Instrumentation

2nd Latin American School of High Energy Physics San Miguel Regla, Mexico, June 1-14, 2003 Jürgen Engelfried¹ Instituto de Física, Universidad Autónoma de San Luis Potosí, Mexico

Outline

three 75min classes, roughly separated in:

- Physics of Particle Detection
- Basic Designs of Detectors, with real examples from real experiments
- Special Example: Particle Identification

Please ask questions, be active, do not just consume!

 $^{^1 \}rm jurgen@ifisica.uaslp.mx, http://www.ifisica.uaslp.mx/~jurgen$

Introduction

- Detection and Identification of Particles and Nuclei important in
 - high-energy physics
 - cosmic ray physics
 - nuclear physics

Basic Idea Every effect of particles or radiation can be used as a working principle for a detector

Main Purpose of particle detectors: Detection and identification of particles with mass m and charge zIn particle physics: Usually $z = 0, \pm 1$, but not in nuclear, heavy ion physics, or cosmic rays

Examples

• Charged particle (charge z) deflected in magnetic field \rightarrow momentum p

$$\rho \propto \frac{p}{z} = \frac{\gamma m \beta c}{z}$$

• Time of flight determines particle velocity

$$\beta = \frac{v}{c} \propto \frac{1}{t}$$

• Cherenkov angle determines particle velocity

$$\theta_C = \frac{1}{\beta n}$$

• Calorimeter measurement provides energy measurement

• Charge measurement: Ionization Energy loss

$$\frac{dE}{dx} \propto \frac{z^2}{\beta^2} \ln(a\beta\gamma)$$

- With all the information together one can determine the quadri-vector of the particle.
- Basic detection techniques work mostly for charged particles only.
- Neutral particles usually detected "indirectly" via production of charged particles.

Introduction (cont.)

Design of Instrumentation and Detectors requires knowledge of

- Basic physics for interaction of charged and neutral particles with matter
- Mechanical Engineering
- Electrical Engineering (high voltage)
- Electronic Engineering
- Interfaces to Trigger, Data Acquisition and Computing (Lecture by Nick Elis)
- Software Engineering (calibration)
- Operation (stability)
- To know any one of them is not sufficient
- You have to apply **all together** to build, operate and **use** an instrument for your **physics measurement**

• Always keep in mind what you want to measure, and what precision (resolution) you need

Recommended Literature

- Claus Grupen: Particle Detectors. Cambridge University Press, 2000. The best book I know about detectors.
- Konrad Kleinknecht: Detectors for particle radiation. Cambridge University Press, 2nd edition 1998. Also a good book.
- Richard C. Fernow: Introduction to experimental Particle Physics. Cambridge University Press, 1986.
- Richard Wigmans: Calorimetry. Oxford Science Publishing, 2000. THE book about calorimeters. Written by the expert with all details.
- Lecture notes and Proceedings of ICFA Instrumentation Schools (since 1987 every two years).
- Particle Data Book. short summaries of important things.

Outline of first part of lecture

- Introduction, Kinematics
- Interaction of Charged Particles
 - Ionization, scintillation, Cherenkov and Transition Radiation
 - Bremsstrahlung and nuclear interactions
- Interaction of Neutral Particles
 - photons: photoelectric effect, Compton scattering, pair production
 - neutrons
 - neutrinos
- Electromagnetic Showers
- Hadron Showers

Charged Particles – Kinematics

• Conservation of Momentum and Energy: Max. Energy for particle with mass m, velocity $v = \beta c$, collision with electron:

$$E_{\rm kin}^{\rm max} = \frac{2m_e c^2 \beta^2 \gamma^2}{1 + 2\gamma \frac{m_e}{m} + \left(\frac{m_e}{m}\right)^2} = \frac{2m_e p^2}{m^2 + m_e^2 + 2m_e E/c^2}$$

• Limits:

- Low energy, heavier than electron $(2\gamma \frac{m_e}{m} \ll 1, \ m \gg m_e)$ $E_{\rm kin}^{\rm max} = 2m_e c^2 \beta^2 \gamma^2$

- relativistic
$$(E_{\rm kin} \approx E, pc \approx E)$$
:

$$E^{\max} = \frac{E^2}{E + m^2 c^2 / 2m_e}$$

- Electron - Electron Collisions $(m = m_e)$:

$$E_{\rm kin}^{\rm max} = \frac{p^2}{m_e + E/c^2} = \frac{E^2 - m_e^2 c^4}{E + m_e c^2} = E - m_e c^2$$

• Scattering angle (on nucleus Z, impact parameter b)

$$\Theta = \frac{2z \cdot Z \cdot e^2}{\beta c b} \cdot \frac{1}{p}$$

• Cross Section (Rutherford):

$$\frac{d\sigma}{d\Omega} = \frac{z^2 Z^2 r_e^2}{4} \left(\frac{m_e c}{\beta p}\right)^2 \frac{1}{\sin^4 \Theta/2}$$

• Multiple Scattering

$$\sqrt{\langle \Theta^2 \rangle} = \Theta_{\text{plane}} = \frac{13.6 \,\text{MeV}}{\beta c p} z \cdot \sqrt{\frac{x}{X_0}} \left\{ 1 + 0.038 \ln\left(\frac{x}{X_0}\right) \right\}$$

$$\Theta_{\text{space}} = \sqrt{2} \Theta_{\text{plane}}$$

Approximation by Gaussian:

$$P(\Theta)d\Theta = \frac{1}{\sqrt{2\pi}\Theta_{\text{plane}}} \exp\left\{-\frac{\Theta^2}{2\Theta_{\text{plane}}^2}\right\} d\Theta$$

Energy Loss of Charged Particles

- Interaction via exchange of Photons (electromagnetic interaction)
- Virtual Photons: Absorbed by atoms in material \rightarrow Ionization, Excitation
- Real Photons: Radiation is emitted by a charge particle if:
 - 1. v > c/n: Cherenkov radiation
 - 2. $\vec{v}/c_{\rm ph} = \vec{v} \cdot n/c$ changes
 - (a) $|\vec{v}|$ changes: Bremsstrahlung
 - (b) direction of \vec{v} changes: Synchrotron radiation
 - (c) n changes: Transition Radiation

Ionization Energy Loss (Bethe-Bloch formula)

Derivation from Claus Grupen

 $p_b = \frac{2r_e m_e c}{b\beta} z$ Momentum transfer per target electron b: impact parameter

Energy transfer (classical approximation)

$$\epsilon = \frac{p_b^2}{2m_e} = \frac{2r_e^2 m_e c^2}{b^2 \beta^2} z^2$$

Interaction rate per (g/cm²), atomic cross section σ

 $\Phi[g^{-1}cm^2] = \frac{N_A}{A}\sigma[cm^2/atom] \quad N_A \text{ Avogadro's number, } A \text{ atomic mass}$

