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J. S. GONZÁLEZ
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SLP, México
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Details of electronic circuitry to define Poincaré planes in the phase space of nonlinear electronic
systems are presented. It allows an experimental setup to capture data at every moment the
system’s orbit crosses the Poincaré plane. We illustrate how the circuit is used in an experimental
setup that allows us (i) to reconstruct bifurcation cascades and to disclose induced first return
chaotic maps in a harmonically forced nonlinear oscillator, and (ii) to study bistable switching
in Chua’s oscillator.
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1. Introduction

Poincaré had the idea to put a section of a sur-
face perpendicular to the flow generated by a sys-
tem of differential equations and then study the
sequence P0,P1, . . . ,Pn,Pn+1, . . . of points where an
orbit successively intersects the section. The cross-
ing of the flow defines a (first return) mapping of
the cross-section into itself, such that point Pn+1 is
the image of point Pn. A methodic application of
Poincaré’s idea has played a prominent role in the
study of dynamical systems.

In the period 1950–1960 methods of point-
wise mappings (the first return maps of Poincaré)

for the study of (theoretical and technical)
nonlinear oscillations were developed under the
guidance of Yu. I. Neimark.1 Using these meth-
ods, “stochastic self-sustained oscillations” were
found to exist by Neimark’s team (about ten
years earlier than the Lorenz attractor, in 1963)
[Diner, 1992]. The strange attractor is the math-
ematical form of stochastic self-sustained (chaotic)
oscillations.

Progress in the study of nonlinear dynami-
cal systems in the second half of the past cen-
tury was boosted by the experimental study of
chaotic oscillations in nonlinear electronic systems,

1Methods and paradigms of nonlinear physics were developed in the Gorki school, initiated in the 1930’s by Andronov.
See [Diner, 1992].
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lately in the area of chaos synchronization.2 For
instance, a theoretical framework for multimodal
synchronization of chaos was presented and con-
firmed experimentally in [Campos et al., 2004]. The
experimental methods in [Campos et al., 2004] make
an essential use of Poincaré planes and of the maps
induced on it by the flow.

In the present article, we describe an electronic
circuit that allows an experimental setup to cap-
ture the points in phase space where a system’s
orbit intersects a Poincaré plane. As the system
we choose either Chua’s circuit [Madan, 1993] or
a nonlinear electronic oscillator with a rich vari-
ety of attractors in R

3 [Rulkov, 1996]. The circuit
for Poincaré planes is described in Sec. 2. It has
adjustable parameters that allow us to handle the
position of the plane in phase space. In Sec. 3.1 we
illustrate how to follow a cascade of bifurcations by
using the circuit for Poincaré planes. The method
yields accurate estimates of bifurcation points out of
experimental data. As a first example in Sec. 3.2 we
consider the oscillator forced by a sinusoidal exter-
nal signal with an amplitude that puts the oscil-
lator close to a Hopf–Andronov bifurcation point.
We describe an experimental setup that makes use
of the circuit for Poincaré planes to capture data
and extract from it, in a homeomorphic way, a map
of the circle and estimate its rotation number. Sec-
tion 3.2 is concluded by considering the oscillator
in a Rössler-type attractor. The circuit for Poincaré
planes allows us here to show that orbits around the
attractor distribute according to the dynamics of
surjective (i.e. fully chaotic) logistic maps. In Sec. 4
Chua’s circuit is considered with electronic compo-
nents that put it in a (nonchaotic) bistable mode. A
sinusoidal external signal of amplitude λ is applied.
We found that there exists a threshold value of the
amplitude, λ∗, for bistable switching induced by the
external signal. By collecting experimental data by
means of the circuit for Poincaré planes an accurate
estimate of λ∗ is feasible. Finally, in Sec. 5 we dis-
cuss how the circuit for Poincaré planes in R

3 can be
extended to deal with higher dimensional electronic
systems.

2. A Circuit for Poincaré Planes

We will frame the description of the circuit for
Poincaré planes in the phase space of third-order
nonlinear oscillators (two examples are considered

in Secs. 3 and 4). In this way Poincaré planes are
just “familiar planes” in R

3. The attractor of a non-
linear oscillator, reconstructed from experimental
data, is shown in Fig. 1 along with a Poincaré plane.
For the particular forms of attractors we are dealing
with, it is convenient to use three control parame-
ters (m, q1 and q2) for the Poincaré plane,

Σ := {x = (x1, x2, x3) ∈ R
3 : x2 = mx1

+ (q2 − mq1)}.
The plane Σ is perpendicular to the x1–x2 plane
and intersects it at the line specified by x2 =
mx1 + (q2 − mq1). Parameters behave as follows.
Location of the plane Σ is determined by point
Q = (q1, q2, 0) and its orientation is determined
by slope m of the intersecting line. Point Q is indi-
cated by a dot in Fig. 1.

