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Abstract

The prominent role that linear optical networks have acquired in the engineering of photon states
calls for physically intuitive and automatic methods to compute the probability amplitudes for the
multiphoton quantum processes occurring in linear optics. A version of Wick’s theorem for the
expectation value, on any vector state, of products of linear operators, in general, is proved. We use
it to extract the combinatorics of any multiphoton quantum processes in linear optics. The result is
presented as a concise rule to write down directly explicite formulae for the probability amplitude
of any multiphoton process in linear optics. The rule achieves a considerable simplification and
provides an intuitive physical insight about quantum multiphoton processes. The methodology is
applied to the generation of high-photon-number entangled states by interferometrically mixing

coherent light with spontaneously down-converted light.
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I. INTRODUCTION

Linear optics is playing a fundamental role in the development of an engineering of photon
states for the operation of quantum communication and computing protocols. A linear optics
gate that maps all four Bell states into, distinguishable, separable states in a quantum
teleportation and entanglement scheme was reported in [1]. Efficient linear optical schemes
for quantum computing based in the scalable implementation of photonics qubit operations
using unitary optical arrays and post-selection at the output modes have been advanced
in [2, 3]. Recently, generation of high-N maximally entangled NOON states by interference
of multiphoton and coherent states [4, 5] has been achieved [6] by means of basic linear
optical components.

Although the quantum mechanical fundamentals of linear optics are well established [7-9],
the prominent role that linear optical networks have acquired in the engineering of quan-
tum systems calls for physically intuitive and really automatic methods to compute the
probability amplitudes for the multiphoton processes occurring in linear multiports.

Thus, we focus here our interest on methodological aspects, mainly. We adopt the formal

description of a linear optical network by the scattering operator S whose matrix elements

are the probability amplitudes for the transitions from occupation indices (nq,...,ng) at
K inport modes into occupation indices (Ny,..., Ng) at K other outport modes. Such a
multiphoton process is denoted (nq,...,ng) — (Ni,..., Ng).

The main point in determining the S matrix element corresponding to a multiphoton
process is the calculation of the vacuum expectation value of products of operators which
are linear combinations of photon creation and annihilation operators. In any given case,
calculations may be carried out without any fundamental difficulty. The standard way
to extract the combinatorics in Wick’s original method [13] is to reorder the products of
creation and destruction operators, using the appropriate commutation relations, into a
normal ordering. Nevertheless, in such a straight approach [11, 12] the calculation may
become tedious and cumbersome as the number of photons gets moderately large. For a
comparisson of several calculational tools to find explicitly normally ordered forms of boson
operator functions see [14].

In this article we present a new approach to Wick’s theorem that is less involved, techni-

cally. A product of n linear operators, A;As--- A, is considered and the combinatorics of



Wick contractions stems from Leibniz rule for commutators. In our setup the combinatorial
process is very compact and is, thus, much easier to be followed. Furthermore, our version
of Wick’s theorem is applicable to the expectation value of products of linear operators, in
general, and for any vector state. The scope for applicability of our method is not limited
to vacuum expectation values of products of creation and anhilation operators.

By a thorough application of our method for Wick’s theorem, we derive a concise rule
to extract methodically the combinatorics that is involved in the calculation of the inter-
fering alternatives contributing to the probability amplitude for any multiphoton process
(n1,...,ng) — (Ny,...,Ng) in a linear network. The result is presented in the form of
a procedural rule to write down explicite formulae for the probability amplitude of any
multiphoton process.

The rule has a direct and physically intuitive interpretation which is of a mnemonic
value. Interfering alternatives contributing to the amplitude for the multiphoton process
(n1,...,nK) = (N1,..., Ng) are in a one-to-one correspondance with the ways of distribut-
ing over the outport modes the photons that are available at the inport modes, preserving
their number. Even more appealing would be to say that the interfering alternatives rep-
resent all possible paths the incoming photons may follow through the network up to the
outport modes. We provide a simple device to handle the combinatorics of alternatives,
consisting of some “squares of occupation numbers”.

