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Abstract

We show that the convex hull of every optimal pseudolinear drawing of Kn is a triangle. This is closely
related to the recently proved conjecture that the convex hull of every optimal rectilinear drawing of Kn

is a triangle.

1 Introduction

1.1 Our main result

The following statement remained an important, open conjecture for a long time. Recently, a proof was
announced by Aichholzer, Orden, and Ramos [2].

Theorem 1 ([2]) The convex hull of every optimal rectilinear drawing of Kn is a triangle.

Extending this conjecture to (optimal) nonrectilinear drawings of Kn does not make much sense: there is
no distinguished unbounded face if the rectilinear condition is altogether dropped, so a meaningful convex hull
cannot even be defined. On the other hand, since the convex hull is well–defined for pseudolinear (which lie in
between rectilinear and arbitrary) drawings, it makes sense to ask if a similar property holds for pseudolinear
drawings. Our main result is that an analogous statement holds for pseudolinear drawings.

Theorem 2 (Main result) The convex hull of every optimal pseudolinear drawing of Kn is a triangle.

1.2 Pseudolinear drawings

Recall that a pseudoline in the projective plane P2 is a simple closed curve whose removal does not disconnect
P2. A collection of pseudolines is a pseudoline arrangement if each two pseudolines intersect (necessarily
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cross) in exactly one point. A generalized configuration ΩP with point set P consists of a finite set P of points,
together with a pseudoline joining each pair, and it is simple if there is a single pseudoline for each pair.

Consider a good drawing D of Kn in the plane R2 (thus, every edge is represented by a simple curve),
contained in a disk with radius < R centered at the origin. Let D denote the disk with radius R, centered at
the origin. By identifying antipodal points in the boundary of D (and discarding R2 \ D), we may regard D
as (a new drawing D′, as the host surface has changed) lying in the projective plane. Now if each edge e in
D′ can be extended to a pseudoline (an extension of e) so that the resulting structure is a simple generalized
configuration ΩP in which P is the set of n vertices, then the original drawing D is a pseudolinear drawing
of Kn. The pseudosegments are the edges of a pseudolinear drawing; in pseudolinear drawings we use the
term “edge” and “pseudosegment” interchangeably. If we start with a pseudolinear drawing of Kn (which, we
emphasize, lies in R2), it is easy to see that we may equivalently stay (all along) in R2, and for each edge e
construct an R2–extension `e, a set of points homeomorphic to a straight line, which contains e, whose removal
disconnects R2 into two unbounded sets, and so that every pair of R2–extensions cross at exactly one point.

As we observed above, the convex hull in a pseudolinear drawing of Kn is a well–defined object that
naturally generalizes the definition of the convex hull of a rectilinear drawing (the definition actually applies
to quite more general objects, namely the CC–systems introduced by Knuth; see [7] and [9]). Consider a
pseudolinear drawing D of Kn, and for each edge (pseudosegment) e construct an R2–extension `e as described
above. An edge in D is a convex hull edge of D if the n − 2 points (vertices of Kn) not incident with e lie
on the same half–plane of `e, and the convex hull of D is the collection of all the convex hull edges and their
incident vertices. It can be checked that convex hull edges are well–defined, that is, independent of the chosen
R2–extensions.

It is readily verified that no convex hull edge can cross another edge. Therefore Theorem 2 states that
the obvious extension of Theorem 1 to pseudolinear drawings is true: the unbounded face in any optimal
pseudolinear drawing of Kn is incident with (exactly) 3 vertices and 3 edges.

1.3 Pseudolinear and rectilinear crossing numbers

If D is a drawing of Kn, then we let cr(D) denote the number of pairwise crossings of edges in D. The
pseudolinear crossing number c̃r(Kn) is the minimum of cr(D) over all pseudolinear drawings D of Kn. The
rectilinear crossing number cr(Kn) of Kn is the minimum of cr(D) over all rectilinear drawings D of Kn. Since
every rectilinear drawing of Kn is also a pseudolinear drawing, cr(Kn) ≥ c̃r(Kn).

If a pseudolinear drawing is combinatorially equivalent to a rectilinear drawing, then it is stretchable. Since
almost all pseudolinear drawings are non–stretchable (see for instance [11]), it is conceivable that c̃r(Kn) <
cr(Kn) for some n. We have verified that c̃r(Kn) = cr(Kn) for n ≤ 12, and in this basis we put forward the
following.

Conjecture 3 For every n, c̃r(Kn) = cr(Kn).

Settling this conjecture in either direction would be quite interesting by itself: we would know whether or
not there is anything to gain, with respect to crossing numbers, by considering non–stretchable pseudolinear
drawings of Kn (over rectilinear ones).

