Seminario de Física Estadística

El Seminario del Instituto de Física se realiza a las 13 horas en el Auditorio "Fernando Rivero Cárdenas" del Instituto de Física.

Responsable: Dr. Magdaleno Medina Noyola 

Información y contacto: Ing. Cristina Cázares Grageda

Programación del Semestre agosto - diciembre 2018

Fecha Ponente Procedencia
31 de agosto  Dr. Edgardo Ugalde IF-UASLP 
21 de septiembre Dr. José Banuelos  
28 de septiembre    
12 de octubre    
26 de octubre    
9 de noviembre    
23 de noviembre    
7 de diciembre    


Using supramolecular chemistry – that is, "chemistry beyond the molecule" – it is possible to create soft materials with a range of geometric, chemical, mechanical, and biological properties for a variety of applications. For example, by using specific, dynamic, and tunable non-covalent interactions, engineered solutions to biomedical problems can be realized. Certain benefits to this approach are molecular-level control of composition, improved routes for targeting payloads, and new strategies to create diagnostics or delivery devices that respond to a variety of physiologic indicators. The modularity of supramolecular interactions also facilitates opportunities to combine multiple payloads within one delivery platform, as well as facile incorporation of targeting units. As such, the design opportunities afforded by supramolecular chemistry will play a vital role in the future of biomedical materials. This presentation will illustrate the power of the supramolecular toolbox to design new biomaterials from polymer-like assemblies of peptides as well as macrocyclic host-guest recognition. For peptide self-assembly, rational design of stacking motifs leads to the formation of one-dimensional supramolecular polymers with high-density display of bioactive signals so as to interface with cells, tissues, or physiologic milieu. In host-guest macrocyclic chemistry, dynamic and tunable heterodimeric and ternary interactions lead to precise control over bulk properties and functional utility. In sum, adopting a supramolecular approach to material design facilitates molecular-scale control over properties and function.

Pagina Web --> Matthew Webber


Advanced x-ray and neutron scattering techniques are powerful tools for 
elucidating nanoscale structure and dynamics in a variety of science 
challenges. This talk will present research examples from supercapacitor 
materials, proteins, and asphaltenes, where interfaces play a crucial 
role in determining a system’s behavior. To develop novel electrical 
energy storage devices, such as supercapacitors, the properties of 
electrolyte molecules at the fluid-solid electrode interface where 
energy is stored, must be understood. Room-temperature ionic liquids 
(RTILs) have emerged as promising electrolyte materials due to their 
extremely low vapor pressure and high thermal and electrochemical 
stability. The highly porous, high surface area electrodes, however, 
introduce confinement and surface effects on the properties of RTILs. 
Structural studies of RTILs in the bulk state, in mixtures, under 
nano-confinement, and efforts to measure electric potential-dependent 
properties and integrate them with molecular modeling approaches will be 
discussed. Another goal of our lab is to understand the factors which 
bring thermal stability to biomolecules which is relevant in areas such 
as medicine and bio catalysis. We are currently investigating the 
effects of ions, deep eutectic solvents, and ionic liquids on a 
protein’s structure and stability. Recent small-angle x-ray scattering 
and light spectroscopy results investigating temperature stability of 
several globular proteins, namely lysozyme, myoglobin, and human serum 
albumin in different environments will be discussed. Finally, 
asphaltenes are a group of planar molecules found in crude oil and are 
prone to aggregation which causes blockage at the source rock or in 
pipes along the oil production stream. We have characterized the 
concentration and solvent-dependent fractal aggregate structure of 
asphaltenes using analytical models whose parameters may be linked to 
theoretical models of aggregation. Small-angle scattering is ideal for 
addressing systems which exhibit heterogeneity in structure, whether it 
is due to density fluctuations in liquids or aggregation of 
nanoparticles, and is fertile ground for collaboration with theorists 
interested in such phenomena.


 Afiliación: Instituto de Física, Universidad Autónoma de San Luis

 Resumen: En esta plática vamos a revisar un par de familias de
 modelos probabilistas que pueden verse como procesos aleatorios en una
 red unidimensional y para los cuales la presencia de comportamientos
 en ley de potencia se relaciona directamente con el hecho de que
 dichos modelos tienen memoria de largo alcance. Respecto a la primera
 familia de modelos, nos interesará el decaimiento de correlaciones,
 mientras que respecto a la segunda nos interesará el desplazamiento
 cuadrático medio. En ambos casos, los modelos que vamos a presentar
 permiten calcular de forma exacta los exponentes que rigen el
 comportamiento en ley de potencias de las cantidades que nos
 interesan, y veremos cómo estimaciones numéricas aproximadas pueden
 conducir a conclusiones erroneas en ambos caso.