Generation of entangled multiphoton states is analyzed with our methodology. Simple
linear optical networks have proved useful [6] in the generation of N-photon states that
have a de Broglie (interferometric) wave length that shrinks as a function of the number of
photons, N, as 1/N. This feature is desirable, e.g., in applications requiring high precision
phase-resolution. Maximally entangled states known as NOON states have this property. A
method to generate NOON states with arbitrarily high photon numbers was proposed in [4].
The principle underpinning the method [4-6] is the unitary mixing of a classical coherent
state with quantum down-converted light, by means of a standard beamsplitter.

Our methodology not only makes calculations straightforward. It also puts two points
of physical interest on the table. First one is a transparent access to the parameters used
to blend the mixture as to attain the largest overlap of the superposition of “Schrodinger
cat”-like multiphoton states with a target N-photon NOON state. The other point is to

demonstrate the N-fold enhanced phase sensitivity achieved by the emerging state.



The paper is organized as to avoid technical details of the proofs obscure the simple
intuitive meaning of the methodology. The following Section II introduces the rule for
multiphoton amplitudes by placing the emphasis on its physical interpretation. Then the
methodology is applied in Section III to analyze the generation of entangled multiphoton
states. The formal proofs are supplied in the last two sections. The proof of Wick’s theorem

in Section IV and the proof of the procedural rule in Section V.

II. THE RULE FOR MULTIPHOTON AMPLITUDES

We consider, with an interest in methodology, a generic linear optical network presenting
a set of K inports, supporting each a single mode. For a succinct review of the quantum
mechanical description of linear optical networks, concerned with photonic qubits, the reader
may turn to reference [10]. Let us here just tell that annihilation operators for the input
modes are denoted by a;, ¢ = 1, ..., K. Correspondingly, annihilation operators for the
output modes are denoted by b;, i =1, ..., K.

The action of the linear optical network is to mix the input modes, unitarily, over the

output modes. The mixing is described by the relation
K
bi=Y Wayar, i=1, . K. (1)
j=1

The unitary matrix W, with entries W;; employed in (1), describes the one-photon action of
the optical network. The probability amplitude for one photon to go through the network
from inport j to outport ¢ is W;;. Matrix W also determines the scattering operator S(W)
that transforms any multiphoton input state |in) into the output state |out) = S(W) |in) .
To grasp the physical meaning of matrix W and operator S(W) the reader may turn to
reference (8] for examples. One more example we deal with in Section III.

In the multiphoton state |in) = |nq,...,nk) index n; > 0 is the occupation integer for
the single mode at the i-th inport. Similarly, the multiphoton state |out) = |Ny,..., Ng)
—the one to catch up at the outports— has occupation integer N; at the single mode of
the i-th outport. The multiphoton process (ni,...,ng) — (Ni,..., Ng) has probability
amplitude (Ny,..., Ng|S(W)|ny,...,ng) to take effect in the linear optical network W.
A rule to compute the amplitude is given in this Section, but we postpone its proof until

Sections IV and V.
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FIG. 1. A square for the distribution of occupation numbers, satisfying

the conditions n; = Zj l;j and Nj = > .¢;;. Below the square is its

contribution to the amplitude (Ny,..., Ng|S(W) |n1,...,nk) .

Wick’s theorem applied to the amplitude (Ny,..., Ng|S(W)|nq,...,nk) in Section V
discloses the interfering alternatives contributing to it. They are identified with all of the
possible ways to distribute the occupation integers (n;)X, at the inports over the outports
as to get (N;)K,. Each alternative redistribution of occupation integers from the inports to
the outports is conveniently represented by a K x K matrix (or square), having non-negative
integer entries ;.

