### Partículas Elementales una vista desde San Luis Potosí

Seminar Universidad Veracruziana Jalapa, March 11, 2004 Jürgen Engelfried<sup>1</sup> Instituto de Física Universidad Autónoma de San Luis Potosí

### Outline

- Introduction
- Conservation Laws and Violation
- Charm SELEX
- CP Violation in Kaons CKM
- Summary

 $<sup>^1 \</sup>rm jurgen@ifisica.uaslp.mx, http://www.ifisica.uaslp.mx/~jurgen$ 

Some centuries ago...



# Mendeleev (19. Century)

| 1            |              |           |                |            |            |             |            |            |            |           |         |           |                   |           |              |              | 18           |
|--------------|--------------|-----------|----------------|------------|------------|-------------|------------|------------|------------|-----------|---------|-----------|-------------------|-----------|--------------|--------------|--------------|
| IA           |              |           |                |            |            |             |            |            |            |           |         |           |                   |           |              |              | VIIIA        |
| 1 H          |              |           |                |            |            |             |            |            |            |           |         |           |                   |           |              |              | 2 He         |
| Hydrogen     | 2            |           |                |            |            |             |            |            |            |           |         | 13        | 14                | 15        | 16           | 17           | Helium       |
| 1.00794      | IIA          | _         |                |            |            |             |            |            |            |           |         | IIIA      | IVA               | VA        | VIA          | VIIA         | 4.002602     |
| 3 Li         | 4 Be         |           | <b>D D D D</b> |            |            |             |            |            |            |           |         | 5 B       | 6 C               | 7 N       | 8 O          | 9 F          | 10 Ne        |
| Lithium      | Beryllium    |           | PER.           | IODIC      | TABL       | E OF '      | THE E      | LEME       | ENTS       |           |         | Boron     | $\mathbf{Carbon}$ | Nitrogen  | Oxygen       | Fluorine     | Neon         |
| 6.941        | 9.012182     |           |                |            |            |             |            |            |            |           |         | 10.811    | 12.0107           | 14.00674  | 15.9994      | 18.9984032   | 20.1797      |
| 11 Na        | 12 Mg        |           |                |            |            |             |            |            |            |           |         | 13 AI     | 14 Si             | 15 P      | 16 S         | 17 CI        | 18 Ar        |
| Sodium       | Magnesium    | 3         | 4              | 5          | 6          | 7           | 8          | 9          | 10         | 11        | 12      | Aluminum  | Silicon           | Phosph.   | Sulfur       | Chlorine     | Argon        |
| 22.989770    | 24.3050      | IIIB      | IVB            | VB         | VIB        | VIIB        | <b>—</b>   | VIII       |            | IB        | IIB     | 26.981538 | 28.0855           | 30.973761 | 32.066       | 35.4527      | 39.948       |
| 19 K         | 20 Ca        | 21 Sc     | 22 Ti          | 23 V       | 24 Cr      | 25 Mn       | 26 Fe      | 27 Co      | 28 Ni      | 29 Cu     | 30 Zn   | 31 Ga     | 32 Ge             | 33 As     | 34 Se        | 35 Br        | 36 Kr        |
| Potassium    | Calcium      | Scandium  | Titanium       | Vanadium   | Chromium   | Manganese   | Iron       | Cobalt     | Nickel     | Copper    | Zinc    | Gallium   | German.           | Arsenic   | Selenium     | Bromine      | Krypton      |
| 39.0983      | 40.078       | 44.955910 | 47.867         | 50.9415    | 51.9961    | 54.938049   | 55.845     | 58.933200  | 58.6934    | 63.546    | 65.39   | 69.723    | 72.61             | 74.92160  | 78.96        | 79.904       | 83.80        |
| 37 Rb        | 38 Sr        | 39 Y      | 40 Zr          | 41 Nb      | 42 Mo      | 43 Tc       | 44 Ru      | 45 Rh      | 46 Pd      | 47 Ag     | 48 Cd   | 49 In     | 50 Sn             | 51 Sb     | 52 Te        | 53 I         | 54 Xe        |
| Rubidium     | Strontium    | Yttrium   | Zirconium      | Niobium    | Molybd.    | Technet.    | Ruthen.    | Rhodium    | Palladium  | Silver    | Cadmium | Indium    | Tin               | Antimony  | Tellurium    | Iodine       | Xenon        |
| 85.4678      | 87.62        | 88.90585  | 91.224         | 92.90638   | 95.94      | (97.907215) | 101.07     | 102.90550  | 106.42     | 107.8682  | 112.411 | 114.818   | 118.710           | 121.760   | 127.60       | 126.90447    | 131.29       |
| 55 Cs        | 56 Ba        | 57–71     | 72 Hf          | 73 Ta      | 74 W       | 75 Re       | 76 Os      | 77 Ir      | 78 Pt      | 79 Au     | 80 Hg   | 81 TI     | 82 Pb             | 83 Bi     | 84 Po        | 85 At        | 86 Rn        |
| Cesium       | Barium       | Lantha-   | Hafnium        | Tantalum   | Tungsten   | Rhenium     | Osmium     | Iridium    | Platinum   | Gold      | Mercury | Thallium  | Lead              | Bismuth   | Polonium     | Astatine     | Radon        |
| 132.90545    | 137.327      | nides     | 178.49         | 180.9479   | 183.84     | 186.207     | 190.23     | 192.217    | 195.078    | 196.96655 | 200.59  | 204.3833  | 207.2             | 208.98038 | (208.982415) | (209.987131) | (222.017570) |
| 87 Fr        | 88 Ra        | 89–103    | 104 Rf         | 105 Db     | 106 Sg     | 107 Bh      | 108 Hs     | 109 Mt     | 110        | 111       | 112     |           |                   |           |              |              |              |
| Francium     | Radium       | Actinides | Rutherford.    | Dubnium    | Seaborg.   | Bohrium     | Hassium    | Meitner.   |            |           |         |           |                   |           |              |              |              |
| (223.019731) | (226.025402) |           | (261.1089)     | (262.1144) | (263.1186) | (262.1231)  | (265.1306) | (266.1378) | (269, 273) | (272)     | (277)   |           |                   |           |              |              |              |
|              |              |           |                |            |            |             |            |            |            |           |         |           |                   |           |              |              |              |