We look for an experimental setup that cap-
tures the value of all state variables of a third-
order electronic oscillator at each time the orbit in
phase space intersects the Poincaré plane, which is
determined by the parameters m, Q. The required
device for that, considered as a black box, must have
knobs to set m and Q, have inputs for the state
variables and yield out a squared waveform, s(t),
with a rising edge at the time the orbit intersects
the Poincaré plane in the positive direction and a
negative edge when the orbit intersects the plane
the other way around. This idea is shown in Fig. 2

Fig. 1. Attractor of the nonlinear oscillator Fig. 5 (param-
eter values are those in the first column of the table that
accompanies the schematics). The attractor is being cut by
a Poincaré plane.

2For an overview see [Rulkov, 1996] and [Madan, 1993].
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Fig. 2. A sampling pulse s(t) is produced as a (hypotheti-
cal) orbit crosses the Poincaré plane (here projected onto the
x1–x2 plane).

where a hypothetical orbit is shown, projected onto
the x1–x2 plane, and the edges of the squared
waveform s(t) coincide with the times the orbit
crosses the plane, which is projected as the line
x2 = mx1 + (q2 −mq1) in Fig. 2. The experimental
setup is shown in Fig. 3. The signal s(t) triggers
a hold-and-sample device that captures the state
variables and transfers the corresponding data to a
computer.

2.1. Circuit implementation

The schematics is shown in Fig. 4. The Poincaré
plane (Σ) is determined by parameters m and
Q. The point Q = (q1, q2, 0) is set by means

Experimental System
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Hold & Sampler to PC

Poincaré cross section 

s(t)

Fig. 3. Experimental setup to collect data at a predefined Poincaré plane.
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Fig. 4. Schematics of the circuit for Poincaré planes. A plane is defined by three parameters (q1(R1), q2(R2) and m(R3, R4)).
The coordinates, (x1, x2, x3), of the intersecting point of an orbit with the plane are captured by the H&S device.
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of potentiometers R1 and R2. Their sliding tabs
present the voltage levels −q1 and −q2, through
voltage followers A5 and A2, to adders configured
by amplifiers A7 and A3. They yield the outputs
−(x1(t) − q1) and −(x2(t) − q2), where x1(t), and
x2(t) are state variables of the oscillator. The signal
−(x1(t)− q1) is then multiplied by constant −m at
the output of A8. Constant m is settled by poten-
tiometers R3 and R4 in amplifier A8. Next, when
jumper J1 is open and J2 is closed, amplifier A4

compares signals (x2(t)− q2) and m(x1(t)− q1) and
the output of A4 is given adequate levels by tran-
sistor T. At the collector pin of T the signal is

s(t) =
{

5V, if x2(t) > mx1(t) + (q2 − mq1)
0V, if x2(t) < mx1(t) + (q2 − mq1)

.

The rising edge of signal s(t) triggers the hold-and-
sample device (the block H&S in the schematics of
Fig. 4) that has the state variables x1, x2 and x3 as
inputs. The output levels of H&S are digitized and
read by a computer.

When jumpers are reversed from J1-open and
J2-closed to J1-closed and J2-open the Poincaré
plane is rotated around point Q such that vector
u = (u1, u2, 0), that is normal to the plane, is flipped
to u′ = (u1,−u2, 0). This provides us with a conve-
nient way of producing wide changes in the plane’s
orientation during the process of setting the sys-
tem up.

