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Abstract
A good drawing of Kn is a drawing of the complete graph with n vertices in the

sphere such that: no two edges with a common end cross; no two edges cross more
than once; and no three edges all cross at the same point. Gioan’s Theorem asserts
that any two good drawings of Kn that have the same rotations of incident edges at
every vertex are equivalent up to Reidemeister moves. At the time of preparation,
10 years had passed between the statement in the WG 2005 conference proceedings
and our interest in the proposition. Shortly after we completed our preprint, Gioan
independently completed a preprint.

1 Introduction
sec:intro

The main result of this work is the proof of the following result, presented by Gioan
at the International Workshop on Graph-Theoretic Concepts in Computer Science 2005
(WG 2005) [7].

th:gioan Theorem 1.1 (Gioan’s Theorem) Let D1 and D2 be good drawings (defined below)
of Kn in the sphere that have the same rotation schemes. Then there is a sequence of
Reidemeister moves (example below, defined in Section 2) that transforms D1 into D2.

We are only using “Reidemeister III" moves to shift a bit of the interior of an edge across
another crossing (without crossing anything else). Figure 1.2 shows a typical example of
“before" and “after" the move.
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Figure 1.2: A Reidemeister III move that transforms one drawing into another. fg:vxInReidTriangle

The Harary-Hill Conjecture asserts that the crossing number of the complete graph
Kn is equal to
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Throughout this work, all drawings of graphs are good drawings :

• no two edges incident with a common vertex cross;

• no three edges cross at a common point; and

• no two edges cross each other more than once.

Some of our interest in this problem derives from Dan Archdeacon’s combinatorial
generalization of this problem. Since his website may soon be lost and there is no other
version that we know of, we reproduce it here.

Suppose the vertex set of Kn is In = {1, ..., n}. A local neighborhood of a vertex
k in a planar drawing determines a cyclic permutation of the edges incident
with k by considering the clockwise ordering in which they occur. Equivalently
(looking at the edges’ opposite endpoints), it determines a local rotation ρ(k): a
cyclic permutation of In−k. A (global) rotation is a collection of local rotations
ρ(k), one for each vertex k in In.

It is well known that the rotations of Kn are in a bijective correspondence with
the embeddings of Kn on oriented surfaces. The rotation arising from a planar
drawing also determines which edges cross. Namely, edges ab, cd cross in the
drawing if and only if the induced local rotations on the vertices {a, b, c, d} give
a nonplanar embedding of that induced K4. [This is not quite true: the rotation
determines the crossing among the six edges in the K4 induced by a, b, c, d, but
it is not necessarily true that it is ab with cd. AMRS]
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The stated conjecture on the crossing number of Kn asserts that the minimum
number (over all planar drawings) of induced nonplanar K4’s satisfies the given
lower bound. We generalize this to all rotations.

Conjecture: In any rotation of Kn, the number of induced nonplanar K4’s
is at least (1/4)[n/2][(n− 1)/2][(n− 2)/2][(n− 3)/2] where [m] is the integer
part of m.

Not every rotation corresponds to a drawing (see the related problem “Drawing
rotations in the plane"), so this conjecture is strictly stronger than the one
on the crossing number of Kn. However, this conjecture has the advantage of
reducing a geometric problem to a purely combinatorial one.

The problem arose from my attempts to prove the lower bound on the crossing
number. It is supported by computer calculations. Namely, I wrote a program
which started with a rotation of Kn and using a local optimization technique
(hill-climbing), randomly swapped edges in a local rotation whenever that swap
did not increase the number of induced nonplanar K4’s. The resulting locally
minimal rotations tended to resemble the patterns apparent in an optimal draw-
ing of Kn. For small n this minimum was the conjectured upper bound. For
larger n it was usually slightly larger.

It is well-known that the rectilinear crossing number (all edges are required to be
straight-line segments) of Kn is, for n ≥ 10, strictly larger than H(n) [4]. In fact, this
applies to the more general pseudolinear crossing number [2].

