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The spectral decomposition of multipartite Bell operators for two dichotomic ob-
servables per site, as introduced by Werner and Wolf �Phys. Rev. A 64, 032112
�2001��, is done. Implications on the characterization of Bell inequalities as criteria
of entanglement are discussed. © 2007 American Institute of Physics.
�DOI: 10.1063/1.2751281�

I. INTRODUCTION

Bell correlation inequalities are being used as criteria to decide whether a given composite
state is entangled or not. For 2-qubit systems, the preparation of pure entangled states is fully
characterized by the violation of Bell’s inequalities.2 For multipartite �e.g., multiqubit� systems the
structure of the state space with respect to entanglement is much richer and the full class of
entangled states that can be characterized by the violation of Bell inequalities is not known. The
present state of the theory of multipartite Bell inequalities in relation to entanglement properties is
reviewed in Ref. 8.

The multipartite generalization of Bell’s test deals with a system composed of n particles in an
experimental arrangement that involves an observer for each particle. Independently of the rest,
each observer decides on one of m observables to measure, obtaining one out of � possible
outcomes. Such a setup is referred to as the �n ,m ,�� experiment. Experimental runs may be tuned
up in one of mn forms, and in each of its forms the outcome is one out of �n possible data
instances. For each �n ,m ,�� triple the complete set of independent Bell correlation inequalities is
finite.

We restrict ourselves to the �n ,2 ,2� case of multiqubit systems for which the theory for the
full correlation Bell inequalities had been developed by Werner and Wolf.7 The complete set of
independent full correlation inequalities for n-qubit systems is known,7,9 and it has the cardinality
22n

. Particular examples, well known already, are the CHSH inequalities �by Clauser, Horne,
Shimoney, and Holt�1 for the 2-qubit system and its generalization to n qubits provided by Mermin
in Ref. 3. Paradoxically, Mermin’s inequality admits a violation factor that grows exponentially
with n, the size of the qubit system.

The corresponding class �Bf : f �Sn� of Bell operators for n-qubit systems introduced in Ref.
7 is complete and conveniently indexed by f in the set Snª �−1,1�2n

. The observables, Ak�0� and
Ak�1� per qubit k� �1, . . . ,n�, involved in the specification of the Bell operators, depend on certain
geometric parameters determined by the experimental setup and are assumed to satisfy the con-
dition Ak�sk�2=1, sk=0,1. From now on Bell operators are understood to belong to the n-qubit
class.

The aim of the present paper is to provide the spectral decomposition of all the Bell operators
in the n-qubit class. Some of its implications in the characterization of the entanglement of pure
n-qubit states are discussed. The spectral decomposition of Bell operators for n-qubit systems had
been tackled by Scarani and Gisin5 already. However, our approach allows us to provide formulas
for important quantities such as the singular values of Bf and Mermin operators for every n.

a�Electronic mail: jurias@ifisica.uaslp.mx

JOURNAL OF MATHEMATICAL PHYSICS 48, 072111 �2007�

48, 072111-10022-2488/2007/48�7�/072111/11/$23.00 © 2007 American Institute of Physics

Downloaded 13 Aug 2007 to 148.224.1.41. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp

http://dx.doi.org/10.1063/1.2751281
http://dx.doi.org/10.1063/1.2751281
http://dx.doi.org/10.1063/1.2751281


Equally important is the determination of the spectral radius of Bf, which is posed as a tractable
variational problem. Its solution yields the entangled n-qubit states that realize the maximal vio-
lation that is admitted by Bf in the given geometry of the experimental setup.

The spectral decomposition of operator Bf proceeds in two steps. First, we derive a formula
that expresses Bf

2 in terms of the 1-qubit commutators �i /2��Ak�0� ,Ak�1��, k=1, . . . ,n. A particular
version of the formula, valid for “extremal” Bell operators, was derived in Ref. 6. Our result has
the implications listed below.