A square of occupation numbers is displayed in figure 1. Inport integers (n;)X, are used
as labels for the rows of the square while the outport integers (IN;)X | label the columns. The
i-th row of integer entries ¢;;, 7 =1, ..., K, in the square, constitute a way of distributing
over the outports the n; photons that are available at the ¢-th inport. In the interest
of mnemonics we may say that ¢;; from the n; incoming photons “follow a path” in the
network leading to outport j. The entries in a square of occupation numbers must thus
satisfy the inequalities 0 < ¢;; < n; and 0 < £;; < Nj;, as well as the equality n; = Zj lij,
along every row.

As seen at the outports, the integer entries ¢;; in the square, that are redistributing the
incoming photons over the outports, must add up to the specified occupation number N;
at every outport j: N; = > {;; along each of the columns j =1, ..., K. Thus, every row

and every column in a square of occupation integers sum up to the in- and out-occupation



numbers as follows
n;, = Zﬁw and Nz = Zﬁﬂ for every 1= 1, ey K. (2)

Together, these conditions imply the conservation of the total number of photons, ny +-- -+
ng = Ny + -+ -+ Nk, as required by the unitary character of the optical network, W.

In summary, the combinatorial aspect in the problem of finding all the interfering al-
ternatives contributing to the amplitude for the multiphoton process (n;)%, — (N;)X, is
identified with the problem of finding all ways of distributing the incoming photons over
the outport modes. Alternatives are combinatorially dealt with by writing down all possible
squares of occupation numbers. The complex amplitude and combinatorial factor that each
alternative contributes to the multiphoton process amplitude is computed in Section V. The
answer is the formula given at the bottom of figure 1. The important point for the present
is that the formula can be retrieved directly from the corresponding square of accupation
numbers and the one-photon amplitudes, W;.

We have the following rule to compute the probability amplitude for any multiphoton
process in a linear optical network. First, write down all the squares of occupation num-
bers, figure 1, for the labels given by the in- and out-occupation numbers, (nq,--- ,ng)
and (Np,..., Ng), verifying that every row and every column add up to the values in the
corresponding labels, i.e., conditions (2). The combinatorial exercise once accomplished,
then proceed to translate squares to formulae following the prescription in figure 1. The

amplitude we produce

(N1, Nl S(W) na,. .. oni) = v/mal- gl Nyl Nl S H . Hweﬁ )

squares ,J ZJ

is the sum over all the interfering alternatives, represented by the squares.

III. LINEAR GENERATION OF HIGH-N ENTANGLED STATES

An important piece of quantum linear optics is the generatation of NOON states with
arbitrarily high photon numbers [6] by the method that was advanced in [4, 5]. The key
element is to prepare an interferometric mixture of a classical coherent state with quantum
down-converted light. The first experimental realization was reported in [6]. A schematics

of the setup is shown in figure 2. The beam splitter W has matrix entries Wy, = Wiy =



) : 2
FIG. 2. Preparation of high-V NOON photon states and interferometer

for the confirmation of the N-fold enhanced phase sensitivity.

Was = 272 and Wy, = —27'/2 and the corresponding multiphoton scattering operator is
denoted by S(W).

We proceed to analyze the process by applying the method of previous Section II. What
we want is state |[NOON) := (|N,0) + |0, N))/v/2 to emerge from beam splitter W in
figure 2. Then, at its inports, labeled 1 and 2, we must supply the state

|®: N) := S(W)* [NOON) Z |k, N — k) (k, N — k| S(W)* [NOON) , (4)

where the hermitian conjugate operator S(W)* = S(W*) represents the time-reversed action
of the first beam splitter on the NOON state. For state |[NOON) the amplitudes involved
in (4),

(k,N — k| S(W)* |[NOON) = %( (k, N — k| S(W)* [0, N) + (k, N — k| S(W)*|N,0)) ,

are computed by a straightforward application of rule (3). For the in-out distribution of

occupation numbers in the process (0, N) — (k, N — k) there is one square only,

(k, N —k|S(W)"|0,N) =

and for (N,0) — (k, N — k) there is one too,

(k, N — k| S(W)* |N, 0)

B k!(NNi k)! <_1)N_k(%) .