| $\mathbf{Lanthanide}$ | 57       | La   | 58 (   | Ce | 59         | Pr   | 60      | Nd | 61       | Pm     | 62       | Sm   | 63 I     | Eu | 64 Gd    | 65 Tb     | 66 Dy     | 67 Ho     | 68 Er             | 69 Tm     | 70 Yb     | 71 Lu                                 |
|-----------------------|----------|------|--------|----|------------|------|---------|----|----------|--------|----------|------|----------|----|----------|-----------|-----------|-----------|-------------------|-----------|-----------|---------------------------------------|
| series                | Lanthan. |      | Cerium |    | Praseodym. |      | Neodym. |    | Prometh. |        | Samarium |      | Europium |    | Gadolin. | Terbium   | Dyspros.  | Holmium   | $\mathbf{Erbium}$ | Thulium   | Ytterbium | Lutetium                              |
|                       | 138.9    | 9055 | 140.11 | 6  | 140.90     | 765  | 144.1   | 24 | (144.9   | 12745) | 150.     | .36  | 151.96   | 64 | 157.25   | 158.92534 | 162.50    | 164.93032 | 167.26            | 168.93421 | 173.04    | 174.967                               |
| 1                     |          |      | _      |    |            |      |         |    |          |        |          | _    | -        | T  |          |           |           |           |                   |           | T         | , , , , , , , , , , , , , , , , , , , |
| Actinide              | 89       | Ac   | 90     | 「h | 91         | Pa   | 92      | U  | 93       | Np     | 94       | Pu   | 95 A     | ۱m | 96 Cm    | 97 Bk     | 98 Ct     | 99 Es     | 100 Fm            | 101 Mc    | 102 No    | 103 Lr                                |
| 0.0001.000            |          |      |        |    |            |      |         |    |          |        |          |      |          |    |          |           |           |           |                   |           |           | 1                                     |
| series                | Actin    | uim  | Thoriu | n  | Protac     | tin. | Urani   | um | Neptı    | ınium  | Plutor   | nium | Americ   | с. | Curium   | Berkelium | Californ. | Einstein. | Fermium           | Mendelev  | Nobelium  | Lawrenc.                              |



# **Elementary Particles**

- $\thickapprox$  1950 : Known elementary particles:
  - Electron (1897)
  - Proton (1905)
  - Neutron (1932)
  - Positron (1932)
  - Myon (1937)
  - Pion (1947)

#### Last discovered:

- top quark (1995)
- tau neutrino  $(\nu_{\tau})$  (2000)

#### Still missing today:

- Higgs
- Graviton





Fermilab 95-759

# **Composition of Hadron**

#### Exhibit Strong Interaction, composed of Quark Experimental Observations:

- Baryon: 3 quarks. Example: proton, neutron
- Meson: 1 quark, 1 antiquark. Example: pion, kaon

#### Do we understand this? Somehow....

- quarks carry additional quantum number color **Open Questions** (strong charge)
- 3 colors, 3 anti-colors (compare to EM: 1 charge)
- Described by Group Theory SU(3) (compare: EM charge U(1), spin SU(2))
- "Gluons" mediate interaction (compare EM: photon)
- Only color singlets (white) objects observable as free particles

- All possible Mesons from 5 quarks observed
- Baryons: all combinations up to one c-quark, and  $\Lambda_b (bud)$

- More "white" objects are possible:
  - 2 quarks, 2 antiquarks
  - 4 quarks, 1 antiquark (Pentaquarks)
  - 3 quarks, 3 antiquarks (H)
- Most extreme case: A lot of Quarks and Gluons form one soup: Quark-Gluon Plasma

### **Conservation Laws**

#### Classical

Hamiltonian invariant under space translation  $\implies$  Conservation of momentum Hamiltonian invariant under time translation  $\implies$  Conservation of energy Hamiltonian invariant under rotation  $\implies$  Conservation of angular momentum gauge invariant  $\implies$  Conservation of electric charge

Quantum Mechanics equivalent description:

- (a) Momentum is conserved
- (b) Hamiltonian is invariant under space translations
- (c) Momentum operator commutes with Hamiltonian