�a� The eigenstates of Bf
2 are the product states �w�ª �w1�¯ �wk�¯ �wn� �w� �−1,1�n

¬C� of the
eigenstates �wk� of the 1-qubit commutators, wk� �−1,1�. All eigenvalues of Bf

2 are doubly
degenerate at least.

�b� The Bell operator Bf admits a violation of the corresponding Bell inequality if and only if its
spectral radius is greater than 1. We show how the spectral radius may be determined by
solving a tractable optimization problem �see item �d� below�. This characterization of Bf as
a probe of entanglement is thus useful since the number of independent Bell inequalities
grows exceedingly fast with n.

�c� A formula for the singular values � f�w��0 of Bf is obtained.

�d� The spectral radius �̄ f of Bf is the maximal quantum violation factor of the corresponding
Bell inequality, for given values of the geometric parameters of the experimental setup. The

determination of �̄ f and the corresponding eigenstates is posed as a variational problem, in
much simpler terms than the one posed in Ref. 7.

�e� The singular values of Bf are found to satisfy the sum rule

	
w�C

� f
2�w� = dim�H� = 2n. �1�

The total spectrum �Eq. �1�� is independent of f and of geometric parameters in the experi-
mental setup. That is, it is the same for all n-qubit systems. Thus, the difference between
tests shows up in the way the total spectrum is distributed among states. Extreme cases are
a test with a spectrum equally distributed among all states and a test with a spectrum
concentrated in just two Greenberger-Horne-Zeilinger �GHZ� states �Eq. �2��. In the first
case the sum rule �Eq. �1�� implies that � f�w�=1, and the test does not detect entanglement.
In the second case, the sum rule �Eq. �1�� implies that the overall maximal violation factor
�nª2�n−1�/2 is admitted by the test.7

We say that an index vector f is extremal if Bf has an optimal geometry where its maximal

violation factor �̄ f coincides with the overall maximum �n. An extremal test Bf in an optimal
experimental setup, also called a Mermin test, “concentrates” the overall maximal factor of
violation �n in two entangled states. In this sense, we may say that Mermin’s is the sharpest
test of entanglement.

�f� The Mermin operator Bf, with spectral radius �n, is characterized by either of the following
two equivalent assertions:

�1� Vector f is extremal and 
�i /2��Ak�0� ,Ak�1��
=1 for each qubit k.
�2� Only two eigenvalues of Bf are nonzero.

�g� A formula is given to compute the extremal vectors f for each n. We find that there are just
four Mermin tests for each �n ,2 ,2� experiment, of which only two are independent, a very

small number as compared with the total number 22n
, n�2, of Bell operators. Besides, the

corresponding Mermin inequalities are violated by only two of the eigenstates of Bf. This
result confirms the remark made in Ref. 4 that Mermin’s phenomenon is the exception, not
the rule.

All Mermin operators are computed easily by using our formula. In Appendix B we provide
examples for n=2, 3, and 4. For n=2 they are the CHSH operators,1 and for n=3 Bell
polynomials were derived in Ref. 7 already.
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The second step in the spectral decomposition of Bf is to apply the following elementary
results of linear algebra. The operator Bf

2 is positive; then, it has a unique positive square root,
denoted by �Bf�. The relevant fact is that the product states, eigenstates of Bf

2, are eigenstates of �Bf�
too. The corresponding eigenvalues ��w� are the singular values of Bf. Then, the Bell operator
decomposes into the product Bf =Sf�Bf�, where, in general, the operator Sf is an isometry. A direct
calculation shows us that, up to a phase factor, for any Bf the operator Sf is just the exchange of
antipodal product states �the antipode of state �w� is the state �w̃�, where configuration w̃ has
components w̃k=−wk�. These considerations immediately yield the following result.
�h� All eigenstates of Bf are GHZ states

�w, ± � =
1
�2

��w� ± ei�f�w��w̃�� �2�

with eigenvalues ±� f�w� and configuration w�C /�, the quotient set where antipodal con-
figurations are equivalent. Every � f�w��1 is the violation factor of the Bell inequality
corresponding to Bf that is attained by the corresponding GHZ states �Eq. �2��.

