RICH2013 Conference Summary

Jürgen Engelfried

Instituto de Física Universidad Autónoma de San Luis Potosí Mexico

8th International Workshop on Ring Imaging Cherenkov detectors Dec 2-6, 2013, Shonan Village Center Hayama, Japan

SCOPE OF REVIEW

List of contributions:

- 54 abstracts within scope of this review,
- 28 talks on RICH systems, photon detectors, technical advances, prototyping.
- Leaderboard: Belle II (13), LHCb (7), PANDA (6), CBM (4), ALICE (3).

J. Schwiening, GSI | Cherenkov Light Imaging in High Energy and Nuclear Physics | RICH2013 | Hayama, December 2013

4 D > 4 P > 4 B > 4 B > B 990

SCOPE OF REVIEW

Many exciting RICH systems are outside the scope of this review:

- Neutrino detectors underground or in natural water/ice;
- Imaging air Cherenkov telescopes.

Will be reviewed by Razmik Mirzoyan Wednesday afternoon

"Cherenkov light imaging in Astroparticle Physics"

Tunka-133

J. Schwiening, GSI | Cherenkov Light Imaging in High Energy and Nuclear Physics | RICH2013 | Hayama, December 2013

Special Talks

- Masatoshi Koshiba Memories of Kamioka Experiment
- Yuji Yoshizawa Latest Trend of Photon Detectors from Hamamatsu
- Youchira Suzuki Present and Future of Ring Imaging Water Cherenkov Experiments

Review talks

- Jochen Schwiening Cherenkov light imaging in High Energy and Nuclear Physics
- Razmik Mirzoyan Cherenkov light imaging in Astroparticle Physics
- Antonello Di Mauro Status and perspective of gaseous photon detectors
- Gianmaria Collazuol Status and perspective of solid state photon detectors
- Jerry Va'vra Optical components for Cherenkov light imaging devices
- Neville Harnew Other PID techniques
- Sheldon Stone Use of RICH detectors for Physics

Talks and Posters

- Special talks
- Review talks
- 45 talks on systems and details
- 28 posters
- Review talks already reviewed all the topics No need to review the review talks...
- Will just mention a few topics I personally found interesting
- copying slides from the talks...

Are there new developments?

- Made a InSpires search on title containing: "RICH" or "Ring Imaging" or "cherenkov" or "tscherenkov" or "cerenkov" or "DIRC" for every year since 1970. compared to last time: Spires→ InSpires, include "DIRC"
- Divide (by hand) into the following Categories:
 - Water/Ice Cherenkov
 - Threshold (and similar) Counters
 - Atmospheric Cherenkov and Astronomy
 - Calorimeters (lead glass and similar)
 - Physics Results with Cherenkov detectors
 - Cherenkov Theory
 - RICH
- Not counting Accelerator techniques etc.

Total Number of Papers

Separated By Category

Separated By Category

Separated By Category

Paper Search Summary

- Number of papers increasing, so there are new interesting things!
- Number of papers treating "conventional" (old) detectors, like Threshold Counters is constant.
- Most (but not all!) are (highly sophisticated!)
 "optimizations" of the known Cherenkov basics.
- Some concern with the decreasing numbers of "RICH" papers...

Where did the rings go?

Where did the rings go?

Basic concept

Simulation 2GeV/c, θ = 90 deg.

- Cherenkov ring imaging using timing information
- Very compact, suitable for collider geometry.
- Key technologies:
 - Single photo detection with precise timing
 - Accurately polished quartz bar

Difference of path length → Difference of time of propagation (TOP) ~150-200ps from TOP + TOF from IP

with precise time resolution (σ ~40ps) for each photon

Where did rings go?

Particle identification: using extended likelihood method

- PDF in a single channel described with a series of Gaussian distributions
 - · positions, widths and normalizations determined analytically
 - method presented at RICH2010 (NIM A 639 (2011) 252-255)

But there are still "standard" RICHes coming...

Summary and Outlook

- New gas RICH detector being developed for the CBM experiment at FAIR
- Focus: e I π separation up to 8 GeV/c, high rates, high ring multiplicity (secondary e-)
 Design concept established. Technical Design Report submitted this summer
- Full-scale prototype has been built and successfully tested at CERN-PS
- · Results prove a sound understanding of the prototype performance
- · Further results on:
 - Mirror (miss-)alignment
 - Photon sensor comparison and electronics
 - WLS efficiency
 - Ring reconstruction routines
 - Full system test: gas system, slow control, ...
- Lab tests of brand new Multianode PMT H12700: very promising results...

Fechnical Design Report for CBM Page 1997 Page

More work needed on:

- Shielding of magnetic stray fields from CBM dipole
- Final choice of photon sensor
- Development of FPGA-TDC based readout electronics
- WLS behavior under neutron irradiation, aging

Another prototype currently being developed and tested at Pusan National University, PNU

- Test different radiator gases
- Test high rate conditions

Timeline: first beam end of 2018!

Additional information:
talk S. Lebedev: Ring finding (Thu. 18.05h)
poster T. Mahmoud:
poster J. Kopfer: WLS studies

Slide 24

But there are still "standard" RICHes coming...

Lifetimes of MCP-PMTs

Lifetimes of MCP-PMTs

Lifetime of Different MCP-PMTs

- older BINP and PHOTONIS MCP-PMTs: rapid Q.E. degradation
- new PHOTONIS XP85112: almost no Q.E. drop at 6 C/cm²

Excellent single photoelectron resolutions

Excellent single photoelectron resolutions

Jürgen Engelfried

Excellent single photoelectron resolutions

SPE spectra

100,000 waveforms for each acquisition run with low laser intensity.

Integral of the waveform in a window of 100 ns after subtracting the baseline.

DAQ ADC CAFN V1720F 12 bit – 4 ns sampling Laser TRG 10kHz

VSiPMT working point $V_{bias} = 72.5 \text{ V} - \text{HV} = 4 \text{ kV}$ Amplification x20

D. Vivolo

L3

HPD Multi p.e. measurement

- Multi p.e. can be recognized by HPD due to its good p.e. separation.
- Linearity of output can be seen in few p.e. region.

CLAS12 Hybrid Optics

Contalbrigo M.

The Hybrid Optics Design

Systems which just work...

Even well understood detectors have their misteries...

Image Drifts

Observation of image drifts for some HPD

- correlation in time between x- and v-movement, but not linear

- Solution: automated monitoring (
 - fit image position from bε [™]
 - using Sobel algorithm for ed
 - online correction

photo cathode image on anode with edge from Sobel fit

Posters calling my Attention

Most of the posters describe very interesting technical details

- Proximity Focusing RICH to select (in 10⁻⁶!) neutron-rich nucleus
 - ($\tau \sim$ 100 msec, 20 n more than stable isotopes)
- Cherenkov light in dense transparent media (usually used in EM Calorimeters) to improve TOF PET (Poster)
- History of Nobel Prices in Russia

Summary

- \bullet RICHes were extensively studied and used in the last $\sim 30\, \text{years}$
- RICHes are very well understood devices
- Use and sophistication is still incrementing
- New Photon Detectors open new possibilities in RICHes

• There will be lot more RICH conferences to come!