 $\Phi(\epsilon) \, d\epsilon = \frac{N_A}{A} 2\pi b \, db \, Z$ $2\pi b \, db \quad \text{area of annulus} \quad Z \quad \text{Number of electrons per atom}$

$$\epsilon = \epsilon(b) \Rightarrow b^2 = \frac{2r_e^2 m_e c^2}{\beta^2} z^2 \frac{1}{\epsilon}$$

$$\Phi(\epsilon) \, d\epsilon = \frac{N_A}{A} \pi \frac{2r_e^2 m_e c^2}{\beta^2} \, z^2 \, Z \, \frac{d\epsilon}{\epsilon^2}$$

energy loss

$$-dE = \int_{0}^{\infty} \Phi(\epsilon) \epsilon \, dx = \int_{0}^{\infty} \frac{N_A}{A} 2\pi \, bdb \, Z \epsilon \, dx$$
$$-\frac{dE}{dx} = \frac{2\pi N_A}{A} Z \int_{0}^{\infty} \epsilon \, b \, db = 2\pi \frac{Z N_A}{A} \frac{2r_e^2 m_e c^2}{\beta^2} z^2 \int_{0}^{\infty} \frac{db}{b}$$

Problem: Integral is divergent at $b \to 0$ and $b \to \infty$

$$\begin{array}{ll} b \rightarrow 0? & \text{assume } b_{\min} = \frac{h}{2p} = \frac{h}{2\gamma m_e \beta c} \\ & \text{half the de Broglie wavelength} \\ b \rightarrow \infty? & \text{if revolution time } \tau_R \text{ of electron in target atom is} \\ & \text{smaller than interaction time } \tau_i \text{ target looks neutral} \\ & \tau_i = \frac{b_{\max}}{v} \sqrt{1 - \beta^2} \quad \text{Lorentz contraction} \\ & \tau_R = \frac{1}{v_Z \cdot Z} = \frac{h}{I} \\ & \text{mean excitation energy } I \approx 10 \text{ eV} \cdot Z \\ & \tau_i = \tau_R \quad \Rightarrow b_{\max} = \frac{\gamma h \beta c}{I} \\ & -\frac{dE}{dx} = 2\pi \quad \frac{Z N_A}{A} \frac{2r_e^2 m_e c^2}{\beta^2} z^2 [\ln \frac{2\gamma^2 \beta^2 m_e c^2}{I} - \eta] \quad \eta: \text{ screening effect} \end{array}$$

Exact treatment: Bethe-Bloch formula (summary in PDG)

$$-\frac{dE}{dx} = 2\pi \frac{Z N_A 2 r_e^2 m_e c^2}{A} z^2 \left[\frac{1}{2} \ln \frac{2 m_e c^2 \gamma^2 \beta^2}{I^2} \beta^2 - \frac{\delta}{2}\right]$$

density correction

$$\frac{\delta}{2} = \ln \frac{\hbar \omega_p}{I} + \ln \beta \gamma - \frac{1}{2}$$
$$\hbar \omega_p = \sqrt{4\pi N_e r_e^2} \frac{m_e c^2}{\alpha} \quad \text{plasma energy}$$

 N_e electron density of absorbing material α fine structure constant

- Minimum at $3 \le \beta \gamma \le 4$
- Minimum ionizing particles:
 - helium: $-dE/dx = 1.94 \text{ MeV}/(\text{g/cm}^2)$
 - uranium: $-dE/dx = 1.08 \text{ MeV}/(\text{g/cm}^2)$
 - hydrogen: exceptionally large (Z/A = 1)
- $\ln \gamma$ term: relativistic (logarithmic) rise
- Fermi-Plateau due to density effect
- in gases: Plateau $\approx 60\%$ higher as min. ion.

Energy Loss in Gases

PEP4/9-TPC (185 dE/dx measurements, Ar:CH₄ at 8.5 atm)

Energy Loss for Heavy Ions

z = 26 $z \approx 90$

Cosmic Radiation in Nuclear Emulsions $(dE/dx \propto z^2)$

G.D. Rochester, Advancement in Science, Dec. 1970, pp. 183-194 2nd Latin American School of High Energy Physics Jürgen@SanMiguelRegla 1-14Jun03. 15

Instrumentation

Energy Loss in Optical Micro-dosimeter

note increase of ionization at end of track, also the
$$\delta$$
-rays

Instrumentation

2nd Latin American School of High Energy Physics

U. Titt et al., Nucl. Instr. Meth. A416 (1998) 85 Jürgen@SanMiguelRegla 1-14Jun03. 16

Energy Loss in Gas

 α particles in CF₄ based gas mixture, recorded via scintillation in double-gem micro-strip gas chamber

Instrumentation

Application: Bragg Peak

¹²C ions in water. Treatment of deep-seated tumors.

Proton Cancer Therapy

Instrumentation

G. Kraft, Nucl. Phys. A 654 (1999) 1058c 2nd Latin American School of High Energy Physics

Jürgen@SanMiguelRegla 1-14Jun03. 18

Landau Distribution

- Bethe-Bloch describes mean energy loss
- Energy loss is distributes asymmetrically
- approximated by

 $\Omega(\lambda) = \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}(\lambda + e^{-\lambda})}$ $\lambda = \frac{\left(\frac{dE}{dx}\right) - \left(\frac{dE}{dx}\right)^{\text{m.p.}}}{0.123 \text{ keV}}$ $\left(\frac{dE}{dx}\right)^{\text{m.p.}} \text{ most probable energy loss}$

- important in gases, thin absorbers
- Argon, $\beta \gamma = 4$: $(\frac{dE}{dx})^{\text{m.p.}} = 1.2 \text{ keV/cm}; \langle \frac{dE}{dx} \rangle = 2.69 \text{ keV/cm}$
- For Particle Identification:
 - Measure often (typ. 160) to get distribution
 - Use "Truncated Mean"

Electrons in $Ar:CH_4$ (80:20)

Particle Identification via dE/dx

OPAL Collaboration, CERN-PPE-94-49 Jürgen@SanMiguelRegla 1-14Jun03. 20

Scintillation

	effect of the lattice
inorganic crystals	electron-hole pair creation, excitons
	de-excitation at activator centers
	$(Nal(TI); Csl(TI); BaF_2; BGO; \dots)$
organic liquids or plastic	(three components
	primary scintillator: antracene $C_{14}H_{10}$;
	aphthalene $C_{10}H_8; \ldots$
	wavelength shifter: POPOP*; BBO [#] ;
	base material: mineral oil; PMMA ⁺ ;
gases	energy loss by excitation
	recombination
	$I Xe, Kr, Ar, N_2 \dots$

- * $C_{24}H_{16}N_2O_2$: 1.4-Bis-[2-(5-phenyloxazolyl)]-benzene
- # C₂₇H₁₉NO: 2.5-di-(4-biphenyl)-oxazole
- + $C_5H_8O_2$: polymethylmetacralate

Organic Plastic Scintillator

Non-Linear light yield to Energy Loss:

$$N = N_0 \frac{dE/dx}{1 + k_B \cdot (dE/dx)}$$

 $k_B \approx 0.01 \,\text{g/MeV} \,\text{cm}^2$ Birk's density Parameter Recently better approximation, by A. Menchaca et al.