### Important in Particle Physics: Discrete Symmetries

• Parity  $\mathcal{P}$ 

$$\mathcal{P}\Psi(\vec{r}) \rightarrow \Psi(-\vec{r})$$

- Strong and Electromagnetic Interaction conserve Parity
- Weak Interaction violates Parity (1957)
- Charge Conjugate  $\mathcal C$ 
  - exchange sign of electric charge and magn. moment
  - exchange particle with antiparticle
- Time Reversal  ${\mathcal T}$

Until 1964: All Interaction are invariant under  $\mathcal{CP}$ 

$$\begin{split} K_L^0 &\to \pi^0 \pi^0 \pi^0 \quad (21\%) \quad \mathcal{CP} = +1 \\ &\to \pi^+ \pi^- \pi^0 \quad (13\%) \quad \mathcal{CP} = +1 \\ &\to \pi^+ \pi^- \quad (0.2\%) \quad \mathcal{CP} = -1 \quad \text{CP Violation!!} \end{split}$$

### **Basic Interactions**



# Weak Interaction

- $\thickapprox$  1960 weak decay of strange particles
  - Why "strange"?
    - produced abondandly
    - long living
  - Explanation:
    - produced in pairs by Strong Interaction
    - decay by <u>Weak Interaction</u> supressed
       eigenstates to Strong Interaction and mass are **NOT** eigenstates to Weak Interaction
  - $\longrightarrow$  Cabbibo theory (1963)
    - $-2 \times 2$  rotation matrix for quarks (not! for leptons)

$$\begin{pmatrix} d'\\s' \end{pmatrix} = \begin{pmatrix} \cos\theta_c & \sin\theta_c\\ -\sin\theta_c & \cos\theta_c \end{pmatrix} \begin{pmatrix} d\\s \end{pmatrix}$$

Examples for Weak Decays

•  $\mu^- \to e^- + \overline{\nu_e} + \nu_\mu$ 



• beta decay:  $n \to p + e^- + \overline{\nu_e}$ . On quark level:  $d \to u + e^- + \overline{\nu_e}$ 



### Some more History

- 2 1970: Are there more quarks? (most people: NO!) If yes, how to change Cabbibo theory?
- 1972: Kobayashi and Maskawa: If there are 6 quark, we can describe  $\mathcal{CP}$  Violation (3 × 3 matrix)
- 1974: "November Revolution" charm quark discovered (Brookhaven, SLAC)
- 1976: b quark (Fermilab)
- 1994: t quark (Fermilab)

Cabibbo-Kobayashi-Maskawa (CKM) Matrix

$$\begin{pmatrix} d'\\s'\\b' \end{pmatrix} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub}\\V_{cd} & V_{cs} & V_{cb}\\V_{td} & V_{ts} & V_{tb} \end{pmatrix} \begin{pmatrix} d\\s\\b \end{pmatrix}$$

$$\begin{pmatrix} 0.9745 - 0.9760 & 0.217 - 0.224 & 0.0018 - 0.0045 \\ 0.217 - 0.224 & 0.9737 - 0.9753 & 0.036 - 0.042 \\ 0.004 - 0.013 & 0.035 - 0.042 & 0.9991 - 0.9994 \end{pmatrix}$$

Decay of charm

Just like strange:



Measure  $V_{cs}$ ? Yes, but... quarks are never alone! Need a lot of measurements  $\longrightarrow$  SELEX

### Lifetime Difference of Charm Particles – The $\Xi_c$ as Example

 $\Xi_c^0 (csd)$  decay:  $\tau = 98 \cdot 10^{-15}$  sec

$$\Xi_c^+$$
 (csu) decay:  $\tau = 442 \cdot 10^{-15}$  sec







### Experimental Setup

To do a good job on charm, you need:

- High Statistic (charm cross section small)
- Good Trigger or Software Filter ( $\sigma_c \approx 10^{-3} \sigma_{tot}$ )
- Extremely good Silicon Detectors (secondary vertex, lifetime)
- Extremely good Particle Identification (proton, kaon)

Or even better: All of the above!

### **Fermilab Tevatron**





Partículas Elementales – una vista desde San Luis Potosí

# Fermilab – High Rise and Fixed Target Area





Jürgen@UV-Jalapa 11Mar2004. 17

Partículas Elementales – una vista desde San Luis Potosí



#### The SELEX Collaboration

G.P. Thomas Ball State University, Muncie, IN 47306, U.S.A.

E. Gülmez Bogazici University, Bebek 80815 Istanbul, Turkey

R. Edelstein, S.Y. Jun, A.I. Kulyavtsev<sup>1</sup>, A. Kushnirenko, D. Mao<sup>1</sup>,
P. Mathew<sup>2</sup>, M. Mattson, M. Procario<sup>3</sup>, J. Russ, J. You<sup>4</sup>
Carnegie-Mellon University, Pittsburgh, PA 15213, U.S.A.

A.M.F. Endler Centro Brasiliero de Pesquisas Físicas, Rio de Janeiro, Brazil

P.S. Cooper, J. Kilmer, S. Kwan, J. Lach, E. Ramberg, D. Skow, L. Stutte Fermilab, Batavia, IL 60510, U.S.A.