An arrangement of pseudolines Σ is a finite set of simple open arcs in the plane R2

such that: for each σ ∈ Σ, R2 \ σ is not connected; and for distinct σ and σ′ in Σ, σ ∩ σ′

consists of a single point, which is a crossing.
A drawing of Kn is pseudolinear if there is an arrangement Σ of

(
n
2

)
pseudolines such

that the edges of Kn are all contained in different pseudolines of Σ. It is clear that a
rectilinear drawing (chosen so no two lines are parallel) is pseudolinear.

The arguments (originally due to Lovász et al [11] and, independently, Ábrego and
Fernández-Merchant [1]) that show every rectilinear drawing of Kn has at least H(n)

crossings apply equally well to pseudolinear drawings.
The proof that every optimal pseudolinear drawing ofKn has its outer face bounded by

a triangle [6] uses the “allowable sequence" characterization of pseudoline arrangements of
Goodman and Pollack [8]. Our principal result in [5] is that there is another, topological,
characterization of pseudolinear drawings of Kn.
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A drawing D of Kn is face-convex if there is an open face F of D such that, for every
3-cycle T of Kn, if ∆ is the closed face of D[T ] disjoint from F , then, for any two vertices
u, v such that D[u], D[v] are both in ∆, the arc D[uv] is also contained in ∆.

The main result in [5] is that every face-convex drawing of Kn is pseudolinear and
conversely. An independent proof has been found by Aichholzer et al [3]; their proof uses
Knuth’s CC systems [9], which are an axiomatization of sets of pseudolines. Moreover,
their statement is in terms of a forbidden configuration. Properly speaking, their result
is of the form, “there exists a face relative to which the forbidden configuration does not
occur". Their face and our face are the same. However, our proof is completely different,
yielding directly a polynomial time algorithm for finding the pseudolines.

Aichholzer et al show that there is a pseudolinear drawing of Kn having the same
crossing pairs of edges as the given drawing of Kn. Gioan’s Theorem [7] (Theorem 1.1
above) is then invoked to show that the original drawing is also pseudolinear.

The proof in [5] is completely self-contained; in particular, it does not invoke Gioan’s
Theorem. An earlier version anticipated an application of Gioan’s Theorem similar to
that in [3]; hence our interest in having a proof.

A principal ingredient in our argument is a consideration of the facial structure of an
arrangement of arcs in the plane. An arrangement of arcs is a finite set Σ of open arcs in
the plane such that, for every σ ∈ Σ, R2 \ σ is not connected and any two elements of Σ

have at most one point in common, which must be a crossing.
Let Σ be an arrangement of arcs. Since Σ is finite, there are only finitely many faces

of Σ: these are the components of R2 \ (
⋃
σ∈Σ σ). As it comes up often, we let P(Σ) be

the pointset
⋃
σ∈Σ σ.

The dual Σ∗ of Σ is the finite graph whose vertices are the faces of Σ and there is
one edge for each segment α of each σ ∈ Σ such that α is one of the components of
σ \P(Σ \ {σ}). The dual edge corresponding to α joins the faces of Σ on either side of α.

Although we do not need it here, the following simple lemma motivates one that we
do use in our proof of Gioan’s Theorem. Its simple proof from [5] is included here for
completeness.

lm:dualPaths Lemma 1.3 (Existence of dual paths) Let Σ be an arrangement of arcs in the plane
and let a, b be points of the plane not in any line in Σ. Then there is an ab-path in Σ∗

crossing each arc in Σ at most once.

Proof. We proceed by induction on the number of curves in Σ that separate a from b,
the result being trivial if there are none. Otherwise, for x ∈ {a, b}, let Fx be the face of
Σ containing x and let σ ∈ Σ be incident with Fa and separating a from b. Then Σ∗ has
an edge FaF that crosses σ.
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Let R be the region of R2 \ σ that contains Fb and let Σ′ be the set {σ′ ∩ R | σ′ ∈
Σ, σ′ ∩R 6= ∅}. The induction implies there is an FFb-path in Σ′∗. Together with FaF ,
we have an FaFb-path in Σ∗, as required.

2 Proof of Gioan’s Theorem
sec:gioan

In this section, we give a simple, self-contained proof Gioan’s Theorem [7]. When we
completed the proof in August 2015, we corresponded with Gioan, who was independently
preparing his own version. Each version has had some impact on the other. We do not
include any of the first order logical considerations that occur in Gioan’s version.

For convenience, we restate our main result here. The definition of a Reidemeister
move is given just after this statement.