Typically 100 eV energy loss for one photon wavelength shifting necessary to avoid self-absorption

Cherenkov Radiation

A charged particle with a velocity v larger than the velocity of light in a medium emits light (Pavel A. Cherenkov, Ilja M. Frank, Igor Y. Tamm, Nobel Price 1958)

Threshold:

$$\beta_{\text{thres}} = \frac{v_{\text{thres}}}{c} \ge \frac{1}{n} \qquad \gamma_{\text{thres}} = \frac{n}{\sqrt{n^2 - 1}}$$
Angle of emission:

$$\cos \theta_c = \frac{1}{\beta n} = \frac{1}{\frac{v}{c} n}$$

$$\theta_c^{\text{max}} = \arccos \frac{1}{n} \quad \text{Water:} \quad \theta_c^{\text{max}} = 42^\circ \quad \text{Neon (1atm):} \quad \theta_c^{\text{max}} = 11 \text{ mrad}$$
Number of photons:

$$\frac{d^2 N}{dEdl} = \frac{\alpha z^2}{\hbar c} \left(1 - \frac{1}{(\beta n)^2}\right) = \frac{\alpha z^2}{\hbar c} \sin^2 \theta_c$$

$$\frac{d^2 N}{d\lambda dl} = \frac{2\pi \alpha z^2}{\lambda^2} \sin^2 \theta_c$$

Water Cherenkov

neutrino induced muon (top) and electron (bottom) in SNO $\,$

neutrino induced muon in SuperKamiokande Instrumentation 2nd Latin American School of High Energy Physics

Jürgen@SanMiguelRegla 1-14Jun03. 24

Auger Experiment: Water Cherenkov's

Threshold Cherenkov Detectors

Aerogel: $n = 1.015 \Rightarrow \gamma_{\text{thres}} = 5.84$ $3.5 \,\text{GeV/c} \Rightarrow \gamma_{\pi} = 24.2, \quad \gamma_p = 2.86$

To identify more than 2 particles and/or to cover wider momentum range: Several counters at different thresholds

Ring Imaging Cherenkov Detectors

Measure Cherenkov angle, not only threshold

SELEX RICH, 53 Million single negative track events

J. Engelfried et al., Nucl. and Instr. and Methods A 502 (2003) 62-65 2nd Latin American School of High Energy Physics Jürgen@SanMiguelRegla 1-14Jun03. 27

Transition Radiation Detectors (TRD)

Transition Radiation: Reformation of particle field while traveling from medium with $\epsilon = \epsilon_1$ to medium with $\epsilon = \epsilon_2$.

Energy of radiation emitted at a single interface

$$S = \frac{\alpha \hbar z^2}{3} \frac{(\omega_1 - \omega_2)^2}{\omega_1 + \omega_2} \gamma$$

 $\alpha = 1/137, \omega_1, \omega_2$ plasma frequencies, $\gamma = E/mc^2$. Typical values: Air $\omega_1 = 0.7 \,\text{eV}$, polypropylene $\omega_2 = 20 \,\text{eV}$

Spectral and angular dependence of Transition Radiation:

$$\frac{d^2}{d\vartheta d\omega} = \frac{2e^2}{\pi c} \left(\frac{\vartheta}{\gamma^{-2} + \vartheta^2 + \omega_1^2/\omega^2} - \frac{\vartheta}{\gamma^{-2} + \vartheta^2 + \omega_2^2/\omega^2} \right)^2$$

 \implies Most of radiation in cone with half angle $1/\gamma$: forward in particle direction.

- Large photon energies $\omega > \gamma \omega_2 \approx 20 30$ KeV: large drop of intensity $\propto \gamma^4/\omega^4$
- Medium energies $\gamma \omega_1 < \omega < \gamma \omega_2$: Logarithmic decrease with ω
- Small energies $\omega < \gamma \omega_1 \approx 1 \text{ KeV}$: intensity almost constant

Probability to emit a KeV photon: $\approx 10^{-2} \implies$ Need a lot of interfaces: stack of radiator foils. Consequences:

- Need minimum foil thickness so particle field reaches new equilibrium
- Transition $\omega_1 \to \omega_2$ and $\omega_2 \to \omega_1$ equal \Longrightarrow Interference effects (min and max in fig)
- Equally spaced foils: Interference between amplitude of different foils
- Finite thickness of foils: re-absorption of radiation ($\propto Z^5$): Low Z materials.

Typical values used in TRDs: Thickness: $30 \,\mu\text{m}$, distance: $300 \,\mu\text{m}$,

materials: mylar, CH₂, carbon fibers, lithium. Jürgen@SanMiguelRegla 1-14Jun03. 29

Detection of Transition Radiation

X-rays emitted under small angle to particle track

 \implies X-ray detector sees X-rays and particle dE/dx together.

Typical dE/dx in gas detectors: some KeV/cm and Landau distributed

 \implies Signals from dE/dx and X-ray similar

Detector: Use "thin" MWPC, with Xenon or Krypton, several (10) radiator / chamber units to beat Landau

Two identification methods: Charge integration, Cluster counting Instrumentation 2nd Latin American School of High Energy Physics

Bremsstrahlung

$$-\frac{dE}{dx} = 4\alpha N_A \frac{Z^2}{A} z^2 \left(\frac{e^2}{mc^2}\right)^2 E \ln \frac{183}{Z^{1/3}}$$

$$-\frac{dE}{dx} = \frac{E}{X_0} \qquad \text{PDG: } X_0 = \frac{716.4 \, A}{Z(Z+1) \, \ln(287/\sqrt{Z})} \, [\text{g/cm}^2]$$

$$\frac{dE}{dx} \propto E \Rightarrow$$
 Critical Energy $\frac{dE}{dx}|_{\text{ion}} = \frac{dE}{dx}|_{\text{brems}}$

$$E_{\text{crit}}^e = \begin{cases} \frac{610 \text{ MeV}}{Z+1.24} & \text{ for sol} \\ \frac{710 \text{ MeV}}{Z+0.92} & \text{ for gas} \end{cases}$$

for solids and liquids for gases

Bremsstrahlung (cont.)

Material	$X_0 [\mathrm{g/cm}^2]$	$X_0 [\mathrm{cm}]$	$E_{\mathrm{crit}}^{e} \left[\mathrm{MeV} \right]$
air	37	30000	84
iron	13.9	1.76	22
lead	6.4	0.56	7.3

 $-\frac{dE}{dx} \propto \frac{1}{m^2} \Rightarrow$ Electron Bremsstrahlung dominates

But: Muons in iron:
$$E_{\text{crit}}^{\mu} = E_{\text{crit}}^{e} \left(\frac{m_{\mu}}{m_{e}}\right)^{2} = 960 \,\text{GeV}$$

 \Rightarrow Muon Calorimetry at TeV Energies

Bremsstrahlung important for electromagnetic cascades (Calorimetry)

Direct Electron Pair Production

in Coulomb field of Nucleus via virtual photons

$$-\frac{dE}{dx}|_{\rm pair} \propto E$$
 for large E

$$-\frac{dE}{dx} = a(E) + b(E)E$$

a(E) – Ionization energy loss $b(E) = b_{\text{brems}}(E) + b_{\text{pair}}(E) + b_{\text{nucl.int.}}(E)$

Range of muons

$$R = \int_{E}^{0} \frac{dE}{-dE/dx} = \frac{1}{b} \ln(1 + \frac{b}{a}E)$$
$$R = \begin{cases} 140 \text{ m rock for } E = 100 \text{ GeV} \\ 800 \text{ m rock for } E = 1 \text{ TeV} \\ 2300 \text{ m rock for } E = 10 \text{ TeV} \end{cases}$$