3. Bifurcations and Induced Maps

The experimental setup described in the previous
section is used to follow a cascade of bifurcations
and to extract induced maps in a nonlinear oscil-
lator that has a rich variety of attractors [Rulkov,
1996]. The schematics is shown in Fig. 5. It consists
of a nonlinear voltage converter (the block labeled

N in the schematics) with a linear resonant feed-
back loop. Chaotic oscillators having this architec-
ture were studied in [Dmitriev et al., 1985]. A minor
difference is that we are considering the possibility
of externally apply a signal by means of an adder
we have interlaced at the input of the nonlinear
converter — see Fig. 5. The interested reader will
find a detailed description of the oscillator (includ-
ing the nonlinear converter) in [Rulkov, 1996]. For
our discussion it is enough to say that its dynamic
evolves in R

3. A point in phase space has coordi-
nates (x1, x2, x3) corresponding to the electric sig-
nals indicated in Fig. 5. The two sets of values we
used for the electric components (C, C ′, L, r, and R)
and for the gain factor g are listed in the table in
Fig. 5.

3.1. Cascade of bifurcations

The oscillator in Fig. 5, with set of parameters in the
first column of the table, running freely (λ = 0) has
a double-scroll attractor, partially reconstructed
from experimental data in Fig. 1. When the oscilla-
tor is forced by the external signal e(t) = λ sin(ωt),
at the frequency f = ω/2π = 2.3 kHz, the attractor
follows a rich sequence of bifurcations as the ampli-
tude λ is increased from 0V, up to 1.6 V.

To follow the cascade of bifurcations, as a func-
tion of λ, we defined a Poincaré plane by means
of the circuit in Fig. 4. Plane parameters are q1 =
80 mV, q2 = 1.14 V and m = −1.15. Such a plane
is shown in Fig. 1, the attractor corresponds to
λ = 0. The orbits intersect the plane at points
(x1(ti), x2(ti), x3(ti)) with x2(ti) = mx1(ti) + (q2 −
mq1). The times the orbit intersects the Poincaré
plane, ti, i = 1, 2, . . . , are identified by the data
acquisition system as the rising edges of signal s(t),
provided by the circuit for Poincaré planes, Fig. 4.

Fig. 5. Schematics of the nonlinear oscillator. Details about the nonlinear converter N can be found in [Rulkov, 1996].
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Fig. 6. Cascade of bifurcations. Data was captured with the
help of the circuit for Poincaré planes in Fig. 4.

The cascade of bifurcations is shown in Fig. 6.
For a fixed value of the amplitude λ ∈ [0V, 1.6V],
the set of points in the plot are the values of coordi-
nate x1(ti) at times ti the orbit intersects plane Σ.
The following features are worth noticing.

(1) The simplest attractor is a single cycle that
manifests in Fig. 6 as a point for the given
value of λ. In instances when the values of the
amplitude λ range from λD = 950 mV to λH =
1150 mV, the oscillator goes around a cycle.
By going above λ = λH the cycle becomes a
quasiperiodic torus: the oscillator goes through
a Hopf–Andronov bifurcation. The width of the
torus grows up proportional to (λ − λH)1/2.

For λH < λ < 1.4 v the oscillations are quasi-
periodic, around a torus. This case is followed
in some detail in Sec. 3.2.1 for the amplitude
λ = 1200 mV. At the other end, by going below
λ = λD the oscillator goes through a period
doubling bifurcation: the simple cycle becomes
a double cycle.

(2) A simple cycle is also observed in the cascade in
Fig. 6 at values of the amplitude λ in the narrow
range from λ1 = 525 mV to λ2 = 555 mV. The
bifurcations at these points are of an unknown
type. At λ2 the cycle abruptly becomes a
chaotic attractor. By letting the amplitude λ
go below λ1 the cycle becomes a torus whose
width grows up linearly in (λ1 − λ).

(3) Two narrow windows at 250 mV and 310 mV
are observed in the cascade of bifurcations,
Fig. 6. They correspond to five-fold cycles.
The double-scroll nature of the attractor is lost
beyond the first window, i.e. for λ > 250 mV.

(4) There is a triple cycle in the window at 800 mV.

3.2. Induced maps

3.2.1. A circle map

We consider the oscillator with an applied signal
e(t) = λ sin ωt with λ = 1200 mV and ω = 2.3 kHz.
This put us close to the Hopf–Andronov bifurca-
tion point in the cascade of bifurcations in Fig. 6.
The analysis of experimental data is simplified by
considering the new variables: x′

1(t) = gx1(t)+e(t),
x′

2(t) = gx2(t) + ė(t) and x′
3(t) = gx3(t). The

(a) (b)

Fig. 7. (a) Toroidal attractor of the oscillator under a sinusoidal forcing, reconstructed from experimental data. Amplitude
and frequency of the external signal are λ = 1200 mV and f = 2.3 kHz, respectively. (b) Projection of the attractor onto the
x1–x2 plane. The line through point Q is the Poincaré plane Σ.
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(a) (b)