V.P. Kubarovsky, V.F. Kurshetsov, A.P. Kozhevnikov, L.G. Landsberg, V.V. Molchanov, S.B. Nurushev, S.I. Petrenko, A.N. Vasiliev, D.V. Vavilov, V.A. Victorov Institute for High Energy Physics, Protvino, Russia

Li Yunshan, Mao Chensheng, Zhao Wenheng, He Kangling, Zheng Shuchen, Mao Zhenlin Institute of High Energy Physics, Beijing, P.R. China

M.Y. Balatz<sup>5</sup>, G.V. Davidenko, A.G. Dolgolenko, G.B. Dzyubenko,
A.V. Evdokimov, M.A. Kubantsev, I. Larin, V. Matveev, A.P. Nilov,
V.A. Prutskoi, A.I. Sitnikov, V.S. Verebryusov, V.E. Vishnyakov
Institute of Theoretical and Experimental Physics, Moscow, Russia

U. Dersch<sup>6</sup>, I. Eschrich<sup>7</sup>, I. Konorov<sup>8</sup>, H. Krüger<sup>9</sup>, J. Simon<sup>10</sup>, K. Vorwalter<sup>11</sup> Max-Planck-Institut für Kernphysik, 69117 Heidelberg, Germany

I.S. Filimonov<sup>5</sup>, E.M. Leikin, A.V. Nemitkin, V.I. Rud Moscow State University, Moscow, Russia A.G. Atamantchouk, G. Alkhazov, N.F. Bondar, V.L. Golovtsov, V.T. Kim, L.M. Kochenda, A.G. Krivshich, N.P. Kuropatkin, V.P. Maleev, P.V. Neoustroev, B.V. Razmyslovich, V. Stepanov, M. Svoiski, N.K. Terentyev<sup>12</sup>, L.N. Uvarov, A.A. Vorobyov Petersburg Nuclear Physics Institute, St. Petersburg, Russia

> I. Giller, M.A. Moinester, A. Ocherashvili, V. Steiner Tel Aviv University, 69978 Ramat Aviv, Israel

J. Amaro, A. Blanco, J. Engelfried<sup>4</sup>, A. Morelos, I. Torres, E. Vasquez Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico

> M. Luksys Universidade Federal da Paraíba, Paraíba, Brazil

V.J. Smith University of Bristol, Bristol BS8 1TL, United Kingdom

M. Kaya, E. McCliment, K.D. Nelson<sup>13</sup>, C. Newsom, Y. Onel, E. Ozel, S. Ozkorucuklu, P. Pogodin University of Iowa, Iowa City, IA 52242, U.S.A.

> L.J. Dauwe University of Michigan-Flint, Flint, MI 48502, U.S.A.

M. Gaspero, M. Iori University of Rome "La Sapienza" and INFN, Rome, Italy

L. Emediato, C.O. Escobar<sup>14</sup>, F.G. Garcia<sup>4</sup>, P. Gouffon, T. Lungov<sup>15</sup>, M. Srivastava, R. Zukanovich-Funchal University of São Paulo, São Paulo, Brazil

> A. Lamberto, A. Penzo, G.F. Rappazzo, P. Schiavon University of Trieste and INFN, Trieste, Italy

# **SELEX Appartus**

3 segment forward spectrometer  $(x_F > .1)$ 

- 74000 strip silicon system,  $4 \,\mu m$  transverse position resolution at 600 GeV
- Beam tagging  $(\Sigma^-/\pi^-, p/\pi^+)$  with Beam TRD
- 3000 phototube RICH  $K/\pi$  separation up to 165 GeV
- Secondary  $e^-$  identification with Electron TRD for semileptonic decays
- Precise downstream tracking
  - 18 large silicon planes ( $\sigma \sim 8 \,\mu \mathrm{m}$ )
  - 26 PWC planes ( $\sigma \sim 0.6 1 \,\mathrm{mm}$ )
  - $-3 \times 24$  Vector Drift Chambers ( $\sigma \sim 100 \,\mu m$ )
- 3 lead glass photon detectors





#### **SELEX Particle ID detectors**

### **Online Filter**

Filter is Online Program which select events that have evidence for a secondary vertex.

#### • Algorithm:

- Start from downstream tracking to find high-momentum  $(p > 20 \,\text{GeV}/c)$  tracks in PWCs
- extrapolate tracks back to vertex silicon within the roads predicted by downstream tracking
- Rejext events if tracks form just a primary vertex
- Charm efficiency about 50%, Rejection 8
- 4 times more charm per tape, 8 times faster to process.

# Reconstruction of $\Lambda_c^+$

- $\Lambda_c^+$  consists of (udc) quarks
- Mass  $m_0 = 2.285 \,\mathrm{GeV}/c^2$  (remember: proton  $0.938 \,\mathrm{GeV}/c^2$ )
- Lifetime:  $\tau = (2.0 \pm 0.06) \cdot 10^{-13} \sec (\text{SELEX Collaboration, PRL 86 5243})$
- Decays to  $\Lambda_c \to p K^- \pi^+$  in 5.0% of the time.
- Only in 1 out of 1000 collisions a charm quark gets produced.