Energy loss of muons in Rock $(Z = 11, A = 22; \rho = 3 \text{ g/cm}^2)$

Nuclear Interactions

Important for the detection of neutral particles $\sigma_{\rm tot} \approx 50 \,{\rm mbarn}$ $\sigma_{\rm inel} \propto A^{\alpha}, \alpha = 0.71$ Nuclear Interaction length $\lambda_I = \frac{A}{N_A \rho \sigma_{\text{tot}}}$ Nuclear Absorption length $\lambda_a = \frac{A}{N_A \rho \sigma_{\text{inel}}}$ Cross section (mb) 10 total pp elastic 10 10⁻¹ 10² 10³ 10⁵ 10⁶ 10⁷ 108 10⁴ 10 for most material $\lambda_I, \lambda_a > X_0$ A1 Fe Pb air 1.9 2 10 10^{2} 10^{3} 10^{4} Center of mass energy (GeV) $\lambda_I [\text{cm}]$ $26.2 \quad 10.6 \quad 10.4$ 48000 $\lambda_I [g/cm]$ 70.6 82.8 116.2 62.0 Multiplicity grows logarithmically with E, Average $p_T^{*} = 350 \,\mathrm{MeV}/c$

Outline of first part of lecture

- Introduction, Kinematics
- Interaction of Charged Particles
 - Ionization, scintillation, Cherenkov and Transition Radiation
 - Bremsstrahlung and nuclear interactions
- Interaction of Neutral Particles
 - photons: photoelectric effect, Compton scattering, pair production
 - neutrons
 - neutrinos
- Electromagnetic Showers
- Hadron Showers
Interactions of Photons – Introduction

Photons are attenuated in matter.

$$I = I_0 e^{-\mu x}$$

 μ Mass Attenuation Coefficient

$$\mu = \frac{N_A}{A} \sum_{i=1}^3 \sigma_i$$

$$\sigma_i = \begin{cases} i = 1: \text{ Photoelectric Effect} \\ i = 2: \text{ Compton Scattering} \\ i = 3: \text{ Pair Production} \end{cases}$$

Photoelectric Effect

 $\gamma + \text{atom} \rightarrow \text{atom}^+ + e^-$ predominantly in K-shell

Complicated energy and Z dependence

$$\sigma_{\rm photo}^{K} = \left(\frac{32}{\epsilon^{7}}\right)^{1/2} \alpha^{4} Z^{5} \sigma_{\rm Thomson} \quad [\rm cm^{2}/atom]$$
$$\epsilon = \frac{E_{\gamma}}{m_{e}c^{2}} \quad \sigma_{\rm Thomson} = \frac{8}{3}\pi r_{e}^{2} = 665 \,\,\rm{mbarn}$$

For high energies:

$$\sigma_{\rm photo}^{K} = 4\pi \, r_e^2 \, Z^5 \, \alpha^4 \, \frac{1}{\epsilon}$$

Compton Scattering

$$\gamma + e \rightarrow \gamma' + e'$$

at high energies:
$$\sigma_C \propto \frac{\ln \epsilon}{\epsilon} \cdot Z$$

$$\frac{E_{\gamma}'}{E_{\gamma}} = \frac{1}{1 + \epsilon (1 - \cos \theta_{\gamma})}$$

$$E_{\rm kin}^{\rm max}(\theta_{\gamma}=\pi) = \frac{2\epsilon^2}{1+2\epsilon} m_e c^2 \quad \text{ for } \epsilon \gg 1 \ E_{\rm kin}^{\rm max}(\theta_{\gamma}=\pi) \to E_{\gamma}$$

Instrumentation

2nd Latin American School of High Energy Physics

Jürgen@SanMiguelRegla 1-14Jun03. 39

Pair Production

 $\gamma + \text{nucleus} \rightarrow \text{nucleus}' + e^+ + e^-$

threshold energy:

 $E_{\gamma} \ge 2 m_e c^2 + \frac{2 m_e c^2}{m_{\text{target}}} = \begin{cases} \approx 2 m_e c^2 \text{ on a nucleus} \\ 4 m_e c^2 \text{ on an electron} \end{cases}$

Cross section for $E_{\gamma} \gg 20 \,\mathrm{MeV}$

$$\sigma_{\text{pair}} = 4 \alpha r_e^2 Z^2 \left(\frac{7}{9} \ln \frac{183}{Z^{1/3}} - \frac{1}{54} \right) \quad [\text{cm}^2/\text{atom}]$$
$$\approx \frac{7}{9} \frac{A}{N_A} \frac{1}{X_0}$$

Mass Attenuation Coefficients (μ)

Interaction of Neutrons

indirect technique: neutrons interact and produce charged particles

• Low Energies (< 20 MeV): $n + {}^{6}\text{Li} \rightarrow \alpha + {}^{3}\text{H} \Rightarrow \text{LiI(Tl) scintillators}$ $n + {}^{10}\text{B} \rightarrow \alpha + {}^{7}\text{Li} \Rightarrow \text{BF}_{3} \text{ gas counters}$ $n + {}^{3}\text{He} \rightarrow p + {}^{3}\text{H} \Rightarrow {}^{3}\text{He-filled proportional counters}$ $n + p \rightarrow n + p \Rightarrow \text{proportional chambers with for example CH}_{4}$

• High Energies (E > 1 GeV) $n + {}^{235}\text{U} \rightarrow \text{fission products} \Rightarrow \text{coated proportional counters}$ $n + \text{nucleus} \rightarrow \text{hadron cascade} \Rightarrow \text{calorimeters}$

Interactions of Neutrinos

Small cross section: (MeV range):
$$\sigma(\nu_e N) = \frac{4}{\pi} \cdot 10^{-10} \left(\frac{\hbar p}{(m_p c)^2}\right)^2 = 1.6 \cdot 10^{-44} \,\mathrm{cm}^2$$
 for 0.5 MeV

for high Energies (GeV range):

$$\sigma(\nu_{\mu}N) = 0.67 \cdot 10^{-38} E_{\nu} \,\mathrm{cm}^2/(\mathrm{nucleon \ GeV})$$

$$\sigma(\bar{\nu_{\mu}}N) = 0.34 \cdot 10^{-38} E_{\nu} \,\mathrm{cm}^2/(\mathrm{nucleon \ GeV})$$

• Indirect Measurement by missing momentum and missing energy technique

$\nu_e + \text{nucleon} \rightarrow e^- + \text{hadron}$

Electromagnetic shower

Electromagnetic Cascades (Showers)

Photon \rightarrow Pair Production Electron / positron \rightarrow Bremsstrahlung (Photon)

• Simple Model, measured in "steps" t (one conversion, related to Radiation length X_0): Number of Particles: $N(t) = 2^t$ Energy of particles: $E(t) = E_0 \cdot 2^{-t}$ Multiplication stops if $E(t) < E_c$ $E_c = E_0 \cdot 2^{-t_{\text{max}}}$ $E_c \approx$ Pair production threshold

$$t_{\rm max} = \frac{\ln E_0/E_c}{\ln 2} \propto \ln E_0$$
 position of shower maximum

Total number of shower particles:

$$S = \sum_{t=0}^{t_{\text{max}}} N(t) = \sum 2^t = 2^{t_{\text{max}}+1} - 1 \approx 2 \cdot 2^{t_{\text{max}}} = 2 \cdot \frac{E_0}{E_e} \propto E_0$$

Electromagnetic Showers (cont.)