Fig. 8. (a) Intersection of the toroidal attractor in Fig. 7 with the Poincaré plane Σ. (b) The first return map induced on Σ
by the flow, after a homeomorphic deformation of the loop in (a) into the circle S1.

attractor, in the primed variables, is shown in
Fig. 7(a). The projection onto the x1–x2 plane is
shown in Fig. 7(b). The line passing through point
Q is the Poincaré plane Σ, set with the circuit for
Poincaré planes, Fig. 4. The state variables are cap-
tured by the computer every time the orbit crosses
the plane Σ when ẋ1 > 0 and ẋ2 > 0. The inter-
section of the attractor with the Poincaré plane,
shown in Fig. 8(a), is a closed loop, evidencing that
the attractor is a hollow flat torus.

Let (x1, x2)0, (x1, x2)1, . . . , (x1, x2)n, . . . be the
sequence of points where the orbit intersects the
Poincaré plane. The map (x1, x2)n �→ (x1, x2)n+1

induced on the loop by the flow is conjugate to
a map of the circle S1 = R/Z. Indeed, we have
deformed the loop in Fig. 8(a) uniformly into S1

such that every point (x1, x2)n in the original loop
becomes a point pn in the circle. Then we plotted
pn+1 versus pn. The resulting plot is Fig. 8(b), which
looks very much like a smooth map of the circle.

Experimental data points distribute around the
loop in Fig. 8(a) in a way that is consistent with a
quasi-periodic motion of orbits on the torus, hav-
ing an irrational rotation number. By lifting data
in Fig. 8(b) we estimate the rotation number to be
around 0.3504 (see, for instance, [Pollicott & Yuri,
1998]).

3.2.2. The logistic map

The chaotic oscillator in Fig. 5 has a Rössler type
attractor when values of parameters listed in the
first column of the table in Fig. 5 are used. The

attractor reconstructed from experimental data is
shown in Fig. 9(a), projected onto the x1–x2 plane.
The parameters of the Poincaré plane Σ are all null
in this occasion: m = 0 and q1 = q2 = 0. The exper-
imental setup in Fig. 3 was used to collect data at
the intersection of plane Σ with the attractor. The
plot of the intersection in Fig. 9(b) shows that the
attractor is well approximated by a Möbius band
(with a gap of unstable orbits in the middle). Thus,
the map that is induced by the flow on plane Σ can
be considered to be one-dimensional. The state vari-
able x1 is adequate to describe it. Data in Fig. 9(b)
shows that x1 takes values in the reunion of the
intervals P0 and P1, shown between brackets in
Fig. 9(b). The first return plot, x1(n + 1) versus
x1(n), extracted from experimental data is shown
in Fig. 10(a). In this plot we observe that the map
transforms P0 into P1, and vice versa, and the image
of P0 is just an inverted and uniformly enlarged
copy of it. Thus, it is better to consider the sec-
ond return map. Data is plotted in Fig. 10(b) in
the form x1(n + 2) versus x1(n). Here we see that
the original time sequence is decomposed into two
subsequences that can be very well approximated,
independently, by orbits of surjective logistic maps.
Data points in Fig. 10(b) are compared with the
graphs of the logistic maps,

f0(x) = 4a0(x − b0)
(

1 − x − b0

a0

)
+ b0

for x ∈ P0, and

f1(x) = a1 + b1 − 4a1(x − b1)
(

1 − x − b1

a1

)
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Fig. 9. (a) Rössler type attractor and Poincaré plane projected onto the x1–x2 plane. (b) Intersection of the attractor with
the Poincaré plane.
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Fig. 10. (a) First return map in the state variable x1 that is induced by orbits in the attractor of Fig. 9(a) at the intersections
with plane Σ. (b) The second return map. Data points are compared with the graphs of two surjective logistic maps.

for x ∈ P1. The intervals are P0 = [−0.04, 0.14] and
P1 = [0.17, 0.53]. The parameters for the logistic
maps are a0 = 0.18, b0 = −0.04, a1 = 0.36 and
b1 = −0.17.