#### Special Theory of Relativity:

$$E = m \cdot c^{2}$$

$$m = m_{0} \cdot \gamma$$

$$\gamma = \frac{1}{\sqrt{1 - \frac{v^{2}}{c^{2}}}} = \frac{E \cdot c^{2}}{m_{0}}$$

$$p = m \cdot v \approx m_{0} \cdot \gamma \cdot c$$
Time dilation:  $t = t_{0} \cdot \gamma$ 
Mean flight path:  $L = c \cdot \tau \cdot \gamma$ 

 $\implies$  A  $\Lambda_c^+$  with momentum 200 GeV/c flies on avarage 5.4 mm  $\implies$  Do a Fixed Target Experiment – But even there we cannot observe a  $\Lambda_c$  directly

Partículas Elementales – una vista desde San Luis Potosí

#### What do we do?

- Measure type, direction, momentum, and charge of all decay products
- Apply momentum and energy conservation to "interesting" decay vertex and calculate energy and momentum of hypothetical mother particle
- Transform into rest system of mother particle to obtain rest mass ("Invariant Mass")
- Do this for a lot of events, fill histogram with results

#### Measuring direction and decay vertex

• Use silicon microstip detectors

#### Measuring momentum and charge

• Deflection in magnetic field, measure track angles before and after with wire chambers

#### Measuring type (is it a proton?)

- Measure total energy in calorimeter, calculate mass
- Measure velocity with Cherenkov effect



Jürgen@UV-Jalapa 11Mar2004. 26



Jürgen@UV-Jalapa 11Mar2004. 27





Jürgen@UV-Jalapa 11Mar2004. 29

### **Cherenkov Radiation**

A charged particle with a velocity v larger than the velocity of light in a medium emits light (Pavel A. Cherenkov, Ilja M. Frank, Igor Y. Tamm, Nobel Price 1958)

Threshold:  

$$\beta_{\text{thres}} = \frac{v_{\text{thres}}}{c} \ge \frac{1}{n} \qquad \gamma_{\text{thres}} = \frac{n}{\sqrt{n^2 - 1}}$$
Angle of emission:  

$$\cos \theta_c = \frac{1}{\beta n} = \frac{1}{\frac{v}{c}n}$$

$$\theta_c^{\text{max}} = \arccos \frac{1}{n} \quad \text{Water:} \quad \theta_c^{\text{max}} = 42^\circ \quad \text{Neon (1atm):} \quad \theta_c^{\text{max}} = 11 \text{ mrad}$$
Number of photons:  

$$\frac{d^2 N}{dEdl} = \frac{\alpha z^2}{\hbar c} \left(1 - \frac{1}{(\beta n)^2}\right) = \frac{\alpha z^2}{\hbar c} \sin^2 \theta_c$$

$$\frac{d^2 N}{d\lambda dl} = \frac{2\pi \alpha z^2}{\lambda^2} \sin^2 \theta_c$$

### Usage in Detectors

- Water Cherenkov Detectors (SuperKamiokande, Auger Tanks)
- Threshold Cherenkov Detectors (Beamlines, Experiments)
- Ring Imaging Cherenkov Counters RICH

#### Advertisement

5th International Workshop on Ring Imaging Cherenkov Detectors (RICH2004) Celebrating the Centenary of Pavel Cherenkov's Birth November 30 - December 5, 2004 Playa del Carmen, Quintana Roo, Mexico http://www.ifisica.uaslp.mx/rich2004

### **Ring Imaging Cherenkov Detectors**

Measure Cherenkov angle, not only threshold



SELEX RICH, 53 Million single negative track events

# **SELEX** Publications

Non-Charm Topics

- Measurement of the Σ<sup>-</sup> Charge Radius by Σ<sup>-</sup>-Electron Elastic Scattering. Physics Letters B522 (2001) 233-239.
- 2. Radiative decay width of the  $a_2(1320)^-$  meson. Physics Letters **B521** (2001) 171-180.
- 3. First Measurement of  $\pi^- e \to \pi^- e \gamma$  Pion Virtual Compton Scattering. Phys. Rev. C 66, 034613 (2002).
- 4. Total Cross Section Measurements wit π<sup>-</sup>, Σ<sup>-</sup> and Protons on Nuclei and Nucleons around 600 GeV/c. Nucl. Phys. B 579 (2000) 277-312.
  Charm Topics
  - 5. Observation of the Cabibbo-suppressed decay  $\Xi_c^+ \to p K^- \pi^+$ . Phys. Rev. Letter **84** (2000) 1857-1861.
  - 6. Precision measurements of the  $\Lambda_c^+$  and  $D^0$  lifetimes. Phys. Rev. Letter **86** (2001) 5243-5246.
  - 7. Hadronic Production of  $\Lambda_c$  from 600 GeV/c  $\pi^-$ ,  $\Sigma^-$  and p beams. Physics Letters **B528** (2002), 49-57.
  - 8. Measurement of the  $D_s$  lifetime. Physics Letters **B523** (2001) 22-28.
  - 9. First Observation of the Doubly Charmed Baryon  $\Xi_{cc}^+$ . Phys. Rev. Letters **89** 112001 (2002).
- 10. Production Asymmetry for  $D_s$  for 600 GeV/c  $\Sigma^-$  and  $\pi^-$  beam. Physics Letters **B558** (2003) 34-40.