Total track length (sampling step t, measures in units of X_0)

$$S^{\star} = \frac{S}{t} = 2 \cdot \frac{E_0}{E_c} \cdot \frac{1}{t}$$

Energy Resolution $\frac{\sigma(E_0)}{E_0} = \frac{\sqrt{S^{\star}}}{S^{\star}} = \frac{\sqrt{t}}{\sqrt{2E_0/E_c}} \propto \frac{\sqrt{t}}{\sqrt{E_0}}$

Realistic description of longitudinal shower development:

$$\frac{dE}{dt} = \operatorname{const} \cdot t^a \cdot e^{-bt} \qquad (a, b - \operatorname{fit \ parameter})$$

Lateral spread, caused by multiple scattering:

Molière Radius
$$R_m = \frac{21 \text{ MeV}}{E_c} X_0 [\text{g/cm}^2]$$

95 % of shower energy is contained in a cylinder of radius $2 R_m$

for homogeneous calorimeters:
$$R_m = \begin{cases} \text{Fe: } 14 \text{ g/cm}^2 \triangleq 1.8 \text{ cm} \\ \text{Pb: } 18 \text{ g/cm}^2 \triangleq 1.6 \text{ cm} \end{cases}$$

 $\mu^- + \text{nucleus} \rightarrow \mu^- + \text{nucleus}' + \gamma$ $\gamma \rightarrow \text{electromagnetic shower}$

Multiplate Cloud Chamber

interni	
March A. J. S.	
Arris de la	5 5

Air shower experiment

Multiplate Cloud Chamber below 3 m of concrete

Electromagnetic showers initiated by muon Bremsstrahlung

States and a state of the state of the state of the
A A A A A A A A A A A A A A A A A A A
A THAT AND AN AN AN ARCARCEMENT

Hadron Showers

Longitudinal development: governed by nuclear interaction length λ_I Lateral development: transverse momentum p_T of particles since $\lambda_I > X_0$ and $\langle p_T \rangle \gg \langle p_T \rangle^{\text{mult. scatt.}}$ \Rightarrow hadron showers are wider and longer than electromagnetic showers

> Hadron Energy \Rightarrow $\begin{cases}
> charged particles (\mu's are lost) \\
> electromagnetic showers via <math>\pi^0 (e, \gamma; \text{ contained}) \\
> nuclear binding energy (can be partially recovered) \\
> nuclear fragments (partially lost)
> \end{cases}$

 \Rightarrow Visible energy systematically lower

 \Rightarrow Due to fluctuations in energy losses Energy resolution is worse than for electromagnetic calorimeters

Problem of compensation: different response to electrons and hadrons. Need to balance to $e/\pi = 1$

2nd Latin American School of High Energy Physics

M. Holder et al., Nucl. Instr. Meth. 151 (1978) 69 Jürgen@SanMiguelRegla 1-14Jun03. 50

Extensive Air Showers, $10^{14}\,{\rm eV}$

2nd Latin American School of High Energy Physics

J. Knapp, D. Heck, (1998) Jürgen@SanMiguelRegla 1-14Jun03. 51

Drift and Diffusion in Gases

- Electrons and Ions lose Energy by multiple collisions: \rightarrow Thermalization
- Ionization diffuses (Gaussian) Width $\propto \sqrt{t}$
- With electric field:

Drift with constant velocity v_{drift} In argon-isobutane: Typical $v_{\text{drift}}^{\text{electron}} \approx 5 \text{ cm}/\mu\text{sec}$ Longitudinal and transverse diffusion different $(\sigma = \sigma(E_e))$

- $v_{\rm drift} \propto 1/m$: Ions > 10³ times slower!
- With additional magnetic field: drift under angle (Lorentz force)

Outline of first part of lecture (reminder)

- Introduction
- Interaction of Charged Particles
 - Ionization, scintillation, Cherenkov and Transition Radiation
 - Bremsstrahlung and nuclear interactions
- Interaction of Neutral Particles
 - photons: photoelectric effect, Compton scattering, pair production
 - neutrons
 - neutrinos
- Electromagnetic Showers
- Hadron Showers

End of First Part

Second Part: Basic Design of Detectors

- Wire Chambers (in several incarnations): Position Measurement
- Calorimeters: Energy Measurement
- Particle Identification

Note: Not always possible to classify detectors into one single group. Overlaps are common.

Ionization Chamber

- simplest Gas Detector
- Basically a Capacitor
- Also possible with liquids and solids

• Ionization (electrons and ions) drift to anode and cathode

If time constant of RC is large enough: Integrated signal \propto Ionization loss

Proportional Counters

- Like Ionization chamber, but smaller wire and/or higher voltage
- Charge multiplication close to wire $(E \propto 1/r)$
- Electrons gain enough energy between collisions to ionize themselves.

Proportional: Gas amplification constant
 → Signal ∝ primary ionization

Geiger-Müller Counter

- Even higher voltage
- Copious production of photons in avalanche
- Photons make more ionization by photoelectric effect
- Also far away from original avalanche
- To stop discharge:
 - Make charge resistor big enough so voltage drops enough (quenching by resistor)
 - Add alcohols (methylal, ethylaclohol) or hydrocarbons (methan, ethane, isobutane) to counting gas (usually argon):
 Absorb UV photons, reduce free path

Summary Gas Multiplication

Multiwire Proportional Chambers

- George Charpak, beginning of 1960's, Nobel Price 1992
- Typical wire distance d: a few mm (> 0.8 mm)
- Typical wire diameter: $10 \,\mu m 30 \,\mu m$
- Sizes: up to square meters. Limited by wire tension and electrostatic repulsion.
- Electronic: Discriminator (threshold).
- Resolution: $\sigma(x) = d/\sqrt{12}$
- space information only in one dimension
- Rotate second identical module for other dimension
- Segmented cathode readout for other dimension

Planar Drift Chambers

- Heintze, Walenta, \approx 1968, also others.
- Make wires further apart
- use drift time to wire as additional information
- additional potential wire
- drift distances several cm
- resolution: limited by diffusion. small chambers: $\sigma > 20 \,\mu\text{m}$ larger chambers a few $100 \,\mu\text{m}$

Cylindrical Drift Chambers / Jet Chambers

JADE

2nd Latin American School of High Energy Physics

Time Projection Chamber

2nd Latin American School of High Energy Physics

Aleph TPC

Solid State Tracking Detectors – Silicon

READOUT

p-n junction (diode).

Silicon: $dE/dx \approx 3.8 \,\mathrm{MeV/cm}$, Band Gap 1.1 eV $3.6 \,\mathrm{eV}$ to produce one electron-hole pair Typical thickness: $300 \,\mu\mathrm{m}$ Strip Distance: $\geq 10 \,\mu\mathrm{m}$

2nd Latin American School of High Energy Physics

Silicon Strip Detectors (cont.)

The real problem is the readout electronics. Need amplifiers etc every $10 \,\mu\text{m}!$

Example: SVX-I layout (for every strip!)

SELEX Target region (1996). 75000 strips 2nd Latin American School of High Energy Physics

WA89 Target Region (1990). Watch the cables!