Theorem 1.1 Let D1 and D2 be drawings of Kn in the sphere that have the same rotation
schemes. Then there is a sequence of Reidemeister moves that transforms D1 into D2.

In order to define Redemeister move and prove our first intermediate lemmas, we
require a small new consideration. Let Σ be an arrangement of arcs in the plane. A
vertex of Σ is a point that is the intersection of two or more arcs in Σ.

At a vertex v, the rotation of the arcs containing v is of the form σ1, σ2, . . . , σk, σ1, σ2,

. . . , σk; each arc occurs twice here, once for each of the “rays" it contains that start at v.
Let (F0, F1, . . . , Fk−1, Fk, Fk+1, . . . , F2k−1) the cyclic sequence of faces around v.

Suppose P is a dual path containing the subpath (F0, F1, . . . , Fk) such that P crosses
each arc in Σ at most once. The path obtained from P by sliding over the vertex v is
the path P , except (F0, F1, . . . , Fk) is replaced by the dual path (of the same length)
(F0, F2k−1, F2k−2, . . . , Fk+1, Fk). (None of F2k−1, F2k−2, . . . , Fk+1 can occur in P , as P
crosses each arc of Σ at most once. Thus, the result of the sliding is indeed a new dual
path.)

A Reidemeister move is a sliding over a vertex v that is in precisely two arcs in Σ.
The following may be viewed as a supplement to Lemma 1.3.

lm:reidemeister Lemma 2.1 Let Σ be an arrangement of arcs in the plane and let a and b be any two
points in the plane not in P(Σ). Let Fa and Fb be the faces of Σ containing a and b,
respectively. Then any two FaFb-paths in Σ∗, each crossing every arc in Σ at most once,
are equivalent up to sliding over vertices.

Proof. Let P and Q be distinct FaFb-paths in Σ∗. Let P1 and Q1 be subpaths of P and
Q having common end points but being otherwise disjoint. Then (any natural image in
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the plane of) P1 ∪Q1 bounds a disc ∆ and each curve in Σ that crosses one of P1 and Q1

crosses the other. We will show that there is a vertex in ∆ over which we can slide P1.
Since P1 and Q1 are distinct dual paths, there is a vertex of Σ in ∆. Let σ ∈ Σ have

an arc across ∆ and contain a vertex of Σ; let v be the first vertex of Σ encountered as we
traverse σ across ∆ from its P1-end. Among all the σ ∈ Σ that contain v, either all have
v as their first encountered vertex or there are two, σ and σ̄, consecutive in the rotation
at v, such that v is the first encountered vertex for σ, but not for σ̄. In the former case,
we can slide P1 across v.

Suppose σ′ ∈ Σ has a crossing with σ̄ between the intersection of σ̄ with P1 and v.
Let ∆′ be the disc bounded by P1, σ, and σ̄. Then σ′ ∩∆′ intersects the boundary of ∆′

at least twice, but not on σ ∩∆′. Thus, σ′ crosses P1 between σ ∩ P1 and σ̄ ∩ P1.
Let v̄ be the first vertex of Σ encountered as we traverse σ̄ from σ̄ ∩ P1. Then every

other arc in Σ that contains v̄ intersects P1 between σ ∩ P1 and σ̄ ∩ P1.
Letting b(v) denote the number of arcs in Σ that cross P1 between σ ∩ P1 and σ̄ ∩ P1,

we see that b(v̄) < b(v). Therefore, there is always a vertex w of Σ such that b(w) = 0

and we can slide P1 across w.
After sliding P1 across w, we get a new P that either has more vertices in common

with Q or the disc bounded by the new P1 and Q1 has fewer vertices of Σ. In either case,
an easy induction completes the proof.

Gioan’s Theorem considers two drawings D1 and D2 of Kn in the sphere that have the
same rotation scheme. Let t, u, v, w be four distinct vertices of Kn. Let T be the triangle
induced by t, u, v. Then D1[T ] is a simple closed curve in the sphere. The rotations at t,
u, and v determine where bits of the edges D1[tw], D1[uw], and D1[vw] go from their ends
t, u, and v, respectively, relative to D1[T ]. The side of D1[T ] that has the majority (two
or three) of these bits of edges is where D1[w] is. If tw is the minority edge, then D1[tw]

crosses D1[uv]; conversely, a crossing K4 produces, for each of its triangles, a minority
edge. This simple observation immediately yields the following fundamental fact.

it:rotationK4 (F1) Let D1 and D2 be two drawings of Kn with the same rotation scheme. If J is any
K4 in Kn, then there is an orientation-preserving homeomorphism of the sphere to
itself mapping D1[J ] onto D2[J ] that preserves the vertex-labels of J .