10 publications (2 more submitted), 3 of them PRL. Plus several detector publications. Partículas Elementales – una vista desde San Luis Potosí Jürgen@UV-Jalapa 11Mar2004. 33

### The Double-Charm



VOLUME 89, NUMBER 11 PHYSICAL REVIEW LETTERS

First Observation of the Doubly Charmed Baryon  $\Xi_{cc}^+$ 

9 SEPTEMBER 2002

M. Mattson,<sup>3</sup> G. Alkhazov,<sup>11</sup> A. G. Atamantchouk,<sup>11,a</sup> M. Y. Balatz,<sup>8,a</sup> N. F. Bondar,<sup>11</sup> P. S. Cooper,<sup>5</sup> L. J. Dauwe,<sup>17</sup> G. V. Davidenko,<sup>8</sup> U. Dersch,<sup>9,b</sup> A. G. Dolgolenko,<sup>8</sup> G. B. Dzyubenko,<sup>8</sup> R. Edelstein,<sup>3</sup> L. Emediato,<sup>19</sup> A. M. F. Endler,<sup>4</sup> J. Engelfried,<sup>5,13</sup> I. Eschrich,<sup>9,c</sup> C. O. Escobar,<sup>19,d</sup> A. V. Evdokimov,<sup>8</sup> I. S. Filimonov,<sup>10,a</sup> F. G. Garcia,<sup>5,19</sup> M. Gaspero,<sup>18</sup> I. Giller,<sup>12</sup> V. L. Golovtsov,<sup>11</sup> P. Gouffon,<sup>19</sup> E. Gülmez,<sup>2</sup> He Kangling,<sup>7</sup> M. Iori,<sup>18</sup> S. Y. Jun,<sup>3</sup> M. Kaya,<sup>16</sup> J. Kilmer,<sup>5</sup> V. T. Kim,<sup>11</sup> L. M. Kochenda,<sup>11</sup> I. Konorov,<sup>9,e</sup> A. P. Kozhevnikov,<sup>6</sup> A. G. Krivshich,<sup>11</sup> H. Krüger,<sup>9,f</sup> M. A. Kubantsev,<sup>8</sup> V. P. Kubarovsky,<sup>6</sup> A. I. Kulyavtsev,<sup>3,5</sup> N. P. Kuropatkin,<sup>5,11</sup> V. F. Kurshetsov,<sup>6</sup> A. Kushnirenko,<sup>3</sup> S. Kwan,<sup>5</sup> J. Lach,<sup>5</sup> A. Lamberto,<sup>20</sup> L. G. Landsberg,<sup>6</sup> I. Larin,<sup>8</sup> E. M. Leikin,<sup>10</sup> Li Yunshan,<sup>7</sup> M. Luksys,<sup>14</sup> T. Lungov,<sup>19,g</sup> V. P. Maleev,<sup>11</sup> D. Mao,<sup>3,h</sup> Mao Chensheng,<sup>7</sup> Mao Zhenlin,<sup>7</sup> P. Mathew,<sup>3,i</sup> V. Matveev,<sup>8</sup> E. McCliment,<sup>16</sup> M. A. Moinester,<sup>12</sup> V. V. Molchanov,<sup>6</sup> A. Morelos,<sup>13</sup> K. D. Nelson,<sup>16,j</sup> A. V. Nemitkin,<sup>10</sup> P. V. Neoustroev,<sup>11</sup> C. Newsom,<sup>16</sup> A. P. Nilov,<sup>8</sup> S. B. Nurushev,<sup>6</sup> A. Ocherashvili,<sup>12,k</sup> E. Oliveira,<sup>4</sup> Y. Onel,<sup>16</sup> E. Ozel,<sup>16</sup> S. Ozkorucuklu,<sup>16</sup> A. Penco,<sup>20</sup> S. V. Petrenko,<sup>6</sup> P. Pogodin,<sup>16</sup> M. Sroiski,<sup>11,m</sup> N. K. Terentyev,<sup>3,11</sup> G. P. Thomas,<sup>1</sup> L. N. Uvarov,<sup>11</sup> A. N. Vasiliev,<sup>6</sup> D. V. Vavilov,<sup>6</sup> V.S. Verebryusov,<sup>8</sup> V.A. Victorov,<sup>6</sup> V.E. Vishnyakov,<sup>8</sup> A. A. Vorobyov,<sup>11</sup> K. Vorwalter,<sup>9,o</sup> J. You,<sup>3,5</sup> Zhao Wenheng,<sup>7</sup> Zheng Shuchen,<sup>7</sup> and R. Zukanovich-Funchal<sup>19</sup>

(SELEX Collaboration)

Also mentioned in "Physics News Update" Article in "La Jornada" Frontpage (with photo) "El Sol de San Luis"



### Work in San Luis Potosí on SELEX

Mostly analysis work:

- Search for exotic state decaying into  $\Lambda \bar{p} \pi^+ \pi^+$  (Master)
- Semileptonic decay of  $\Lambda_c^+ \to p K^- e^+ \nu_e$  (Ph.D., finish in ~ 6 months)
- Double Charm Baryons search and properties (Ph.D., one more year)
- Charmed Strange Baryons properties (Ph.D., two more years)
- Hyperon Properties, production cross section and multiplicities (Licenciatura, Master)
- Search for Pentaquarks ( $\Theta(1540)$  and charmed partner)