2nd Latin American School of High Energy Physics

New Vertex Detector for CDF (or D0?). 1 Million strips 2nd Latin American School of High Energy Physics
Other Silicon Detectors

- Double Sided Strip Detectors
 - Has strip structure also on back side, under 90°
 - Still no real 3d information
 - used to minimize material (multiple scattering)
 - more difficult to operate (noise)
- Silicon Drift
 - Same idea as (wire) drift chamber: Use time information
 - drift over several cm achieved (example: ALICE prototype)
- Silicon Pixel Detectors
 - No strips, but (usually rectangular) pixels
 - bonding for electronics very complicated, but doable (example: BTeV prototype)
 - give real 3d information
 - Usable for trigger

Photomultipliers

Conversion via photoelectric effect: One photon to one electron, electrons multiplied Typical efficiencies: up to 25%

Photomultipliers (cont.)

Available from 3/8 inch diameters to ≈ 40 cm diameter. Entrance windows on top ("head on") or on sides ("side on")

2nd Latin American School of High Energy Physics

²nd Latin American School of High Energy Physics

Energy Measurement: Calorimeters

• Shower has to be absorbed totally. If not: reduced resolution due to fluctuations

• different optimization needed for electrons/photons and hadrons

- for electrons/photons: governed by Radiation Length X_0
- for hadrons: governed by Interaction Length λ_I

• for hadrons in addition: Need "compensation" due to electromagnetic part of shower.

Electromagnetic Calorimeters

- Remember: relative Energy resolution is $\propto 1/\sqrt{E}$
- Two basic designs:
 - Homogeneous calorimeter
 - Sampling Calorimeter
 (discussed in hadron calorimeters)

- Use of Crystals (CsI) or lead-glass, liquids
- segmentation: about Moliere Radius R_M
- depth: Enough to contain shower.

WA89 Lead-Glass Calorimeter

Lead-glass: Cherenkov light. Each block has one Photomultiplier attached. Instrumentation

KTeV CsI Calorimeter

 $3100~{\rm CsI}$ crystals

Sampling Calorimeters

- Something "heavy", inactive: lead, uranium, iron (steel), ...
- Something "light", active: plastic scintillator, wire chamber, liquid (ionization chamber), ...

• Problem: How to choose thicknesses?

- Problems to consider:
 - 1. Inactive part absorbs some of the produced shower particles, different for hadrons and electrons
 - 2. Some part of hadronic response is lost due to neutron absorption
 - 3. $\pi^0 \rightarrow \gamma \gamma$: All hadronic showers have electromagnetic component, responses (physics effects) are different.

Sampling Calorimeter Designs

- Electromagnetic part was understood and good simulation software available (EGS)
- In the 1980's: First systematic studies for hadronic response
- First: Uranium / Scintillator. Very good resolution of first prototype.
- Idea was that fission gives back some of "lost" neutron energy.
- Later: By accident the first prototype was "compensated".
- mid-1980's: Systematic studies hadronic shower profiles, absorptions, by Wigmans et al.
- Result: One can tune **any** material combination to give identical responses to electrons and hadrons ("compensate"), due to different dependencies on Z of physics processes.
- Best resolution for hadrons only if calorimeter is compensated.
- Hadron resolution before: $\sigma_E/E \approx 100 \,\%/\sqrt{E}$
- Best hadron resolution achieved (ZEUS, SPACAL): 30 35 $\%/\sqrt{E}$

Spaghetti Calorimter (SPACAL)

R.Wigmans, Colorimetry (Oxford Science, 2000) 2nd Latin American School of High Energy Physics Jürgen@SanMiguelRegla 1-14Jun03. 84

SPACAL Resolution

R.Wigmans, Colorimetry (Oxford Science, 2000) 2nd Latin American School of High Energy Physics Jürgen@SanMiguelRegla 1-14Jun03. 85

Some words about Electronics

- Signals are fast \Rightarrow High Frequency, high bandwidth
- Signals are small \Rightarrow Noise is a problem
- Capacitance C_d is big, noise $\sim C^2$
- Need to analyse all noise contributions carefully (shot noise (leakage current), thermal noise, 1/f noise).
- Stray capacitances, stray inductances (printed circuits) are significant at high frequencies ($\geq 100 \text{ MHz}$)
- Board layouts a sensitive to signal speed ($\sim 5 \,\mathrm{cm/nsec}$)

Instrumentation

2nd Latin American School of High Energy Physics

Some words about Simulation

- Detectors are complex, complicated to build, expensive
- Within one sub-detector and different sub-detectors interferences (mostly destructive) possible
- LONG before building even prototypes simulation of part or full behavior and responses of sub-detectors or full detectors necessary
- GEANT is the usual tool for simulations. Manual has 700 pages.
- GEANT is slow. Often necessary to parametrize detector response

Summary of Second Part: Basic design of detectors

- Gaseous detectors (wire chambers)
- Silicon Microstrips
- Calorimeters
- Electronics (connection Trigger and DAQ lecture)
- Simulation

Part 3: Particle Identification

- Identification of neutral particles
- Identification of charged particles

Neutral particles

- Measure total energy (Calorimeter)
- If no charged track points to signal in Calorimeter: It's a neutral
- Usually not too many possibilities left. Example: Hadron calorimeter, no track: most likely a neutron (or K_L^0)
- Electromagnetic calorimeter, track, signal: Measure "E/p". E/p = 1 for electrons, E/p < 1 for pions
- Long-lived neutral particles (Hyperons), short lived particles (charm, beauty): Measure 4-vector of decay products and calculate invariant mass.

Identification of Charged Particles

What is Particle Identification?

Two major applications:

- 1. Beam Particle Identification (Fixed Target)
- 2. Identification of decay products

In both cases the momentum of the particle is known:

- 1. By beamline elements (only small momentum bin)
- 2. Measured by a magnetic spectrometer (wire chambers)

 \implies Particle Identification reduces to measure the total Energy (calorimeter) or using some velocity-dependent effect (Time of flight, dE/dx, Cherenkov, Transition radiation)

Fig. 5.30. Length of detectors needed for separation of π and K mesons.

First some Physics Example...

Reconstruction of Λ_c^+

- Λ_c^+ baryon consists of (udc) quarks
- Mass $m_0 = 2.284.9 \,\text{GeV}/c^2$ (remember: proton $0.938 \,\text{GeV}/c^2$)
- Lifetime: $\tau = 2.0 \cdot 10^{-13} \sec$
- Decays to $\Lambda_c \to p K^- \pi^+$ in 5.0% of the time.
- Only in 1 out of 1000 collisions a charm quark gets produced.

Special Theory of Relativity:

$$E = m \cdot c^{2}$$

$$m = m_{0} \cdot \gamma$$

$$\gamma = \frac{1}{\sqrt{1 - \frac{v^{2}}{c^{2}}}} = \frac{E \cdot c^{2}}{m_{0}}$$

$$p = m \cdot v \approx m_{0} \cdot \gamma \cdot c$$
Time dilation: $t = t_{0} \cdot \gamma$
Mean flight path: $L = c \cdot \tau \cdot \gamma$

 \implies A Λ_c^+ with momentum 200 GeV/c flies on average 5.4 mm \implies Do a Fixed Target Experiment – But even there we cannot observe a Λ_c directly

What do we do?