2 Background: generalized configurations and allowable sequences

We recall that a simple allowable sequence on n elements Π is a doubly infinite sequence (. . . , π−1, π0, π1, . . .) of
permutations of an n–element ground set (say {p1, p2, . . . , pn}), such that (i) any two consecutive permutations
differ by exactly one transposition of two elements in adjacent positions; and (ii) after a move in which i and
j switch, they do not switch again until every other pair has switched. If a transposition τ swaps elements pi

2



and pj , so that pi moves from position t to position t + 1, and pj moves from position t + 1 to position t, then
we write τ = [pi|pj ]t. An allowable sequence Π = (. . . , π−1, π0, π1, . . .) on n elements is equivalently defined
by its transpositions sequence T (Π) = (. . . , τ−1, τ0, τ1, . . .), where τi is the transposition that transforms πi−1

into πi.

It is straightforward to see that a simple allowable sequence on n elements has period n(n − 1). We shall
be particularly interested in halfperiods of Π, that is, finite subsequences (πi, πi+1, . . . , πi+(n

2)). Note that the
ending permutation of a halfperiod is the reverse permutation of the starting one.

Simple allowable sequences, introduced by Goodman and Pollack in an influential paper [8], are a fruitful
tool to encode any generalized configuration of points: to each generalized configuration of points ΩP with
point set P , one can naturally associate a simple allowable sequence ΠΩP

with ground set P , and, reciprocally,
given a simple allowable sequence Π with ground set P one can obtain a generalized configuration of points
ΩP whose associated sequence is ΠΩP

= Π. The details of this relationship have been lucidly explained in [8]
and in subsequent surveys (more recently in [1] or [10], precisely in the context of crossing numbers), so we
shall omit them, and refer the interested reader to these sources.

Suppose that D is a pseudolinear drawing of Kn, with underlying n–point set P . Thus (since D is
pseudolinear) P is the point set of a simple generalized configuration ΩP . We say that ΩP is a generalized
configuration associated to D. Although ΩP is not unique (as there are infinitely many ways to extend
the pseudoedges to form pseudolines), the induced simple allowable sequence ΠΩP

is unique, and thus it is
consistent to call ΠD := ΠΩP

the simple allowable sequence associated to D.

3 Allowable sequences and convex hulls: proof of Theorem 2

The encoding scheme from generalized configurations of points to simple allowable sequences [8] makes it
particularly easy to identify the convex hull of a pseudolinear drawing of Kn, as follows.

Proposition 4 Let D be a pseudolinear drawing of Kn, and let P denote the underlying n–point set. Let Π0

be any halfperiod of the associated simple allowable sequence. Then a point p in P is in the convex hull of D
iff it occupies either position 1 or position n in a permutation of Π0.

In view of this, in order to establish Theorem 2 it suffices to show that if D is optimal among pseudolinear
drawings (that is, c̃r(D) = c̃r(Kn)), then at most 3 elements in P ever occupy position 1 or position n in some
permutation in Π0 (any halfperiod of ΠD). In order to prove such a result, we need a useful characterization
of which simple allowable sequences are induced from optimal pseudolinear drawings of Kn.

Such a characterization can be obtained from results in [1] and [10] that give the crossing number in a
pseudolinear drawing of Kn in terms of properties of its associated simple allowable sequence. In order to
present this result, we need to define one local and one global function. Let τ = [pi|pj ]t be a transposition in
the transpositions sequence of a simple allowable sequence Π. The impact f(τ) of τ is defined as follows:

f(τ) = f([a|b]t) =
(

n − 2
2

− (t − 1)
)2

. (1)

Now if Π0 is a halfperiod of a simple allowable sequence, then its weight F (Π0) is

F (Π0) =
∑

τ

f(τ), (2)

where the summation is over all the τi’s in the transpositions sequence of Π0. That is, the weight of Π0 is
simply the sum of the impacts of all the transpositions in its transpositions sequence.

The relevance of the weight of a halfperiod of a simple allowable sequence induced by a pseudolinear
drawing of Kn comes from the following result.
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Theorem 5 ([1],[10]) Let D be a pseudolinear drawing of Kn, and let Π be a halfperiod of its associated
simple allowable sequence. Then

c̃r(D) = 3
(

n

4

)
− F (Π0).

Our last required result, which is proved in Section 4, gives us a crucial piece of information on halfperiods
that maximize F .

Proposition 6 Let Π0 be a halfperiod of a simple allowable sequence on n elements. Suppose that Π0 maxi-
mizes F over all halfperiods of simple allowable sequences on n elements. Then there are (exactly) 3 elements
that occupy either position 1 or position n in a permutation of Π0.

Proof of Theorem 2.

Since every simple allowable sequence can be induced from a pseudolinear drawing of Kn, it follows from
Theorem 5 that a pseudolinear drawing of Kn is optimal iff any halfperiod of its associated simple allowable
sequence maximizes F over all possible halfperiods of simple allowable sequences. Propositions 6 and 4
complete the proof.