There are some elementary corollaries of (F1):

it:rotationCrossing (F2) the pairs of crossing edges are determined by the rotation scheme;

it:rotationDirCrossing (F3) if the edges of Kn are oriented, then the directed crossings are determined by the
rotation scheme; and
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it:triangleContainment (F4) if u, v, w, x are distinct vertices of Kn, then the side of the triangle (relative to any
of its oriented sides) induced by u, v, w that contains x is determined by the rotation
scheme.

By (F3), we mean that, if e and f cross, then, as we follow the orientation of e, the
crossing of e by the traversal f is either left-to-right in all drawings or right-to-left in all
drawings, depending only on the rotation scheme.

These facts can hardly be new. In fact, variations of some of them appear in Kynčl
[10].

lm:crossingOrderDetermines Lemma 2.2 Let D1 and D2 be two drawings of Kn with the same rotation scheme. Sup-
pose that, for each edge e, as we traverse e from one end to the other, the edges that cross
e occur in the same order in both D1 and D2. Then there is an orientation-preserving
homeomorphism of the sphere mapping D1[Kn] onto D2[Kn] that preserves all vertex- and
edge-labels.

Proof. This is a consequence of the well known fact that a rotation scheme of a connected
graph determines a unique (up to surface orientation-preserving homeomorphisms) cellular
embedding of a graph in an orientable surface ([12, Thm. 3.2.4]). We construct a planar
map from each of D1 and D2 by inserting a vertex of degree 4 at each crossing point.
The oriented crossings and the orders of the crossings of each edge are the same in both
D1 and D2, so the rotations at these degree 4 vertices are also the same. Therefore, the
planar maps are the same, as claimed.

Lemma 2.2 asserts that the orders of crossings determine the drawing. Thus, we need
to consider the situation that some edge has two edges crossing it in different orders in
the two drawings. The first step, our next lemma, is to identify a special structure that
must occur.

Let e, f , and g be three distinct edges in a drawing D of Kn, no two having a common
end. Suppose each two of e, f , and g have a crossing, labelled ×e,f , ×e,g, and ×f,g. The
union of the segments of each of e, f , and g between their two crossings is a simple closed
curve. If one of the two sides of this simple closed curve does not have an end of any of
e, f , and g, then this side is the pre-Reidemeister triangle constituted by e, f , and g.

Let D1 and D2 be drawings of Kn with the same rotation scheme. A Reidemeister
triangle for D1 and D2 is a pre-Reidemeister triangle T for both D1 and D2 constituted
by the edges e, f , and g but with the clockwise traversal of the three segments between
pairs of crossings giving the opposite cyclic ordering of the crossings.

7



Let J be a crossing K4 in D1. Then D2[J ] is also a crossing K4, with the same pair
of edges crossing: there is a label-preserving homeomorphism of the sphere to itself that
maps D1[J ] onto D2[J ]. Letting × denote the crossing (in both D1[J ] and D2[J ]), D1[J ]

has five faces: one 4-face bounded by a 4-cycle in J ; and four 3-faces , each incident with
×. If x and r are two vertices of J incident with a 3-face, then we use T 1

x,r to denote this
3-face and xr× to denote its boundary.

Our next lemma corresponds to Lemma 3.2 of [7]. This result is a central, non-trivial
point in the argument.

lm:differentOrderReidTriang Lemma 2.3 Let D1 and D2 be two drawings of Kn with the same rotation scheme. Then
no Reidemeister triangle in D1[Kn] for D1 and D2 contains a vertex of D1[Kn].