�i� The configuration w of the GHZ states detected in a Mermin test depends on the geometry
�specified by the set of angles introduced in definition �7� below�. Actually, the condition on
the commutators in statement �1� above is a condition on the geometry. It is not too restric-
tive and leaves room for 2n different geometries. Every such geometry determines an an-
tipodal pair w− w̃, and there are two geometries accepting a given pair. For example, in a
CHSH setup there are four geometries that admit the maximal violation factor: two geom-

etries “put” the violation factor on the pair 1̃1-11̃ and two other geometries put it on the pair

11-1̃1̃.

II. THE Bf
2 OPERATOR

Each �n ,2 ,2� experiment admits the set Snª �0,1�n of experimental setups. Corresponding to
each experimental setup s�Sn, there is the full correlation function ��s�= �k=1

n Ak�sk�� which is
considered to be the s coordinate of the 2n-dimensional real vector �. In Ref. 7 it was shown that
the local-realistic hypothesis bounds vector � to lay in the convex hull � of the finite collection of
vectors �±Xr :r� �0,1�n�, with coordinates Xr�s�= �−1�r,s�, where r ,s�ª	krksk. The assertion is
equivalent to say that � ,��	1 for each vector ����, the polar set of �. The set �� is a polytope

too, and it has a finite set of extremal �in the sense of convexity� points f̂ . Thus, fulfilling condition

��� is equivalent to satisfying condition  f̂ ,��	1 for every extremal point f̂ of ��. Extremal
vectors of �� were determined in Ref. 7 to be the Fourier transform, on the group Sn�Z2

n,

f̂�s� = 2−n 	
r�Sn

�− 1�r,s�f�r� , �3�

of each function f :Sn→ �−1,1�.
In the quantum theoretical description the quantity

 f̂ ,�� = 	
s�Sn

f̂�s���
k=1

n

Ak�sk��
is replaced by the quantum expectation value of the operator

Bf = 	
s�Sn

f̂�s� �
k=1

n

Ak�sk� , �4�

one for each f � �−1,1�2n
. The freedom of choosing observables makes Bf depend on geometric

parameters of the experimental setup. Thus, every vector f represents, not one, but a class of Bell
operators.
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In Appendix A we show that the operator Bf
2 is given by the formula

Bf
2 = 1 + 	

p��1,. . .,n�
#p is even

Cp�f� �
k�p

i

2
�Ak�0�,Ak�1�� , �5�

where the sum is over all nonempty subsets of points p� �1, . . . ,n� of even cardinality. Coeffi-
cients Cp�f� depend on geometric parameters, and they are 2n−1−1 in number. Everyone is
bounded to lay in the interval �−1,1�,

�Cp�f�� 	 1. �6�

Formulas to calculate Cp�f� are given in Appendix A. A further property of coefficients is that
Cp�−f�=Cp�f�, as it should be, given that Bf

2=B−f
2 .

Equality in Eq. �6� holds for vectors f of Mermin tests. In Appendix B we show that Cp�f�
=1 is the condition that defines the extremal vectors f . The condition is independent of geometric
parameters. Bell operators �Eq. �4�� having vectors f that satisfy condition Cp�f�=1 are the ex-
tremal Bell operators considered in Ref. 6.

The spectral decomposition of the Bell operator Bf in Sec. IV follows from the simple spectral
properties of operator Bf

2 in Eq. �5�. For the moment, remark that each operator �i /2�

�Ak�0� ,Ak�1�� in Eq. �5� is Hermitian and lying in the ball 
A
	1. Thus, it can be represented in
the form

i

2
�Ak�0�,Ak�1�� = sin �kZk, �k � �− �/2,�/2� , �7�

where each Hermitian operator Zk is traceless and maximal, 
Zk
=1. The obvious choice is to take
Zk=z, the same at each site k. It amounts to taking Ak�sk�= nk�sk� ,� with unitary vector
nk�sk�= �cos �k�sk� , sin �k�sk� ,0� lying on the x−y plane of a local coordinate system such that
nk�1�
nk�0�= �0,0 ,sin �k�. The orthonormal set ��wk� :wk=−1,1� of eigenvectors of z is adopted
as the basis of the state space Hk=C2. The set of configurations for the product basis of H
=C2�n is C= �−1,1�n.