- Measure type, direction, momentum, (the 4-vector) and charge of all decay products
- Apply momentum and energy conservation to "interesting" decay vertex and calculate energy and momentum of hypothetical mother particle
- Transform into rest system of mother particle to obtain rest mass
- Do this for a lot of events, fill histogram with results

Measuring direction and decay vertex

• Use silicon microstrip detectors

Measuring momentum and charge

• Deflection in magnetic field, measure track angles before and after with wire chambers

Measuring type (is it a proton?)

- Measure total energy in calorimeter, calculate mass
- Measure velocity with Cherenkov effect

"Simple" Method of Particle Identification Time-of-flight (TOF)

- Put two Scintillation Counters at a known distance
- Measure time difference between the two signals

Good time resolution: 150 psec.

Maximum distance: $\approx 10 \,\mathrm{m}$ (detector), $\approx 100 \,\mathrm{m}$ (beamline).

 \implies Can measure difference between Kaons and Pions up to a few GeV/c

Also has problem at higher rate and/or multiple particles hitting the same scintillator

Radiation by Charged Particles

Radiation is emitted by a charge particle if:

- 1. v > c/n: Cherenkov radiation
- 2. $\vec{v}/c_{\rm ph} = \vec{v} \cdot n/c$ changes
 - (a) $|\vec{v}|$ changes: Bremsstrahlung
 - (b) direction of \vec{v} changes: Synchrotron radiation
 - (c) n changes: Transition Radiation

Transition Radiation Detectors (TRD)

Transition Radiation: Reformation of particle field while traveling from medium with $\epsilon = \epsilon_1$ to medium with $\epsilon = \epsilon_2$.

Energy of radiation emitted at a single interface

$$S = \frac{\alpha \hbar z^2}{3} \frac{(\omega_1 - \omega_2)^2}{\omega_1 + \omega_2} \gamma$$

 $\alpha = 1/137, \, \omega_1, \, \omega_2$ plasma frequencies, $\gamma = E/mc^2$. Typical values: Air $\omega_1 = 0.7 \,\text{eV}$, polypropylene $\omega_2 = 20 \,\text{eV}$

Spectral and angular dependence of Transition Radiation:

$$\frac{d^2}{d\vartheta d\omega} = \frac{2e^2}{\pi c} \left(\frac{\vartheta}{\gamma^{-2} + \vartheta^2 + \omega_1^2/\omega^2} - \frac{\vartheta}{\gamma^{-2} + \vartheta^2 + \omega_2^2/\omega^2} \right)^2$$

 \implies Most of radiation in cone with half angle $1/\gamma$: forward in particle direction.

- Large photon energies $\omega > \gamma \omega_2 \approx 20 30$ KeV: large drop of intensity $\propto \gamma^4/\omega^4$
- Medium energies $\gamma \omega_1 < \omega < \gamma \omega_2$: Logarithmic decrease with ω
- Small energies $\omega < \gamma \omega_1 \approx 1 \text{ KeV}$: intensity almost constant

Probability to emit a KeV photon: $\approx 10^{-2} \implies$ Need a lot of interfaces: stack of radiator foils. Consequences:

- Need minimum foil thickness so particle field reaches new equilibrium
- Transition $\omega_1 \to \omega_2$ and $\omega_2 \to \omega_1$ equal \Longrightarrow Interference effects (min and max in fig)
- Equally spaced foils: Interference between amplitude of different foils
- Finite thickness of foils: re-absorption of radiation ($\propto Z^5$): Low Z materials.

Typical values used in TRDs: Thickness: $30 \,\mu\text{m}$, distance: $300 \,\mu\text{m}$,

materials: mylar, CH₂, carbon fibers, lithium. J of High Energy Physics Jürgen@SanMiguelRegla 1-14Jun03. 103

Detection of Transition Radiation

X-rays emitted under small angle to particle track

 \implies X-ray detector sees X-rays and particle dE/dx together.

Typical dE/dx in gas detectors: some KeV/cm and Landau distributed

 \implies Signals from dE/dx and X-ray similar

Detector: Use "thin" MWPC, with Xenon or Krypton, several (10) radiator / chamber units to be at Landau

Two identification methods: Charge integration, Cluster counting Instrumentation 2nd Latin American School of High Energy Physics

ATLAS Transition Radiation Tracker (TRT)

Fig. 11. ATLAS Transition Radiation Tracker (TRT) conceptual design [2].

Fig. 8. The detected number of the TR photons for different Lorentz factors [4].

Cherenkov Radiation

A charged particle with a velocity v larger than the velocity of light in a medium emits light.

Angle of emission:
Number of photons:

$$\begin{aligned}
\cos \theta_c &= \frac{1}{\beta n} = \frac{1}{\frac{v}{c} n} \\
\frac{d^2 N}{dE dl} &= \frac{\alpha z^2}{\hbar c} \left(1 - \frac{1}{(\beta n)^2} \right) = \frac{\alpha z^2}{\hbar c} \sin^2 \theta_c \\
\frac{d^2 N}{d\lambda dl} &= \frac{2\pi \alpha z^2}{\lambda^2} \sin^2 \theta_c
\end{aligned}$$

First (obvious) application: Threshold Cherenkov Detectors

For fixed momentum and only 2 particles to separate (beam line)

More than 2 particles and/or wider momentum range: Several counters at different thresholds
QUCLEAR INSTRUMENTS AND METHODS 142 (1977) 377-391 ; C NORTH-HOLLAND FUBLISHING CO.

PHOTO-IONIZATION AND CHERENKOV RING IMAGING

J. SEGUINOT* and T. YPSILANTIS*

CERN, Geneva, Switzerland

Received 17 December 1976

We have investigated the photo-ionization process in gases and shown that single photon pulse counting in multiwire proportional chambers (MWPC) is possible with about 50%, quantum efficiency for photons above 9.5 eV. An application of this technique in imaging the Cherenkov ultra-violet (UV) radiation is presented.

1. Introduction

2

1

:

The Cherenkov radiation effect in an optical medium allows a precise determination of the velocity β or $\gamma = (1 - \beta^2)^{-1}$ of a charged particle massing through the medium. From the Cheren-Nov relation '

$$\cos\theta = 1/\beta a$$
, (1)

 θ_{1} where θ is the emission angle of the Cherenkov . I got and n the refractive index of the optical me-: tam, we find

$$\sum_{n=1}^{1} = \left[\tan^2 \theta \left(d\theta \right)^2 + \left(\frac{d\theta}{n} \right)^2 \right]^4, \qquad (2)$$

with $\Delta \theta$. $\Delta \theta$ and Δn the t m.s. error in the mea--grement of β . θ and η respectively. Litt and Meamer 1 show that with a "differential isochrosus self collimating" type Cherenkos counter DISCULA resolution of J/i//i = 10 is possible. ins corresponds to a γ resolution of $d\gamma/\gamma =$ $\gamma \rightarrow \gamma = M/B = 0.4\%$ at $\gamma = 200$. In such countis the Cherenkov photons emitted at differ-"toonts along the particle's straight line trajecis are locused by a reflective mirror tradius $R_{\rm c}$ colleogth (R) to give a circular ring image tradus r at the mirror focal plane. In the small

sa approximation the local standdratin Amplican School of High Energy Physics is the radius of the range mage is < Can U.