4 Proof of Proposition 6

Throughout this proof, Π0 = (π0, π1, π2, . . . , π(n
2)) is a halfperiod of a simple allowable sequence that minimizes

F . Unless otherwise stated, all transpositions and permutations hereby mentioned occur are associated to Π0.

Let us label the points so that the initial permutation is a1a2 . . . an.

Claim A Let i satisfy dn/2e ≤ i < n. Let τs be the transposition that moves an to position i. Suppose that
a` is to the right of an in πs. Then, after τs occurs, the first transposition that involves a` moves a` to the
left, and the other element involved in the transposition is to the left of an in πs.

Proof. Seeking a contradiction, let i be smallest possible so that the statement is false. Label b1, b2, . . . , bn−i

the last n − i elements in πs, in the order in which they appear in πs. Note that τs = [b1|an]i.

We claim that the first transposition τt after τs that involves an element in {b1, b2, . . . , bn−i} must be the
transposition swapping elements b1 and b2. Recall that Claim A holds if we substitute i by i−1. This implies,
in particular, that the first element in {b2, . . . , bn−i} that gets involved in a transposition after τs must be b2,
and that the other element involved in the transposition is to the left of b2 in πs. Now the first transposition
after τs that involves b1 cannot involve an element to the left of b1 in πs, as otherwise (it is easy to check)
Claim A would then also hold for i. Thus τt must involve b1 and b2, that is, τt = [b1|b2]i+1. Again using the
assumption that Claim A holds for i − 1, it follows that the last transposition τr before τs that involves an
element in b1, b2, . . . , bn−i is precisely the transposition that swaps b2 and an, that is, τr = [b2|an]i+1.

Thus, the following transpositions occur in the given order: τr = [b2|an]i+1, τs = [b1|an]i, and τt =
[b1|b2]i+1. Moreover, the only transposition between τr and τt that involves an element in position i + 1 or
further right is precisely τs. This last observation implies that if we modify the transpositions sequence by
delaying τr (if necessary) and letting it occur immediately before τs, and then accelerating τt (if necessary)
and letting it occur immediately after τs, and leaving the transposition sequence otherwise unchanged, the
resulting transpositions sequence will still correspond to a (valid) halfperiod Π̃0 of a simple allowable sequence.
More precisely, if we let τ ′i = τi for 1 ≤ i < r, τ ′i = τi+1 for r ≤ i ≤ s − 2, τ ′s−1 = [b1|b2]i, τ ′s = [b1|an]i+1,
τ ′s+1 = [b2|an]i, τ ′i = τi−1 for s + 2 ≤ i ≤ t, and τ ′i = τi for i > t, then τ ′0, τ

′
1, . . . , τ

′
(n
2)

is the transpositions

sequence of a simple allowable sequence Π0. Clearly,
∑

τi /∈{τr,τs,τt} f(τi) =
∑

τ ′i /∈{τ ′s−1,τ ′s,τ ′s+1}
f(τ ′i), Moreover,

f(τr) = f(τ ′s) and f(τs) = f(τ ′s−1), and so
∑

τi 6=τt
f(τi) =

∑
τ ′i 6=τ ′s+1

f(τ ′i). However, f(τt) = (n−2
2 − ((i +

1) − 1))2 < (n−2
2 − (i − 1))2 = f(τ ′s+1) (note that here we are using that i ≥ dn/2e). Therefore F (Π0) =
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∑
τi

f(τi) <
∑

τ ′i
f(τ ′i) = F (Π0), contradicting the assumption that assumption that Π0 maximizes F over all

halfperiods of simple allowable sequences of size n.

Claim B Either a1 moves an from position n or an moves a1 from position 1.

Proof of Claim B. We suppose that a1 reaches position dn/2e before an reaches position bn/2c+1 (it is readily
checked that these cannot occur simultaneously), and show that in this case a1 moves an out of position n.
The other possibility, that an reaches position bn/2c + 1 before a1 reaches position dn/2e (in which case the
conclusion is that an moves a1 from position 1), is dealt with in a totally analogous manner.

Let m + 1 be the position of a1 immediately after it swaps with an. Thus, the transposition between a1

and an is [a1|an]m = τq for some q. Since a1 only moves right, and an only moves left, it follows that a1 is in
position m ≥ dn/2e just before this permutation, that is, in πq−1.

To prove the statement, for the rest of the proof we assume that m < n − 1, and derive a contradiction.

Let b denote the element in position m + 2 in πq−1 (and still there in πq). Now b is to the right of an

already in πq−1. An application of Claim A with i = m + 1 (that is, when an first moved into position m + 1)
yields that b could not have arrived to position m + 2 (in πq−1) by transposing with an element other than
an. Thus b and an swap when b is in position m + 1 (and an is in position m + 2). Thus this transposition is
[b|an]m+1 = τp for some p < q.