For each configuration w=w1w2¯wn�C the product vector

�w� = �w1� � �w2� ¯ � �wn� �8�

is an eigenvector of Bf
2 with eigenvalue

� f
2�w� = 1 + 	

p��1,. . .,n�
#p is even

Cp�f��
k�p

wk sin �k � 0. �9�

The following symmetries of Bf
2 and its eigenvalues are apparent from Eqs. �5� and �9�.

�s.1� Bf
2 is invariant under the exchange of observables Ak�0�↔Ak�1� at all points k. That is,

sin �k↔−sin �k, and there are at least two geometries that yield identical results.
�s.2� � f

2�w� is invariant under the simultaneous exchange Ak�0�↔Ak�1� and wk↔ w̃k at any site
k.

�s.3� For antipodal configurations � f�w�=� f�w̃�. That is, the eigenvalues of Bf
2 are at least doubly

degenerate.

As a corollary of the foregoing results, degeneracy of an eigenvalue ��1 of Bf
2 is a necessary

and sufficient condition for the existence of a pure entangled state that violates the Bell inequality
corresponding to Bf. Such a state ��� is not separable by necessity.

Lemma 2.1: Assume ��1 is an eigenvalue of B2. Then, �I� there exists ��� such that
���B�����1 if and only if �II� � is degenerate.
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Proof: �II⇒ I�. We are assuming that �2�1 is a degenerate eigenvalue of B2. The eigenspace
H� of B2 is B invariant. The restriction �B�H�

is Hermitian, and thus it has eigenvectors ����H�

with eigenvalues � such that ���=��1. Then, statement �I� follows.
Sufficiency is proven by contradiction �¬II⇒ ¬ I�. We are assuming that ��1, and by hy-

pothesis �¬II� the eigenspace H� of B2 has dim�H��=1 �the case of a zero dimension is trivial�
and is spanned by the eigenvector ��� of Bf

2. Since H� is B invariant, then ��� is an eigenvector of
B, too. The contradiction stems from the fact that the unique state ����H� is a product vector �Eq.
�8�� for some configuration w�C, and then statement �I� is violated by the only �separable� state
�w��H�. �

Symmetry �s.3� and Lemma 2.1 provide us with the following characterization of Bell tests as
probes of entanglement in a �n ,2 ,2� experiment: Bf detects entangled states if and only if Bf

2 has
a spectral radius that is greater than 1.

Formula �5� for Bf
2 implies that the eigenvalues �Eq. �9�� satisfy the sum rule �Eq. �1��. The

value for the sum �Eq. �1�� is independent of any geometric parameter and of f . Results �Eqs. �9�
and �1�� allow us to think of the spectral function � f

2 as a weight function on the configuration set
C with full weight #C=2n. The same amount of total weight is available in every test Bf, indepen-
dent of f and of the choice of observables. The difference between tests consists in the way they
distribute the weight in the configuration set C. A test that equally distributes the weight among all
configurations does not probe the entanglement since � f

2�w�=1 for each w�C. This happens when
�Ak�0� ,Ak�1��=0 at every point k.