### The CKM Experiment

Cabibbo-Kobayashi-Maskawa (CKM) Matrix

$$\begin{pmatrix} d'\\s'\\b' \end{pmatrix} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub}\\V_{cd} & V_{cs} & V_{cb}\\V_{td} & V_{ts} & V_{tb} \end{pmatrix} \begin{pmatrix} d\\s\\b \end{pmatrix}$$

Theory (Standard Model): Matrix is unitary (rotation).

$$|V| = \begin{pmatrix} 0.9741 - 0.9756 & 0.219 - 0.226 & 0.0025 - 0.0048 \\ 0.219 - 0.226 & 0.9732 - 0.9748 & 0.038 - 0.044 \\ 0.004 - 0.014 & 0.037 - 0.044 & 0.9990 - 0.9993 \end{pmatrix}$$

Wolfenstein parameterization:

$$V = \begin{pmatrix} 1 - \frac{\lambda^2}{2} & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \frac{\lambda^2}{2} & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix} + \mathcal{O}(\lambda^4)$$

Wolfenstein parameterization:

$$V = \begin{pmatrix} 1 - \frac{\lambda^2}{2} & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \frac{\lambda^2}{2} & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix} + \mathcal{O}(\lambda^4) \qquad \bar{\eta} = \eta(1 - \frac{\lambda^2}{2})$$



### Quantitative Access to CKM parameters

- Goal is to test the Standard Model hypothesis that a single phase in the CKM matrix is the sole source of CP violation.
- This means *over-constraining* the prediction, and testing for consistency. Paraphrasing Wolfenstein: "...I invented the parameters  $\rho$  and  $\eta$ , and I don't care what the values are so why should you?? The substance here is to *over-constrain* the model and test for consistency..."<sup>2</sup>
- To falsify the Standard Model hypothesis the only foreseeable results with controlled errors are:
  - B physics:  $B_d^0 \to \Psi K_s$ ,  $x_s/x_d$  mixing.
  - K physics:  $K^+ \to \pi^+ \nu \bar{\nu}$  and  $K^0 \to \pi^0 \nu \bar{\nu}$ .

$$K^+ \to \pi^+ \nu \overline{\nu}$$
 Theory

Calculated^3 by weak isospin rotation from  $K^+ \to \pi^0 e^+ \nu$ 



$$DV[K^+ \to \pi^+ \nu \nu] = 0.33 \times 10^{-10}$$
  
=  $(0.72 \pm 0.21) \times 10^{-10}$ 

 $<sup>^3 {\</sup>rm T.}$ Inami and C.S. Lim, Progress of Theoretical Physics  ${\bf 65}\,(1981)\,297\text{-}314$ Partículas Elementales – una vista desde San Luis Potosí

# $K^+ ightarrow \pi^+ u \overline{ u}$ Theory (cont.)

- $\bullet$  Total theoretical uncertainty of 8 % estimated by Buras, et al.  $^4$
- Dominated by uncertainty in charmed quark mass.
- Structure of  $K^+$  is put in with measured  $K^+ \to \pi^0 e^+ \nu$  branching ratio.
- All other corrections are small and calculated (NLO QCD, isopsin, long distance contributions).

 $\implies$  We can measure  $V_{td}$  to 10% if we can measure  $Br[K^+ \rightarrow \pi^+ \nu \bar{\nu}]$  to 10% (100 Events).



### A short estimate for an inflight decay experiment

- $BR = 10^{-10}$
- 100 Events
- Acceptance  $\sim 1\%$

 $\implies 10^{14}$  live  $K^+$ 

- Duty cycle of machine 30 % (Fermilab Main Injector)
- Uptime of machine and experiment  $50\,\%$
- 2 years of running time (lifetime of a graduate student)

```
\implies 30 \,\mathrm{MHz} of K^+
```

In addition: Only a few background events  $\implies$  Suppress background to  $10^{-12}$ 

#### Charged Kaons at the Main Injector

A Proposal for a Precision Measurement of the Decay  $K^+ \rightarrow \pi^+ \nu \overline{\nu}$  and Other Rare  $K^+$  Processes at Fermilab Using the Main Injector



J. Frank, S. Kettell, R. Strand Brookhaven National Laboratory, Upton, NY, USA

L. Bellantoni, R. Coleman, P.S. Cooper<sup>\*</sup>, T.R. Kobilarcik, H. Nguyen, E. Ramberg, R.S. Tschirhart, H.B. White, J.Y. Wu Fermi National Accelerator Laboratory, Batavia, IL, USA

G. Britvich, V. Burtovoy, A.V. Inyakin, V. Kurshetsov, A. Kushnirenko, L.G. Landsberg, V. Molchanov, V. Obraztsov, S.I. Petrenko, V.I. Rykalin, A. Soldatov, M.M. Shapkin, O.G. Tchikilev, D. Vavilov, O. Yushchenko Institute of High Energy Physics, Serpukhov, Russia

> V. Bolotov, S. Laptev, A. Polarush, A. Pastsiak, R. Sirodeev Institute of Nuclear Research, Troisk, Russia

