy 81804 -81804 h/put\_vec/cont -81804 unof h/put\_vec/err -81804 eunof h/copy 82804 -82804  $h/put\_vec/cont -82804$  dosf  $h/put_vec/err = -82804$  edosf

```
h/copy 83804 -83804
 h/put_vec/cont -83804 tresf
 h/put_vec/err -83804 etresf
 h/copy 84804 -84804
 h/put_vec/cont -84804 cuatrof
 h/put_vec/err -84804 ecuatrof
*SUM
h/copy 85804 - 285804
h/put_vec/cont -285804 noneg
 h/put\_vec/err -285804 enoneg
 h/copy 80804 -280804
 h/put_vec/cont -280804 cerog
 h/put_vec/err -280804 ecerog
 \rm h/copy\ 81804\ -281804
 h/put_vec/cont -281804 unog
 h/put_vec/err -281804 eunog
 h/copy 82804 -282804
 h/put_vec/cont -282804 dosg
 h/put_vec/err = -282804 edosg
 h/copy 83804 -283804
 h/put_vec/cont -283804 tresg
 h/put\_vec/err -283804 etresg
 h/copy 84804 -284804
 h/put_vec/cont -284804 cuatrog
 h/put_vec/err -284804 ecuatrog
 h/del 85804
 h/del 80804
 h/del 81804
 h/del 82804
 h/del 83804
 h/del 84804
h/file 1 anal.hbk.strip
 hrin 0
close 1
 zone 2 \ 2
*Hist H de 2.19 a 2.24
*ENTRIES
 h/plot 45804
 h/plot -45804 s
```

h/plot 41804 h/plot -41804 s h/plot 9804 h/plot -9804 s h/plot 20804 h/plot -20804 s h/plot 30804 h/plot -30804 s h/plot 40804 h/plot -40804 s \*SUM h/plot 45804 h/plot -245804 s h/plot 41804 h/plot -241804 s h/plot 9804 h/plot -29804 s h/plot 20804 h/plot -220804 s h/plot 30804 h/plot -230804 s h/plot 40804 h/plot -240804 s \*Hist H de 2.19 a 2.29 \*ENTRIES h/plot 65804  $\rm h/\,plot~-65804~s$ h/plot 60804 h/plot -60804 s h/plot 61804 h/plot -61804 s h/plot 62804 h/plot -62804 s h/plot 63804 h/plot -63804 s

h/plot 64804 h/plot -64804 s \*SUM h/plot 65804 h/plot -265804 s h/plot 60804 h/plot -260804 s h/plot 61804 h/plot -261804 s h/plot 62804 h/plot -262804 s h/plot 63804 h/plot -263804 s h/plot 64804 h/plot -264804 s \*Hist H de 2.19 a 4. \*ENTRIES h/plot 85804 h/plot -85804 s h/plot 80804 h/plot -80804 s h/plot 81804 h/plot -81804 sh/plot 82804 h/plot -82804 s h/plot 83804 h/plot -83804 s h/plot 84804 h/plot -84804 s \*SUM h/plot 85804 h/plot -285804 s h/plot 80804 h/plot -280804 s h/plot 81804h/plot -281804 s