Measurement Bf is a good probe of entanglement if the total weight #C is supported in as few
configurations as possible. In Sec. III we will see that the extremal situation is when � f

2 concen-
trates all of the weight that is available, #C, on just two configurations. The spectral radius of Bf

is �̄ fªmaxw�� f�w��. After Eq. �9�, the maximum is attained by a configuration w̄ such that �for
given Cp�f� and sin �k� it maximizes the sum

	
p��1,. . .,n�
#p is even

x�p��
k�p

wk where x�p� = Cp�f��
k�p

sin �k � �− 1,1� . �10�

That is, �̄ f =� f�w̄�. In the sum there are 2n−1−1 terms, so that �except for n=2� they cannot for
arbitrary f be made all positive by choosing just the n signs wk. An important exception is
constituted by vectors f such that C�f�=1. The condition Cp�f�=1 defines f as an extremal vector.
In Appendix B we show that the condition does not involve a choice of geometric parameters.
Thus, for extremal f the maximum is attained by choosing the signs w̄k=sgn�sin �k�. The spectral
radius of Bf is given by

�̄ f = �1 + 	
p��1,. . .,n�
#p is even

�
k�p

�sin �k��1/2
for f satisfying Cp�f� = 1. �11�

The case n=2 is outside the foregoing discussion. Applying formulas from Appendix A the only
Cp�f� coefficient is computed to be C�1,2��f�= �f�01�f�10�− f�00�f�11�� /2� �−1,0 ,1�. The case

C�1,2��f�=0 is irrelevant. The other two cases yield the spectral radius �̄ f =�1+ �sin �1 sin �2�,
which is greater than 1 in any nontrivial geometry.

Thus, the variational problem

�̄ f = max
w
�	

s

f̂�s�ei	kwk�k�sk��
posed in Ref. 7 �see Sec. IV� can be restated in simpler terms as the problem of finding the
configuration w that maximizes the sum in Eq. �10�.
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The maximum violation factor for the Bell inequality corresponding to vector f is the maxi-

mum � fªmax��̄ f taken over all geometries. Finally, the overall maximum is �nªmaxf � f.

III. MERMIN TESTS

The maximal violation factor �n taken over all vectors f and over all geometries in every
�n ,2 ,2� Bell experiment was determined by Werner and Wolf.7 Here, directly from Eq. �11�, we
see that it is

�n = �1 + 	
m=1

�n/2� � n

2m
��1/2

= 2�n−1�/2. �12�

The maximal violation factor is attained for a test Bf with a vector f � �−1,1�2n
such that Cp�f�

=1 and for a geometry such that

�sin �k� = � i

2
�Ak�0�,Ak�1��� = 1.

Thus, test Bf in a �n ,2 ,2� experiment is a Mermin test, with spectral radius �n=2�n−1�/2, if and
only if Cp�f�=1 and 
�i /2��Ak�0� ,Ak�1��
=1.

What tests in a �n ,2 ,2� experiment are extremal? In Appendix B we prove that a vector f that
satisfies the condition

f�s�f�s + p� = �− 1�p,s�+#p/2 �13�

is an extremal one with Cp�f�=1. In Eq. �13�, s�Sn and the subset p� �1, . . . ,n�, of even
cardinality, are represented by the vector p�Sn with coordinate pk=1 if k� p and pk=0 otherwise.
Remark that for any two subsets p and p� of even cardinality, the symmetric difference p+ p�
�coordinatewise mod 2 addition� is also of even cardinality. It means that the collection Pn

ª �p :#p=even� �when 0¯0 is included� is a subgroup of Sn of order 2n−1. So, the set of inde-
pendent conditions �Eq. �13�� lay on the orbits of two experimental setups s�Sn. For example,
s=0¯00 and s=0¯01. The sign of the coordinates of f may be assigned in just two ways to each
orbit. Thus, there are just four extremal tests Bf in any �n ,2 ,2� experiment, of which only two are
independent.

Extremal vectors f , for any number n of qubits, are computed easily by using formula �13�.
The corresponding Bell operators for n=2 �the CHSH operators1�, n=3 �derived in Ref. 7�, and
n=4 are computed in Appendix B.