J. Engelfried, A. Morelos Instituto de Fisica, Universidad Autonoma de San Luis Potosi, Mexico

> A.R. Barker, H. Haung, R. Niclasen, M. Wilking University of Colorado, Bolder, CO

M. Campbell, R. Gustafson, M. Longo, H. Park University of Michigan, Ann Arbor, Michigan 48109

C.M. Jenkins University of South Alabama, Mobile, Alabama 36688

K. Lang University of Texas at Austin, Austin, Texas 78712

C. Dukes, L. Lu, K. Nelson University of Virgina, Charlottesville, VA 22901

### **Experimental Method**

#### BIGGEST PROBLEM IS BACKGROUND

- Signal:  $K^+ \to \pi^+ \nu \bar{\nu}$ . Only measurable:  $K^+, \pi^+$
- Biggest backgrounds:  $K^+ \to \mu^+ \nu$  (64%) and  $K^+ \to \pi^+ \pi^0$  (21%)

Calculate "Missing Mass"

$$M_{miss}^2 = M_K^2 (1 - p_\pi / p_K) + m_\pi^2 (1 - p_K / p_\pi) - p_\pi p_K \theta^2$$

For 2-body decays,  $M_{miss}$  is fixed value. For signal,  $M_{miss}$  has distribution.

- Reduce all material to minimum
- Make redundant measurements
- Use only proven detector technology



Velocity Spectrometers: 2 RICH Detectors



Ring Radius depends on velocity
Ring Center depends on track angles
RICH measures vector velocity

### **Design of RICH Detectors**

Pion RICH: Like SELEX RICH, but with 20 m Vessel



Kaon RICH: 10 m Vessel, folded light path



# The Final Signal Plot



### Other possible measurements

 $10^{-12}$  in single event sensitivity is a long way. There are a lot of interesting modes to be picked up. This list is NOT finished, and is open to more suggestions.

These are just a few examples we where thinking of:

- $K^+ \rightarrow \mu^+ \nu_\mu \gamma$  Form Factor: Test of Chiral Perturbation Theory
- $K^+ \to \pi^+ e^+ e^-$ ,  $K^+ \to \pi^+ \mu^+ \mu^-$ , Form Factor and Branching Ratio: Test of Chiral Perturbation Theory
- $K^{\pm} \to \pi^{\pm}\pi^{+}\pi^{-}, K^{\pm} \to \pi^{\pm}\pi^{0}\pi^{0}, K^{\pm} \to \pi^{\pm}\pi^{0}\gamma, K^{\pm} \to \pi^{\pm}\gamma\gamma$ : Test of Chiral Perturbation Theory, Search for Direct CP Violation in  $K^{\pm}$  decays.
- $K^+ \to \pi^0 e^+ \nu, K^+ \to \pi^0 \mu^+ \nu$  Branching Ratio: Measurement of  $V_{us}$

### Work in San Luis Potosí

- Design work on Kaon and Pion RICH
- Monte Carlo studies
- Construction of flat, thin mirror for Kaon RICH
- Tests and Classifications of Photomultipliers
- (Maybe:) Supervision of spherical mirror production (in Mexico?)

# **Flat Mirror Prototypes**





"Good" spherical mirror to test flat mirrors

First Prototype (glass, CIO Leon)

Ronchigram of first prototype



# Flat Mirror Prototypes (cont.)

Second Prototype: Aluminized Mylar, Plastic Ring



### Schedule CKM Experiment

- April 1996: Expression of Interest (EOI)
- April 1998: Proposal (version 1) submitted
- October 1998: Approved as an Fermilab R&D project
- October 1999: R&D project financed
- April 2001: Proposal (version 2) submitted
- June 2001: EXPERIMENT RECEIVED STAGE1 (Physics) APPROVAL from Fermilab
- September 2003: EXPERIMENT was killed by P5 committee
- Beginning 2004: Redesigning to for unseparated beam, at Fermilab or CERN
- 2004-???: Testbeams, construction
- ????- : Data taking



# So everything is made of quarks and leptons, eh? Who would have thought it was so simple?

### My Personal List of Unanswered Questions

- Why do particles have mass? (Higgs)
- Are there other states of matter, in addition to Baryons and Mesons?
  - Quark-Gluon Plasma
  - 4-quark states, Pentaquarks
- Why is there more matter than anti-matter in the Universe? (CP Violation)
- What is the mass of the neutrinos?
- Why do we have exactly 3 generations?
- What is the orign of the Cosmic Rays?
- Of what is the Universe made?

# Conclusions

- High Energy Physics is a very active field Experimentally and Theoretically
- There are still a lot of unanswered questions
- IF-UASLP is collaborating in SELEX mostly with data analysis
- IF-UASLP is collaborating in CKM preparing the experiment, including hardware!
- IF-UASLP has 2 (nearly 3) theoreticians

Fermilab: http://www.fnal.gov
IF-UASLP: http://www.ifisica.uaslp.mx
Jurgen: http://www.ifisica.uaslp.mx/~jurgen
SELEX: http://www-selex.fnal.gov
CKM: http://www.fnal.gov/projects/ckm/Welcome.html
RICH2004: http://www.ifisica.uaslp.mx/rich2004