Proof. Let R be a Reidemeister triangle in D1[Kn] for D1 and D2. We use the same
labelling e = xy, f = uv, and g = rs as above for the edges determining R; all of r, s, u,
v, x, and y are in the same face F of D1[R]. By way of contradiction, suppose there is a
vertex a of Kn in the other face Fa of D1[R]. See the left-hand figure in Figure 2.4.
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Figure 2.4: The Reidemeister triangle in D1 and D2. fg:vxInReidTriangle1

In the K4 induced by u, v, x, y, a is in the 3-face T 1
u,y bounded by uy×1

e,f and, therefore,
in the faces bounded by the 3-cycles uyx and yuv that do not contain D1[v] and D1[x],
respectively. By (F1), this holds true also for D2. Analogous statements hold for the
other two K4’s involving two of the three edges from e, f, g.

It follows that a is in all of the faces in D2 bounded by uy×2
e,f , rv×2

f,g, and xs×2
e,g in

D2 that are disjoint from D2[r], D2[x], and D2[u], respectively. Label these faces as T 2
u,y,

T 2
r,v, and T 2

x,s, respectively. Since a is in all three, T 2
u,y ∩ T 2

r,v ∩ T 2
x,s 6= ∅.

On the other hand, the edge uy does not cross either uv or xy. Since it joins the two
points D2[u] and D2[y] and they are on the same side of D2[R], D2[uy] crosses D2[R] an
even number of times; we conclude that D2[uy] does not cross D2[R]. The same applies
to D2[rv] and D2[xs].
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Since the open segment τ of xy in the boundary ofD2[R] is not crossed by the boundary
uy×2

e,f of T 2
u,y, τ is disjoint from T 2

u,y. In particular, ×2
f,g is not in T 2

u,y; it follows that
points in the interior of T 2

r,v near ×f,g are not in T 2
u,y. Consequently, T 2

r,v is not contained
in T 2

u,y. The symmetry of the situation shows that none of T 2
u,y, T 2

r,v, and T 2
x,s is contained

in the other.
On the other hand, a ∈ T 2

u,y ∩ T 2
r,v ∩ T 2

x,s, so that each two of uy×2
e,f , rv×2

f,g, and
xs×2

e,g intersect; since they intersect each other an even number of times, they intersect
each other at least twice.

Therefore, the 6-cycle rvuyxs has at least nine crossings in D2, consisting of the three
that define R and the at least six mentioned at the end of the preceding paragraph. Since
nine is the most crossings a 6-cycle can have in a good drawing, we conclude that it is
exactly nine. Thus, any two of uy×2

e,f , rv×2
f,g, and xs×2

e,g cross exactly twice. Moreover,
every pair of non-adjacent edges in the 6-cycle must cross. In particular, rv crosses uy.

By goodness, the uv-segment in rv×2
f,g does not intersect either uy- or the uv-segment

of uy×2
e,f . Since uv crosses xy at ×2

e,f , it does not do so a second time. Therefore, the
uv-segment of rv×2

f,g does not cross uy×2
e,f .

We have already mentioned that rv crosses uy. If rs crosses uy×2
e,f , then, as rs already

crosses xy and uv, this crossing is not on either of the xy- and uv-segments of uy×2
e,f .

Also, rv does not cross the uv-segment of uy×2
e,f . Thus, there are two possibilities: either

rv crosses both uy and the xy-segment of uy×2
e,f or both rv and the rs-segment of rv×2

f,g

cross uy.
The conclusion is that either rv crosses uy×2

e,f twice or that uy crosses rv×2
f,g twice.

Since these conclusions are symmetric, we may assume the former. The final piece of
information that we require is the order in which these two crossings occur. By way
of contradiction, suppose that, as we traverse D2[rv] from D2[v], we first cross the xy-
segment of uy×2

e,f before crossing uy. See Figure 2.5.

r

y
v

s x

u
r

e

f

g

Figure 2.5: D2[rv] crosses Tu,y in the wrong order. fg:wrongOrder
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Consider the simple closed curve Ω consisting of the arc in D2[uv] from ×2
e,f to D2[v],

then along D2[rv] from D2[v] to the crossing of D2[rv] with the xy-segment of uy×2
e,f ,

and then along D2[xy] back to ×2
e,f .