The squares of occupation numbers were translated to the formulae for amplitudes following

the prescription in figure 1. We just had to provide the beam splitter matrix entries Wy =



Wiy = Wy = 2712 and Wy, = —271/2. Thence, the reverse-scattered NOON state (4), the

one required at the inports of W, is

72 NI 1

[®: ) :; (2k)(N — 2K)! (E

)N = 2R 1 2R o)

Just by construction, as the two modes of state (5) are mixed up by the first beam splitter W
in the setup of figure 2, a pure N-photon NOON state emerges at the outports of W.

The key remark in reference [4] is that the product state |«) 1 |7) 2, of a coherent state |a)
and the squeezed vacuum state |v), includes N-photon components that may be tuned-up
to be quite similar to (5). The states |a) and |v) o at the inports of the array in figure 2
are defined by the equations (a; — a) |a) = 0 and (az +a3y) |y) = 0, where a and 7 are the
complex amplitudes of the coherent light and of pair generation, respectively. The reader
will get assistance in solving these equations in references [15] and [9], respectively. The
N-photon component of the input product state |a)q|7y) 2 is

N/2
|77:N>:Z§% ey (o) IV = 280112002 (6

where Z is a normalization constant and n = N~y/a? is the natural tuning parameter intro-
duced in [4].

Our aim on state (6) is to blend the mixing of coherent and down-converted lights that
it involves, such that the state | : NOON) := S(W)|n: N), emerging from W, is as close
to the maximally entangled “true” |[NOON) state as possible [4]. The similarity of the
target and trial N-photon states is sized up by the overlap | (n : NOON|NOON) |* which we
compute as | (n: N|® : N) |2, by using the states in (5) and (6). The values of the tuning 7
that produce the largest values of the overlap are plotted in figure 3 for values of N up to
N = 20. The corresponding values of the optimal overlap are plotted too in figure 3. They
are very close to 100% fidelity [4].

In order to confirm, in an experimental situation, that the input state |«a) |y) makes
emerge an almost-perfect N-photon NOON component (if the value of 7 is chosen as in fig-
ure 3), the state at the outports of W is made to interfere in a subsequent beam splitter W *.
The signature of the NOON state is a /N-fold enhanced phase sensitivity in the interference
fringes, related to a de Broglie wave length reduced by the factor 1/N. The interferometer

in figure 2 is intended to disclose it. In an ideal situation the n—m coincidence fringes are
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FIG. 3. Optimal overlap | (n : NOON|NOON) |? and corresponding optimal

value of 1 (square boxes) versus the total number of photons, N.

proportional to the probability
P(n;mln: N) = [ {n;m| S(M) |n : N) | (7)

to detect n photons at outport 1 in coincidence with m = N — n photons at outport 2.
In (7), matrix M and the corresponding operator S(M) describe the scattering produced by
the Mach-Zehnder interferometer (W = W*) in figure 2.
Before we can apply rule (3) to calculate the amplitude involved in (7) we must expand
state |n: N) as in (6),
N/2

(n; N —n| S(M)|n: Ny =3 Cy(n; N —n| S(M) N — 2k;2k) | (8)

k=0
where the coefficients introduced by the expansion (6) are denoted by Cy. The amplitudes
in (8) are ready for rule (3). The combinatorial part of the job tells us that each amplitude

is the following sum over squares
' N-—-2k ¢ N-=2k—/

(n; N —n|S(M)|N —2k;2k) = > 2k |n—€ 2k+l—n 9)

ZZZmin
‘ n N —n

with £, = max{0,n — 2k} and £,,,, = min{n, N — 2k}. The extreme values for ¢ are a
consequence of the conditions that all the entries of the square in (9) are not negative and
are not greater than the number of photons that are available at the inports.