IV. ALL BELL EIGENSTATES ARE GHZ

The spectral decomposition of Bf
2 is simple enough as to base on it the corresponding decom-

position of Bf. To proceed, note that Bf
2 is a positive operator and it has a unique positive square

root, denoted by �Bf�. Operator �Bf� has the same set ��w�� of eigenvectors as Bf
2, with eigenvalues

� f�w��0. Experiment Bf is decomposed then into the product Bf =Sf�Bf�, where, in general, the
operator Sf is an isometry. For the particular form of operator Bf in Eq. �4� a direct calculation
shows us that Bf�w�=� f�w��w̃�, with

� f�w� = 	
s

f̂�s�ei	kwk�k�sk� and � f�w� = �� f�w�� .

Note that � f�w� is obtained from Eq. �4� by doing the replacement Ak�sk�→exp�iwk�k�sk��. Thus,
up to a phase factor, Sf is the permutation,
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Sf�w� = �w̄� ª ei�f�w��w̃� , �14�

where the phase factor, whenever � f�w��0, can be written as ei�f�w�=� f�w� /� f�w�. Furthermore,
Sf

2=1. The properties of Sf are used in the following construction.
Let H��H be an eigenspace of Bf

2 corresponding to the eigenvalue �2. Consider a product
state �w��H�. By Eq. �14�, the vectors

Bf�w� = ��w̄� and Bf�w̄� = ��w�

are orthonormal and lay in H�, too. It is, of course, necessary that dim�H���1. The foregoing
properties of Sk imply that dim�H���2 and that the 2−dimensional subspace span��w� , �w̃���H�

is Sf invariant. Thus, every eigenvector of any Bell operators Bf is an entangled state of the form

�w; ± � =
1
�2

��w� ± �w̄�� �15�

with eigenvalues ±�= ±� f�w�. We call such a superposition of antipodal states GHZ. Any Bell test
in a �n ,2 ,2� experiment is diagonal in the GHZ basis. The maximal violation factor for a Bell
inequality is the spectral radius of Bf and is attained by the GHZ states �Eq. �15�� with a configu-
ration w that makes the sum �Eq. �10�� acquire its maximal value.

All eigenvectors of Bf come in entangled pairs of the GHZ form �Eq. �15��, two such states for
each w�C /�. This result holds for all Bell operators in the n-qubit class and constitutes the main
Theorem in Ref. 5.

In the GHZ basis all �n ,2 ,2� Bell operators have the diagonal form

Bf = 	
w�C/�

� f�w���w; + �w; + � − �w;− �w;− �� . �16�

Gisin’s theorem2 for 2-qubit systems is a direct consequence of the spectral decomposition �16�.
Let us assume that Bf is a Mermin operator that admits the maximal violation factor �n

=2�n−1�/2. Then, according to Lemma 2.1, the corresponding Bell inequality is violated if and only
if there exists at least two eigenstates �w� and �w̃� of Bf

2 with eigenvalue � f
2�w�=� f

2�w̃�=2n−1. But
two such states saturate the sum rule �Eq. �1��, and there cannot be any other eigenstate involved
in the violation of the Bell inequality �just one state is not enough because eigenstates of B2 are
separable�. Thus, in every Mermin test the spectrum � f

2 equally distributes the total weight #C in
just two configurations �no less, no more�. That is, Bf is a Mermin test if two and only two of its
eigenstates violate the corresponding Bell inequality.

Mermin tests are optimal probes of entanglement in that they are tunable as to detect any
antipodal pair w− w̃ by choosing the sign of sin �k= ±1 such that wk sin �k=1. That is, an extremal
test Bf concentrates all the spectral weight � f that is available in just two GHZ states of our choice:
�w ; + � and �w ;−�.
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APPENDIX A: PROOF OF EQUATIONS „5… and „6…

From definition �4� we have

Bf
2 = 	

s,s��Sn

f̂�s� f̂�s�� �
k=1

n

Ak�sk�Ak�sk�� = 	
s,s��Sn

f̂�s� f̂�s��O�s,s�� , �A1�

where
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O�s,s�� = Syms,s� �
k=1

n

��k�sk,sk�� + i�k�sk,sk��� �A2�

is the symmetric component of the tensor-product operator in Eq. �A1�. That is O�s ,s��
=O�s� ,s�. In Eq. �A2� we have made use of the following definitions:

�k�sk,sk�� ª
1

2
�Ak�sk�,Ak�sk��� = 1

1 + �− 1�sk+sk�

2
+

1

2
�Ak�0�,Ak�1��

1 − �− 1�sk+sk�

2

and

�k�sk,sk�� ª
− i

2
�Ak�sk�,Ak�sk��� =

�− 1�sk − �− 1�sk�

2

i

2
�Ak�1�,Ak�0�� ,

The Hermitian operators �k�sk ,sk�� and �k�sk ,sk�� are symmetric and antisymmetric, respectively,
under the exchange sk↔sk�. Furthermore, under the assumption that Ak�sk�2=1, we have
��k�sk ,sk�� ,�k�sk ,sk���=0. These properties allow us to write the symmetric operator �Eq. �A2�� in
the following form:

O�s,s�� = 	
p��1,. . .,n�
#p is even

�

k�pc
�k�sk,sk�� �

k�p
�k�sk,sk�� , �A3�

where the sum is over subsets p� �0, . . . ,n� of even cardinality, including p=�.
Substituting Eq. �A3� in Eq. �A1�, we obtain

Bf
2 = 1 + 	

p��1,. . .,n�
#p is even

�− 1�#p/2 	
s,s��Sn

f̂�s� f̂�s�� �
k�p

�k�sk,sk�� �

��pc
���s�,s��� , �A4�

where the term 1 is the contribution from p=� and the sum now runs over nonempty subsets.
Considering in Eq. �A4� that �1/2��Ak�0� ,Ak�1��=ak1, with ak=cos �k, we get formula �5� for Bf

2

with coefficients, at the moment, given by

Cp�f� = �− 1�#p/22−nFf�p� , �A5�

where

Ff�p� ª 	
s,s��Sn

f̂�s� f̂�s���
k�p

��sk,sk�� �
��pc

���s�,s��� , �A6�

��sk,sk�� = �− 1�sk − �− 1�sk�, �A7�

and

�k�sk,sk�� = 1 + �− 1�sk+sk� + ak�1 − �− 1�sk+sk�� . �A8�

Using �A7�, the first product in �A6� expands to
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�
k�p

��sk,sk�� = 	
r�p

�− 1�#r�− 1�	k�rsk�+	k�rcsk, �A9�

where r�rc= p and r�rc=�. By using Eq. �A8�, the second product in Eq. �A6� expands to

�
k�pc

�k�sk,sk�� = 	
q�pc

�− 1�	k�qc�sk+sk���
k�q

�1 + ak� �
��qc

�1 − a�� , �A10�

where q�qc= pc and q�qc=�. The result for Ff�p� in Eq. �A6� with the products expanded is

Ff�p� = 	
q�pc

�
k�q

�1 + ak� �
��qc

�1 − a��	
r�p

�− 1�#rG�q,r� , �A11�

where

G�q,r� = 	
s,s��Sn

f̂�s� f̂�s���− 1�	k��q�rc�sk+	k��q�r�sk�. �A12�

For the following, it is convenient to denote subsets q� �1, . . . ,n� by vectors q�Sn such that k
�q iff qk=1 �we are abusing the notation but no confusion will arise�. With this identification,
G�q ,r� in Eq. �A12� is seen to be the product of two inverse Fourier transforms,

G�q,r� = f�q + r̄�f�q + r� , �A13�

where q�r↔q+r �because qr=0� and r+ r̄= p. Formula �A13� shows us that

�G�q,r�� = 1. �A14�

We have everything to prove inequality �6� From Eqs. �A5� and �A11� we have

�Cp�f�� 	 2−#pc 	
q�pc

�
k�q

�1 + ak� �
��qc

�1 − a�� ,

where we have made use of Eq. �A14� and the fact that �ak�	1. One proves by induction in #pc

that

	
q�pc

�
k�q

�1 + ak� �
��qc

�1 − a�� = 2#pc
, �A15�

and inequality �6� follows. Our final answer for Cp�f� consists of formulas �A5�, �A11�, and �A13�.