By goodness, the portion of D2[rs] from ×2
f,g to D2[r] cannot cross Ω, so D2[r] is on

the side of Ω that is different from the side containing the crossing of rv with uy. Again,
goodness forbids the crossing of Ω with the portion of D2[rv] from r to the crossing with
uy. This contradiction shows that the first crossing of uy×2

e,f by D2[rv], as we start at v,
is with uy. See Figure 2.6.
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u e

f

g
a

Figure 2.6: This is how D2[rv] crosses Tu,y. fg:rightOrder

The vertex a is in Tr,v∩Tu,y. As D1[a] and D1[y] are on different sides of D1[R], D1[ay]

crosses at least one of D1[rs], D1[uv], and D1[xy]. Thus, (F2) implies D2[ay] 6⊆ Tu,y.
Goodness implies that D2[ay] must cross the uv-segment of uy×2

e,f . In order to do
that, it must cross rv first. But now y and the crossing × of D2[ay] with D2[uv] are
separated by the simple closed curve Ω′ consisting of the portion of uv from ×2

e,f to v, rv
from v to its crossing with xy, and the portion of xy between this crossing and ×2

e,f .
However, the portion of ay from × to y cannot cross any of the three parts of Ω′,

because each part is contained either in an edge incident with y or is crossed by the
complementary part of ay. This contradiction completes the proof.

We are now ready to prove Gioan’s Theorem. The structure of our proof is very much
the same as that given by the algorithm in [7].

Proof of Theorem 1.1. Let v be any vertex of Kn. Induction (with n ≤ 4 as the base)
shows that there is a sequence Γ of such Reidemeister moves that converts the drawing
D1[Kn − v] into D2[Kn − v].

We claim we can realize all the Reidemeister moves of Γ within the drawing D1[Kn], by
interspersing some moves that only move edges incident with v. Suppose Γ = γ1γ2 · · · γk
and that, for some i ≥ 1, we have been able to do all the moves γ1, γ2, . . . , γi−1. At
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this point, we have a drawing D′1[Kn] that has the property that, doing the sequence
γiγi+1 · · · γk on D′1[Kn−v], we obtain D2[Kn−v]. In particular, the Reidemeister triangle
Ri used to perform γi is empty relative to D′1[Kn − v]. Moreover, since D′1 and D2 have
the same rotation schemes, Lemma 2.3 implies that v is also not inside D′1[Ri].

It follows that the only crossings of D′1[Ri] are by edges incident with v. Such edges
cross D′1[Ri] in exactly two of its three sides and, since no two of the edges incident with
v cross, their segments inside D′1[Ri] are disjoint. It follows that they can be moved out
of Ri by Reidemeister moves, creating a new drawing D′′1 [Kn] in which Ri is empty. Thus,
performing the Reidemeister move γi on D′′1 [Kn] produces a new drawing of Kn in which
the moves γ1, γ2, . . . , γi have all been done.

It follows that we may assume D1[Kn − v] is the same as D2[Kn − v]. We complete
the proof by showing that we can perform Reidemeister moves on the edges incident with
v to convert D1 into D2. For ease of notation and reference, we will use Kn− v to denote
the common drawings D1[Kn − v] and D2[Kn − v]. We may assume that, for i = 1, 2,
Di[Kn] is obtained from Kn − v by using dual paths for each edge vw incident with v,
together with a small segment in the last face to get from the dual vertex in that face to
w.

This understanding needs a slight refinement, since, for example, it is possible for two
edges incident with v to use the same sequence of faces (in whole or in part). Thus, as
dual paths, they would actually use the same segments. We allow this, as long as the two
edges do not cross on the common segments. They can be slightly separated at the end
to reconstruct the actual drawing.

The triangles of Kn − v and the common rotations determine the face F of Kn − v
containing v, so this is the same in both D1 and D2. It follows that, for each vertex w
of Kn − v, D1[vw] ∪ D2[vw] is a closed curve Cw with finitely many common segments
(which might be just single dual vertices). In particular, the closed curve Cw divides the
sphere into finitely many regions.

cl:noVertexSeparation Claim 1 For each vertex w of Kn − v, all the vertices of Kn − {v, w} are in the same
region of Cw.