The squares of occupation numbers in (9) are translated to formulae by just applying the
prescription in figure 1. The W-amplitudes involved are the entries of the unitary matrix,

M = W*®W, describing the mixing action of the Mach-Zehnder interferometer, the one



FIG. 4. Probability for n—-m (m = N — n) coincidence outcomes, as a function of
the phase control ¢, for the approximate NOON states produced by the mixture of a
coherent state and a squeezed vacuum state. For comparison, the n—m fringes produced

by true NOON states are shown in dotted lines.

shown in figure 2. The matrix entries are My = May = cos(¢/2) and My = My =
—isin(¢/2). Hence, a direct application of the rule in figure 1 yields

N—2%| ¢ N—2%k—1¢ v e )
N =2k (2kK)! n! (N — n)!
2k moC kA b-m = T T ol (N — ) X
n N—n

COS(¢/2)2k+2€fn (—i SiH((ﬁ/Q))NJm*Qk*%

for the squares in (9). The probability for n—m coincidences (7) may now be computed by
using (8), (9) and the formulae for the squares of occupation numbers.

Results of the numerical calculation of the probability P(n,m|n:N) in (7) are shown
in Figure 4 for N = 5 and N = 12, demonstrating the N-fold enhanced sensitivity of
the N-photon components of the state that is emerging from the interfering mixture of a
coherent state with a squeezed vacuum [4-6]. For comparison, the n—m fringes produced by

true NOON states are shown in Figure 4 as dotted lines.
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IV. WICK’S THEOREM FOR EXPECTATION VALUES

Wick’s original method [13] is based in a technique to handle the process of normal
ordering the products of creation and destruction operators first, and proceeds thereafter to
evaluate the expectation value in the vacuum state.

Here we consider instead products of n linear operators, A} := A;As---A,, in general.
Combinatorics of Wick contractions stems from Leibniz rule for commutators. As a result,
the combinatorics is much easier to be followed than in the original normal-ordering proce-
dure. Furthermore, our version of Wick’s theorem is not restricted to expectation values for
the vacuum state. The technique is applicable to calculate expectation values in any vector
state |x), not necessarily the vacuum state.

The departing step is to define the positive A" and negative A~ components of A, relative

to state vector |z), by
At = (1 -T,)AT, and A :=(A-(A)(1-1,),

where (A) := (x| A|z) is the expectation value of operator A for the vector state |z) and
I, = |x) (x| is the orthogonal projection along vector |x). Notice that by definition, we
have the nice properties (x| At =0 and A~ |z) = 0, implying that (A*) = (A7) = 0. These
properties are well known for creation and annihilation operators acting on the vacuum
state. The definitions of A* and A~ are quite useful because any operator A admits the

following decomposition.
Lemma IV.1 A= (A)+ A~ + A",
Proof. Let us start from the obvious identity
A=TAT, + A1 —-1,) + (1 — I,)AT, = T,AT, + A(1 — T,) + A", (10)

where we have used the definition of the positive component A% of A. Next, consider
the operator A° := T, AT, + (A)(1 — 1) and any two vectors |y) and |y’) taken from
an orthonormal basis containing |z). Then, it is not difficult to prove that (z|A°|y) =
(y| A% |z) = (y| A°|y’) = 0 and that (y|A°|y) = (x| A°|z) = (A). We have thus proved
that

AT, + (A)(1-1,) = (AT

11



Using this result in (10) we have that A = (A) + (A — (A))(1 —T,) + AT = (A) + A~ + AT
O

From now on we assume all operators are “displaced” operators, A - A — (A), such that
(A) = 0. Lemma IV.1 tells us that every displaced operator is the sum of a positive and a
negative component, A = AT + A~.