We note again that a1 never moves left. Applying Claim A (again with i = m + 1), we obtain that the
transposition τr with r > q smallest possible that involves an element in position m + 1 or further right is the
transposition that swaps a1 and b. That is, τr = [a1|b]m+1.

Thus, the following transpositions occur in the given order: τp = [b|an]m+1, τq = [a1|an]m, and τr =
[a1|b]m+1. Moreover, τq is the only transposition between τp and τr that involves an element in position
m + 1 or further right (this follows again from Claim A). This observation implies that if we modify the
transpositions sequence by delaying τp (if necessary) and letting it occur immediately before τq, and then
accelerating τr (if necessary) and letting it occur immediately after τq, and leaving the transposition sequence
otherwise unchanged, the resulting transpositions sequence will still induce a (valid) simple allowable sequence
Π̃0. More precisely, if we let τ ′i = τi for 1 ≤ i < p, τ ′i = τi+1 for p ≤ i ≤ q− 2, τ ′q−1 = [a1|b]m, τ ′q = [a1|an]m+1,
τ ′q+1 = [b|an]m, τ ′i = τi−1 for q + 2 ≤ i ≤ r, and τ ′i = τi for i > r, then τ ′0, τ

′
1, . . . , τ

′
(n
2)

is the transpositions

sequence of a simple allowable sequence Π0. Clearly,
∑

τi /∈{τp,τq,τr} f(τi) =
∑

τ ′i /∈{τ ′q−1,τ ′q,τ ′q+1}
f(τ ′i), Moreover,

f(τp) = f(τ ′q) and f(τq) = f(τ ′q−1), and so
∑

τi 6=τr
f(τi) =

∑
τ ′i 6=τ ′q+1

f(τ ′i). However, f(τr) = (n−2
2 − ((m +

1)−1))2 < (n−2
2 −(m−1))2 = f(τ ′q+1). Therefore F (Π0) =

∑
τi

f(τi) <
∑

τ ′i
f(τ ′i) = F (Π0) (here we are using

that m ≥ dn/2e), contradicting the assumption that Π0 maximizes F over all halfperiods of simple allowable
sequences of size n.

Conclusion of proof of Proposition 6.

By Claim B, either a1 moves an from position n or an moves a1 from position 1. Suppose the former case
holds. Let x be the element that moves a1 from position 1. Immediately after a1 and x transpose, x is in
position 1, and an is in position n. Thus another application of Claim B (with the suitable relabeling) implies
that either x moves an out of position n or an moves x out of position 1. The former case is impossible, since
a1 6= x is the element that moves an out of position n. Thus an moves x out of position 1. Therefore, the only
elements that ever occupy position 1 are a1, x, and an, and the only elements that ever occupy position n are
a1 and an.

A slightly different proof is given in [12].
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[1] B.M. Ábrego and S. Fernández–Merchant, A lower bound for the rectilinear crossing number, Graphs and
Combinatorics, 21, No. 3, (2005), 293–300.

[2] O. Aichholzer, D. Orden, and P. Ramos, On the structure of sets minimizing the rectilinear crossing
number. Preprint (2006).

[3] O. Aichholzer, Rectilinear Crossing Number Page. Available at http://www.ist.tugraz.at/staff/
aichholzer/crossings.html.

[4] O. Aichholzer, F. Aurenhammer, and H. Krasser, On the crossing number of complete graphs, Computing,
to appear.

[5] O. Aichholzer, F. Aurenhammer, and H. Krasser, On the crossing number of complete graphs, Proc. 18th

Ann. ACM Symp. Comp. Geom., Barcelona, Spain (2002), 19–24.

[6] O. Aichholzer and H. Krasser. Abstract order type extension and new results on the rectilinear crossing
number. In Proc. 21th Ann. ACM Symp. Computational Geometry, 91–98 (2005).

[7] A. Beygelzimer and S. P. Radziszowski, On halving line arrangements, Discrete Mathematics 257, 267–283
(2002).

[8] J. E. Goodman and R. Pollack, On the combinatorial classification of nondegenerate configurations in
the plane, J. Combin. Theory Ser. A 29 (1980), 220–235.

[9] D.E. Knuth, Axioms and Hulls. Lecture Notes in Computer Science Vol. 606. Springer–Verlag (1992).

[10] L. Lovász, K. Vesztergombi, U. Wagner, and E. Welzl, Convex Quadrilaterals and k–Sets. Towards a
Theory of Geometric Graphs, (János Pach, ed.), Contemporary Mathematics, American Mathematical
Society, Providence, 139–148 (2004).
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