Proof. Let x and y be vertices of Kn − {v, w}. If xy does not cross D1[vw], then it also
does not cross D2[vw], so xy is disjoint from Cw, showing x and y are in the same region
of Cw. Letting J be the K4 induced by v, w, x, y, we may assume that, in each of D1[J ]

and D2[J ], vw crosses xy.
For i = 1, 2, the path (x,w, y) in Di[J ] is incident with the face Fi of Di[J ] bounded

by the 4-cycle (v, x, w, y, v). In particular, there is an xy-arc γi in Fi that goes very near
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alongside (x,w, y) and is disjoint from Di[vw]. Furthermore, we may choose the arcs γ1

and γ2 to be equal. The arc γ1 shows that x and y are in the same region of Cw.

For w ∈ V (Kn − v), a w-digon is a simple closed curve in Cw consisting of a subarc
of D1[vw] and a subarc of D2[vw]. If D1[vw] 6= D2[vw], then it is easy to see that there
is at least one w-digon.

For each w-digon C, Claim 1 shows that one side of C in the sphere has no vertex of
Kn − {v, w}. This closed disc is the clean side of C.

Label the vertices of Kn − v as w1, w2, . . . , wn−1. Suppose i ∈ {1, 2, . . . , n− 1} is such
that D1[vw1], . . . , D1[vwi−1] are all the same as D2[vw1], . . . , D2[vwi−1], respectively. We
show that there is a drawing D′1, obtained from D1 by Reidemeister moves that move only
edges from among vwi, vwi+1, . . . , vwn−1, so that D′1[vw1], . . . , D′1[vwi] are all the same as
D2[vw1], . . . , D2[vwi], respectively. This will complete the proof.

If D1[vwi] = D2[vwi], then we set D′1 = D1, and we are done. In the remaining case,
there are wi-digons. We show that we can find a sequence of Reidemeister moves to create
a new drawing D′1 such that D′1[vwi] has more agreement with D2[vwi] than D1[vwi] has.
Furthermore, the only edges moved are among vwi, vwi+1, . . . , vwn−1. Clearly, this is
enough.

Begin by selecting, among all wi-digons, a wi-digon C with minimal clean side S; no
other wi-digon has its clean side contained in S. If xy is an edge of Kn − {v, wi} that
intersects S, then xy ∩ (S \C) consists of a single arc that has one end in D1[vwi] and one
end in D2[vwi]. We will not do anything with these arcs, except in various applications
of Lemma 2.1 in which only edges from among D1[vwi], D1[vwi+1], . . . , D1[vwn−1] are
adjusted.

cl:1-(i-1) Claim 2 For j ∈ {1, 2, . . . , i− 1}, the edge D1[vwj] is disjoint from S.

Proof. If, for some j ∈ {1, 2, . . . , i − 1}, D1[vwj] has a point in S, then, since wj
is not in S, D1[vwj] crosses C. But D1[vwj] = D2[vwj], showing it is disjoint from
(D1[vwi] ∪D2[vwi]) \ {D2[v]}.

cl:(i+1)-(k-1) Claim 3 For each j ∈ {i+ 1, i+ 2, . . . , k− 1}, D1[vwj]∩ (S \C) consists of disjoint open
arcs, each having both ends in (C ∩D2[vwi]) \D2[wi].

Proof. Let p be a point of D1[vwj] ∩ (S \ C). Since wj is not inside S, as we follow
D1[vwj] from p towards D1[wj], there is a first point q in C. Since D1[vwj] is disjoint from
D1[vwi], q must be in D2[vwi] \ D2[{v, wi}]. Likewise, in moving from p toward D1[v],
there is a first point reached that is in D2[vwi] \D2[wi].
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Notice that no two of the arcs described in Claim 3 can intersect. Therefore, among
all the arcs in D1[vwj] ∩ (S \ C), there is an arc α which, together with a subarc α′ of
D2[vwi] ∩ C, makes a minimal digon. We can then use Lemma 2.1 to move α to agree
with α′. We repeat this procedure until there are no such arcs left in S, at which time
Lemma 2.1 shows we can move D1[vwi] onto D2[vwi]. (Here is the principal place where
we allow several edges to share a dual path in D1. As we shift α, it becomes equal to a
subarc of D2[vwi]. These are both incident with v. Since the two ends of α both cross
out of S, these two arcs do not cross.)

The only edges moved are among D1[vwi], . . . , D1[vwn−1], as claimed.
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