We are ready to expose the combinatorics implied in the expectation value (A3 Ay -+ A,,),
on the basis of a recursive method that expands it in terms of the simplest non-trivial
expectation values (A;Ay), of pairs of operators. The implication of Lemma IV.1 is that

such basic building blocks are provided by commutation rules as follows.
Lemma IV.2 (AB) = ([A~, BY])

Proof. For any two displaced operators, A and B, we have that A = AT + A~ and that
B = BT + B~. By definition, we have that (z| AT = 0 and that B~ |z) = 0. Then, it
follows that (ATB~) = (A~B~) = (ATB*) =0, such that (AB) = ([A~, BT]). O

The relevance of Lemma IV.2 relies on the fact that, in many important cases, the
operator [A~, BT] is proportional to the identity operator, T. For such cases, let [A~, Bt] =
AT, where A = f,l_IB is a given complex number, referred to as a Wick contraction. The
expectation value of the product operator AB is then given by (AB) = /,l—IB . Recall that
the positive and negative components of operators are relative to vector |z) such that 14'1_|B
is a function of |r). Most of the optical measurements involve the vacuum (|z) = |0))
expectation values of products of creation and annihilation operators. For a discrete set of
optical modes all we need to know is that c'L?clL;‘f = 0;;. For spatial modes with a finite spectral
width m;(w) = 0;;0(w — v) are the needed contractions.

Lemma IV.2 is the root of an inductive procedure that returns the expectation value of
a product of operators A;As...A,_1A,, of arbitrary length n > 1, in terms of elementary
contractions AT‘lk The assumptions are that the A; operators have been displaced already,
A; + A; — (A;), and that every commutator [A;,Aj*] =A;; = A,:|4j is just a complex
number.

In order to work the inductive step out, it is convenient to adopt the notational convention

for products: AL = AyAgyi--- Ay whenever k < £, while A% = 1, otherwise. Then, Wick’s

theorem follows right after the next two lemmas. First one is Leibniz rule for commutators.
Lemma IV.3 [A},B] =Y} A7"' [As, B] A7, .

12



Proof. We know that [A}"'A,, B] = [A7!, BJA, + A7 '[A,, B]. Then, assuming the
result holds for [A7~!, B] we have that [A}, B] = Sr—1 A¥1[A,, BJA 1A, + ATV [A,, B] =
ZZ=1 A’fil[AkaB]AZH : =

Next, we apply Leibniz rule to the expectation value of the product of n operators to
express it as the sum of n — 1 expectation values of the same products with all possible

contractions of the right-most operator A, with all of the others.
— n—1 k-1 n—1 _ n—1 k—1 An—1
Lemma IV.4 (A1 Ay Ap) =30 (A7 ARAL 1AL = D0 (AT AL ) A

Proof. The point is to notice that (A7) = (A7 A,)

([A""1 AF]). Then, by Lemma IV.3

have that [A7~", Af] = Y] AV VAL AFJAR = S0 AV ALAR A, The resul
we have that [A7™, AY] = Y 07 AV [Ap, AFJAL ) = Y AT ARAL Ay, The result
follows since we are considering operators such that every commutator [4;, AT] = [A7, AT]

—
is the c-number A;A;. O
Recall that we are assuming that every operator has a null expectation value, (Ax) = 0.

Thus, we have the following direct consequence of Lemma IV 4.

Corollary IV.1 (AjAy--- Asguyq) = 0.

Theorem IV.1 (Wick) Let A;, t = 1, ..., 2n, be linear operators such that for every i
and every j, we have that (A;) = 0 and that the commutator [A7, AT] = Ay is a c-number.
Then,

(AtAg -+ Agy = > Ny DNiyy Ny

pairings
1
where the sum is over all pairings by contractions ---A; ---Aj, -~ = --- A, . -, each
contraction subjected to the condition that iy < jk.
2n—1 k—1 A2n—1 e
Proof. By Lemma IV.4 we have that (A;Ay---Ay,) = > .0, (A7 A ) ArAz,. The

induction hypothesis implies then that

2n—1

(Aidy - A = ) ( > AnmAz‘m"'Az‘nfl,jnﬂ) AV (11)

k=1  pairings’
where the first (innermost) sum is over pairings’ of the product Ay, ..., Ay 1Aki1 - Agn1
(Ak and A,, being excluded, as indicated by the apostrophe). The last factor A, in (11)
represents a contraction of the last factor A,, with each one of the other 2n — 1 operators