APPENDIX B: EXAMPLES OF MERMIN TESTS

In Mermin tests geometric parameters are settled down to sin �k= ±1. That is ak=0. Using the

results obtained in Appendix A, the value C̄p�f� of the coefficient �Eq. �A5�� for ak=0 is

C̄p�f� = �− 1�#p/22−n 	
s�Sn

�− 1�p,s�f�s�f�s + p� , �B1�

for each nonempty subset p� �1, . . . ,n� of even cardinality. It is readily seen that a vector f that

satisfies condition �13� makes C̄p�f�=1. On the other hand, substituting Eq. �13� in formulas �A5�,
�A11�, and �A13�, we see that Cp�f�=1 for any geometry. Thus, for such a vector f the operator Bf

corresponds to an extremal one.
Extremal vectors f for n=2, 3, and 4, and the corresponding Mermin operators, are computed

in the following.
For n=2 we have P2= �11�, which corresponds to the only subset p= �1,2�, of even cardinal-

ity. The orbits of setups 00 and 01 for condition �13� are
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f�00� = − f�11� and f�01� = f�10� .

The choice f�00�= f�01�=1 produces the vector f = �1,1 ,1 ,−1�, with Fourier transform f̂
= �1/2 ,1 /2 ,1 /2 ,−1/2�, which is extremal, and corresponds to one of the CHSH operators.

For n=3 we have the collection P3= �011,101,110� that produces the two orbits

f�000� = − f�011� = − f�101� = − f�110� ,

f�001� = f�010� = f�100� = − f�111� . �B2�

Two independent choices of sign in Eq. �B2� give the vectors

f1 = �1, 1, 1, − 1, 1, − 1, − 1, − 1� ,

f2 = �1, − 1, − 1, − 1, − 1, − 1, − 1, 1� ,

with Fourier transforms

f̂1 =
1

2
�0, 1, 1, 0, 1, 0, 0, − 1�, f̂2 =

1

2
�− 1, 0, 0, 1, 0, 1, 1, 0� �B3�

and Bell operators

Bf1
=

1

2
�A1�0�A2�0�A3�1� + A1�0�A2�1�A3�0� + A1�1�A2�0�A3�0� − A1�1�A2�1�A3�1��

and

Bf2
=

1

2
�− A1�0�A2�0�A3�0� + A1�0�A2�1�A3�1� + A1�1�A2�0�A3�1� + A1�1�A2�1�A3�0�� .

Luckily, for n=3 half of the coordinates of vectors f̂ in Eq. �B3� vanish. Thus, half of the
experimental setups are not involved in extremal tests Bf for �3,2,2� experiments. The same
situation happens for n=5 qubits. Is it a lucky strike?

The last example is for n=4 with a collection of subsets of even cardinality P4

= �1100,1010,1001,0110,0101,0011,1111� that produces the orbits

f�0000� = − f�0011� = − f�0101� = − f�0110� = − f�1001� = − f�1010� = − f�1100� = f�1111�

and

f�0001� = f�0010� = f�0100� = − f�0111� = f�1000� = − f�1011� = − f�1101� = − f�1110� .

The choice of sign f�0000�= f�0001�=1 in the orbits gives the extremal vector

f = �1, 1, 1, − 1, 1, − 1, − 1, − 1, 1, − 1, − 1, − 1, − 1, − 1, − 1, 1� ,

with Fourier transform

f̂ =
1

4
�1, − 1, − 1, − 1, − 1, − 1, − 1, 1, − 1, − 1, − 1, 1, − 1, 1, 1, 1� �B4�

and a Bell operator with 16 products of four observables each. The reader may construct Bf

himself by using Eq. �4� with the extremal vector �Eq. �B4��.
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