h/plot 82804 h/plot -282804 s h/plot 83804 h/plot -283804 s h/plot 84804

h/plot -284804 s

### Bibliografía

- M.Mattson, et al., "First Observation of the Doubly Charmed Baryon Xi<sup>+</sup><sub>cc</sub>" Phys. Rev. Lett. 89, (2002).
- [2] A.V.Evdoklmov, et al., "Confirmation of the Double Charm Baryon Xi<sup>+</sup><sub>cc</sub> via its Decay to p D<sup>+</sup> K<sup>-</sup>", Phys. Lett. B 628, 18-24 (2005)
- [3] A.Ocherashvili, M.A.Moinester, J.Russ, J.Engelfried, I.Torres, et al., "First observation of a narrow charm-strange meson  $D_{sJ^+}(2632) - > D_s$  et a and  $D^0$  $K^+$ " Phys. Rev. Lett. **93**, SELEX Collaboration, 242001 (2004)
- [4] D.Diakonov, V.Petrov and M.Polyakov, "Exotic Anti-Decuplet of Baryons: Prediction from Chiral Solitons" Z. Phys. A 359, 305 (1997).
- [5] R.L.Jaffe, "Perhaps a Stable Dihyperon", Phys. Rev. Lett. 38, 195 (1977).
- [6] C.J.Yoon, et al., "Search for the H-dibaryon resonance in <sup>1</sup>2C(H<sup>-</sup>, K<sup>+</sup>ΛΛX)", Phys. Rev. C 75, KEK-PS E522 Collaboration, 022201(R)(2007),
- [7] R.W.Stotzer, et al., "Search for the H-Dibaryon in  ${}^{3}H_{e}(K^{-},K^{+}Hn)$ , Phys. Rev. Lett. **78**, BNL-E836 Collaboration, 3646 (1997).
- [8] A.Alavi-Harati, et al., "Search for the Weak Decay of a Lightly Bound H<sup>0</sup> Dibaryon Phys. Rev. Lett. 84, KTeV Collaboration, 2593 (2003).
- [9] I.Chemakin, et al., "Strange particle production and an H-dibaryon search in p-A collisions at the AGS", Nucl. Phys. A 639, E910 Collaboration, 407c (1998).
- [10] S.Lars, "Properties of  $non=q\overline{q}$  XYZ mesons and results of a search for the H-dibaryon" Proceedings of Science.
- [11] E.Vázquez Jáuregui, "Measurement of Branching Ratios for Non Leptonic Cabibbo-suppressed Decays of the Charmed-Strange Baryon  $\chi_c$ "

- [12] N.Estrada Tristán, "Estudio de las multiplicidades en interacciones hadrónicas"
- [13] U.Dersch. "Messung totaler Wirkungsquerschnitte mit  $\Sigma^-$ , p,  $\pi^-$  und  $\pi^+$  bei 600 GeV/c Laborimpuls"
- [14] U.Dersch, et al., "Total cross section measurements with π<sup>-</sup>, Σ<sup>-</sup> and protons on nuclei and nucleons around 600 GeV/c". Nucl. Phys. B579 (2000) 277.
- [15] N.Bondar, et al., "E781 beam transition radiation detector", H-Note 746, SELEX internal report, 1995.
- [16] M.Mattson A. Kushnirenko and J. Russ. "Geometry of vertex SSD", H/Note 756, SELEX Collaboration, 1995.
- [17] J.Engelfried, "Instrumentation"
- [18] A.Blanco-Covarrubias, "Medición de la sección eficaz de hadrones encantados y la dependencia nuclear  $\alpha$ "
- [19] N.Akchurin y A. Penzo, "What, why, how, and when of E781 Scintillating Fiber Beam Hodoscope",
   H-Note 705, SELEX Collaboration, 1995.
- [20] J.Amaro-Reyes, J.Engelfried, "Efficiency of the eTRD in SELEX", H-Note 878, SELEX internal report, 2007.
- [21] V.Maleev, et al., "Description and test results for DPWC and TRD in E781", H-note 747, SELEX inernal note, 1995.
- [22] J.Engelfried, et al., "The E781 (SELEX) RICH detector", Nucl. Instrum. Meth., A409, 1998.
- [23] J.Engelfried, et al., "The SELEX Phototube RICH Detector", Nucl. Instrum. Meth., A431, 1999.
- [24] I.E.T.Lungov, "Vector Drift Chambers Database", H-Note 779, SELEX internal report, 1995.
- [25] A.Kulyavtsev et al., "E781 hardware trigger and preliminary design." H-Note 676, SELEX internal report, 1999.
- [26] J.Engelfried, "Recon", Research note, SELEX Collaboration, 1998. http://www.selex.fnal.gov/computing/soap/soap\_frame.html.

- [27] J.You, "Event Embedding in SELEX",
   H-Note 815, SELEX internal report, 1998.
- [28] M.Olivo, "Producción inclusiva de  $\Lambda$ ,  $\overline{\Lambda}$  y  $K_S$  mediante las colisiones  $\Sigma^-$ ,  $\pi^{\pm}$  y p -Nucleón".
- [29] PAW Physics Analysis Workstation, CERN-IT Division, Geneva, Switzerland, January 1999.
- [30] J.Sánchez, "Polarización de  $\Lambda^0$  y  $\bar{\Lambda}^0$  en colisiones  $\Sigma^-$ ,  $\pi^{\pm}$  y p -Nucleón".
- [31] M.Procario and S.Kushnirenko, "EDG Embedded Data Generator for SELEX", Research note, SELEX Collaboration, 1998, http://home.fnal.gov/ syjun/edg\_doc.html.