—
on its left-hand side (i.e., the second sum on k). For each contraction AjAs,, all pairings of

13



the remaining 2n — 2 operators are inserted in (11) by the innermost sum (between the big
parentheses). O

Let P(2n) denote the number of pairings of the product A; A, --- Ag,. As we noticed in
the proof of Theorem IV.1 already, the last factor in the product, As,, is contracted with
everyone of the 2n — 1 other operators on its left side. Each such contraction factorizes as a
complex number and we are left, for each contraction, with all of the P(2n — 2) pairings of
the remaining product of 2n — 2 operators. Thus, for the number of pairings on a product of
2n operators we have the recursion P(2n) = (2n — 1)P(2n — 2), with initial value P(2) = 1.
The solution for the number of pairings for the product operator in Theorem IV.1 is then
P(2n) = (2n — 1)!!, although some of them might of course be zero.

Optical measurements deal with the vacuum expectation value of products of operators

of the form a™a*™a"2a*2 - - - a"La*™L, with positive exponents n; and m;, and Wick con-

, M oyl m oyl N
tractions aa* = 1, a*a = —1, aa = 0 and a*a* = 0. Theorem IV.1 implies that such an
expectation value does not vanish if, and only if, Sj = Zf:o(mL—i —ng—;) > 0 for each

k=0, ...L—2 while for k = L — 1 the sum should vanish, S;_; = Z.L

;J(m;—n;)=0. By a
direct counting of Wick pairings we find that
(S )b (S _o)! !
<an1a*m1an2a*m2'”anLa*mL>:mL ( O+mL 1) ( 1+mL 2) n_l, (12)

So! Si! So! 0!

result that includes the special case (a"a*") = nl.

V. PROOF OF THE RULE

The generic optical setup for the amplitude (Ni,..., Ng|S(W)|nq,...,ng) was de-
scribed already in Section II. Here, we just provide the proof of the rule for amplitudes. The
in and out states involved in an ampmlitud are constructed by applying (a and b) photon
creation operators on the vacuum state. The annihilation b-operators are linear superposi-
tions of a-operators as specified by the unitary transformation (1). Thence, the amplitude

takes the form

(Ni o Nl SOV s me) = ! «
Ve ongd Nyl Ny
K K
(0| (Z WK7iai)NK o (Z Wlﬂai)Nla*l‘”l . G?K 10).
=1 =1

(13)
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The alternatives implied by each of the vacuum expectation values in (13), including their
combinatorial weights, are extracted by a direct application of Wick’s theorem IV.1. We
follow the conventions established in the proof we gave in Section IV. To proceed with the
expansion of (13) we need the Wick contractions a',-_la;-‘ =0;j,4,j=1,... K.

The involved part in the calculation of the vacuum expectation values stems from the
product of polynomials in W;; of degree N;, which action (1) introduced in the ampli-
tude (13). To help the reader cope with the calculations in the proof for arbitrary values of

K, we present the proof for K = 2 inports first.

A. Arrays with two inports

For K = 2, the amplitude (13) includes two binomials only, of degrees N; and Ns. Given

that [a, as] = 0, we are allowed to use the commutative binomial expansion in (13),

N1
<N17N2|S(W> |n1an2> \/mzz ( ) < )WHW W21W22 X

<0‘ k+l1 k’+l’a*n1 *12 ’0>

(14)

with polynomial degrees Ny = k + k' and Ny = [ +I'. To apply Wick’s theorem to the
expectation value in (14), notice first that the only non-vanishing Wick contractions are
al,_clz’{ = 6'12_&3 = 1. Consequently, the expectation value in (14) vanishes unless n; = k+1{ and
no = k' +1’. For these values of occupation numbers, since non-null contractions are just 1,
we have that
(0l af*ay?ai™a3™ 0) = ) Y1 = ming!.
a1-pairings as-pairings