4. Bistable Switching in Chua’s
Oscillator

The schematics of Chua’s oscillator is shown in
Fig. 11. If no external signal is applied to the cir-
cuit (i.e. e(t) ≡ 0), the dynamics is described in
a three-dimensional phase space with coordinates

(x := V1, y := V2, z := IL) where V1 and V2

are the voltage drops across capacitors C1 and
C2, respectively, and IL is the current through the
inductor L. The oscillator dynamics may either be
in a chaotic mode or in a “bistable” mode. The
transition between the two “operating modes” is
controlled by means of the adjustable resistor R.
We selected the bistable regime in which the phase
portrait, reconstructed from experimental data in
Fig. 12(a), consists of two attracting closed orbits
that cycle around each of theunstable fixed points
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Fig. 11. Schematics of Chua’s oscillator. Component values were selected to get two single closed orbits in phase space.
Depending on initial conditions the oscillator goes either around one unstable fixed point or around the other.

(a) (b)

(c)

Fig. 12. Phase portrait (projected onto the x–y plane) reconstructed from experimental data from Chua’s oscillator in a
bistable mode. (a) With no external signal applied the oscillator follows, depending on initial conditions, either of the two
closed orbits shown. (b) For an external signal of a small amplitude λ = 1V < λ∗ the orbit is a tightly wounded coil on the
x < 0 side of phase space. (c) An external signal of amplitude λ = 6.6 V > λ∗ forces the point in the orbit to switch between
two coils.
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(a) (b)

Fig. 13. Data collected by using the circuit for Poincaré planes. (a) The x-coordinate of the points collected at the intersection
of an orbit with the Poincaré plane, for a sequence of values of amplitude λ of the external signal. The threshold for bistable
switching is apparent at λ∗ = 2.2 V. (b) For λ = 6.6 V the x-coordinate of the sequence of points is shown in the form of a
first-return map. The arrows indicate the way points move in time.

of the oscillator. Depending on the sign of the ini-
tial value of coordinate x the orbits are attracted to
one of the two closed cycles.

When the oscillator is forced by a sinusoidal
external signal e(t) = λ sin(ωt) of very low fre-
quency ω (= 2π32 Hz) and a small amplitude λ (=
1V), smaller than a certain value λ∗ (= 2.2 V,
to be determined below), a point in the orbit in
phase space moves along a tightly wounded coil,
located on the x < 0 side or the x > 0 side
of phase space, depending on initial conditions.
Experimental data for such an orbit is projected
onto the x–y plane in Fig. 12(b). When the ampli-
tude λ of the external signal is bigger than the
value λ∗, a point in the orbit follows a coil, on
the x < 0 side of phase space, say, and then
jumps to the coil on the other, say x > 0, side of
phase space. The point keeps switching from coil
to coil at a pace that is imposed by the external
signal e(t). Both coils, reconstructed from experi-
mental data, are projected onto the x–y plane in
Fig. 12(c).

To determine experimentally the threshold λ∗
for bistable switching, forced by the external signal,
we used the circuit for Poincaré planes to define a
plane that intersects the x–y plane along the line
y = −0.42x − 0.1. At each value of the amplitude
λ, in a series of values in the range 0–7 V, succes-
sive intersecting points (xn, yn, zn) (in the positive

direction ẋ > 0) of the orbit with the Poincaré
plane were collected by the experimental setup. The
x-coordinate (xn) of the collected points are plot-
ted versus λ in Fig. 13(a). The threshold for bistable
switching at λ∗ = 2.2 V is apparent in the plot.

Experimental data for the time series (xn)n≥1,
in the form of a first return plot, is shown in
Fig. 13(b).

5. Concluding Remark

We have framed our discussion in a three-dimen-
sional phase space. Circuits for Poincaré planes in
phase spaces of dimension greater than three can be
constructed following a straightforward extension
of the lines we have followed in Sec. 2. That we sum-
marize as follows. Points x = (x1, . . . , xn) ∈ R

n that
satisfy the condition (u, x−Q) = 0 lay in the plane
that is perpendicular to vector u = (u1, . . . , un) and
contains point Q = (q1, . . . , qn) ∈ R

n. The plane is
thus defined by

(x1 − q1) = m2(x2 − q2) + · · · + mn(xn − qn), (1)

where mi := ui/u1 (assuming u1 �= 0), i = 2, . . . , n.
The signals on each side of Eq. (1) are passed
through a comparator — as we did in amplifier A4

in Fig. 4 for the signals x2(t) − q2 and m(x1(t) −
q1) — to produce the sampling signal s(t).
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