For the details, see Section IV, p.14. Thus,

(0] a¥ai™al ™ a3 0) = n1!no! Gny et Onyrng, NN - (15)

There is an overall Kronecker § that accounts for the conservation n; + ne = N; + N,.
Substituting this result in the amplitude (14), the other § reduces the two sums in (14) to

one, e.g., on k. Then, using the equality

77,1! n2! Nl N2 . \/nl' 7’L2! N1' Ng'
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the recipe in (3), for the simplest case (N, Na| S(W) |n1,ne) , follows.

Representing each alternative as the following square of occupation numbers

\/nl! 7”L2! N1' NQ'

kf' l' k’" l,' Wlkl Wig/ W2ll W2l/2

a probability amplitude is assigned to every distribution of the (n;,ny) photons —available
at the inports— that makes them appear as (Nj, Ny) photons at the two outports. The
overall conservation n; + ny = Ny + Ny is implicit and the complete amplitude (14) is the

sum over all squares distributing the occupation numbers (ny, ng) — (N1, Na).

B. Arrays presenting multiple inports

For an arbitrary number K of inports the amplitude (13) has a product of K multinomials

in W;; of degrees N;. The commutative multinomial expansion of each factor in the product

is
K N
(EWe) = 3 VW
- ’ Elj,€2j7.-~7€Kj ’ ’
i=1 L1025, LK
a1ay™ - a' . (16)
with j = 1, ..., K. The sum in the expansion (16) runs over sets of non-negative integers
{élj; c. ,EK]‘} such that
€1j+€2j+---+€Kj=Z€kj:Nj (17)
k

and the multinomial coefficient is given by

( N ) . N!
g los o lics) gl gyl - gl

The description above applies for each multinomial, from j =1 to K.

In the product of annihilation operators in (16) there appears the factor ai’“j k=1... K.
In the product of all the multinomials appearing in (13), 7 = 1 to K, there is the factor
aflal}? - g = oM where My = 3. ; Uiy for a given value of k. Considering all values
of k, from 1 to K, we get the vacuum expectation value (0| ag™® ---a;Mai™ .- a3 |0),

appearing in each term in the expansion of (13).
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The expectation value is not null only when M}, = ny. For these values of occupation num-
bers the sum over pairings in Wick’s theorem amounts to (0| ax™ ---ay"a™ - - - aj."% |0) =

ni!---ng!. Thus, every term in the expansion of (13) includes the factor
Olag™s - a™Mai™ a3 |0) =ny! - ng! Gnyasy - Onge M s (18)
where the deltas impose the condition
M=ty +Llp+ -+ Lig =n, (19)

on the sum (16). Taken as a whole, for every j = 1, ..., K, we conclude that the only
sets of indices {¢;;} contributing to the sums in the multinomial expansion of (13) are those
satisfying the conditions (17) and (19), simultaneously. Conditions that we have represented
graphically as the square of occupation numbers in figure 1.

The corresponding contribution to the amplitude (13) consists, first, of the combinatorial

factor

1 < Ny )( Ni )n'n | —
\/(nl!"'nK!)(Nl!"‘NK!) b bty Ui b loxc, - k) e

Vommd) ) )

where each multinomial coefficient stems from the expansion of the corresponding multi-

nomial in (13) and the last factor nq!---ng! is contributed by the vacuum expectation

value (18). The other factor is the product of mixing parameters
(Wi Wig - W) - (W s - W) = [T vy (21)
j

stemming from the multinomials (16) too.

The net contribution is the product of the factors in (20) and (21). In the interest of
an intuitive mnemonic rule, we identify this contribution with the square in figure 1. The
amplitude (13) is said to be computed as the sum over all squares for the given occupation

numbers, (nq,...,ng) and (Ny,..., Ng), as was stated in (3).
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