(3)

the emitted photons. Obviously a DISC type counter can only be used in collimated beams so that the source of Cherenkov radiation is along the optical axis of the device. Furthermore, the counter is not continuously sensitive in β and responds only to particles having a preset value of β (i.e. Cherenkov light which passes through the annulus). Such counters are suitable for velocity (mass) selection in collimated (momentum analyzed) primary particle beams but completely unsunable for velocity measurement of secondary particles energing from an interaction. The phase space occupied by these particles is large whereas the phase space acceptance of DISC is small.

A secondary particle detector may be imagined (see fig. 1) as consisting of a spherical mirror of radius R whose centre is the source of secondary particles (target) and a spherical detector surface at radius 18 with the Cherenkov radiating medium

Jürgen@SanMiguelRegla 1-14Jun03. 109

Instrumentation

Ring Imaging Cherenkov – The Basics

$$\cos \theta_c = \frac{1}{\beta \cdot n}$$
$$r = F \cdot \theta_c = \frac{R}{2} \cdot \theta_c$$

$$N_{ph} = N_0 \cdot L \cdot \sin^2 \theta_c$$

- $\theta_c:$ Cherenkov angle
- β : velocity
- n: refractive index
- r: Radius of ring on focal surface
- R: Radius of curvature of spherical mirror(s)
- F: Focal length (F = R/2)
- L: Radiator length (usually L = F)

Parallel particles have the same ring image

Cherenkov Radii – Neon Radiator, F= 1000cm

2nd Latin American School of High Energy Physics

Jürgen@SanMiguelRegla 1-14Jun03. 111

SELEX RICH: Particle Id negative tracks

Short History of RICHes

First Generation: Beginning of 1980's. Examples: Omega RICH (WA69, WA82), E653 RICH.

Second Generation: End-of 80's beginning of 90's. Examples: Upgraded Omega RICH (WA89, WA94), Delphi, SLD–GRID, CERES.

Third Generation: Mid-End 90's. Examples: SELEX RICH, Hermes, Hera-B.

New Generation: BaBar–DIRC, PHENIX, CLEO–III, COMPASS

Future: ALICE, LHC–B, BTeV, CKM, ...

- Center of ring depends on track angle \implies large detector surface (up to square meters)
- good resolution of photon position \implies large number of "pixels" (up to 100000 or more)
- Spectrum of Cherenkov photons

$$\frac{dN}{d\lambda} = \frac{2\pi\alpha}{\lambda^2} L \sin^2\theta_c$$

- refractive index $n = n(\lambda) \Longrightarrow$ Chromatic dispersion
- Detection of UV-photons: convert photon in electron (photoeffect)
 - 1. small (up to a few thousand) number of pixels: Photomultipliers
 - 2. large number of pixels or area: Time Expansion Chambers with TEA or TMAE
- When using TEC: particle pass through the chambers: dE/dx
- When using TEC: response (memory) time limit rate

Jürgen@SanMiguelRegla 1-14Jun03. 115

Instrumentation

- Center of ring depends on track angle \implies large detector surface (up to square meters)
- good resolution of photon position \implies large number of "pixels" (up to 100000 or more)
- Spectrum of Cherenkov photons

$$\frac{dN}{d\lambda} = \frac{2\pi\alpha}{\lambda^2} L \sin^2\theta_c$$

- refractive index $n = n(\lambda) \Longrightarrow$ Chromatic dispersion
- Detection of UV-photons: convert photon in electron (photoeffect)
 - 1. small (up to a few thousand) number of pixels: Photomultipliers
 - 2. large number of pixels or area: Time Expansion Chambers with TEA or TMAE
- When using TEC: particle pass through the chambers: dE/dx
- When using TEC: response (memory) time limit rate

2nd Latin American School of High Energy Physics

Jürgen@SanMiguelRegla 1-14Jun03. 117

- Center of ring depends on track angle \implies large detector surface (square meters)
- good resolution of photon position \implies large number of "pixels" (100000)
- Spectrum of Cherenkov photons

$$\frac{dN}{d\lambda} = \frac{2\pi\alpha}{\lambda^2} L \sin^2\theta_c$$

- Refractive index $n = n(\lambda) \Longrightarrow$ Chromatic dispersion
- Detection of UV-photons: convert photon in electron (photoeffect)
 - 1. small (up to a few thousand) number of pixels: Photomultipliers
 - 2. large number of pixels or area: Time Expansion Chambers with TEA or TMAE
- When using TEC: particle pass through the chambers: dE/dx
- When using TEC: response (memory) time limit rate

2nd Latin American School of High Energy Physics

- Center of ring depends on track angle \implies large detector surface
- good resolution of photon position \implies large number of "pixels" (100000)
- Spectrum of Cherenkov photons

$$\frac{dN}{d\lambda} = \frac{2\pi\alpha}{\lambda^2} L \sin^2\theta_c$$

- refractive index $n = n(\lambda) \Longrightarrow$ Chromatic dispersion
- Detection of UV-photons: convert photon in electron (photoeffect)
 - 1. small (up to a few thousand) number of pixels: Photomultipliers
 - 2. large number of pixels or area: Time Expansion Chambers with TEA or TMAE
- When using TEC: particle pass through the chambers: dE/dx
- When using TEC: response (memory) time limit rate

0141189-020

Instrumentation

- Center of ring depends on track angle \implies large detector surface
- good resolution of photon position \implies large number of "pixels" (100000)
- Spectrum of Cherenkov photons

$$\frac{dN}{d\lambda} = \frac{2\pi\alpha}{\lambda^2} L \sin^2\theta_c$$

- refractive index $n = n(\lambda) \Longrightarrow$ Chromatic dispersion
- Detection of UV-photons: convert photon in electron (photoeffect)
 - 1. small (up to a few thousand) number of pixels: Photomultipliers
 - 2. large number of pixels or area: Time Expansion Chambers with TEA or TMAE
- When using TEC: particle pass through the chambers: dE/dx
- When using TEC: response (memory) time limit rate

First RICH Example: The Omega RICH

WA89: A Hyperon Beam Experiment at the CERN-SPS Using the Omega Facility

Bologna Univ./INFN, CERN, Genoa Univ./INFN Grenoble Univ./IN2P3, Heidelberg MPI, Heidelberg Univ., Mainz Univ., Moscow Lebedev Phys. Inst.

Bologna

A. Forino, R. Gessaroli, P Mazzanti, A. Quareni-Vignudelli, F. Viaggi

CERN

F. Antinori, W. Beusch, J.P. Dufey, B.R. French, P. Grafström

Genoa Univ./INFN

M. Dameri, R.B. Hurst, B. Osculati, L. Rossi, G. Tomasini

Grenoble Univ./IN2P3

D. Barberis, C. Bérat, M. Buénerd, F. Charignon, J. Chauvin, J.T. Hostachy, Ph. Martin, M. Rey–Campagnolle, R. Touillon

Heidelberg MPIfK

E. Albertson, K.-H. Brenzinger, W. Brückner, F. Dropmann, S.G. Gerassimov, M. Godbersen, T. Kallakowsy, R. Michaels, S. Paul, B. Povh, K. Röhrich, A. Trombini, A. Wenzel, R. Werding

Heidelberg Univ.

J. Engelfried, F. Faller, J. Heintze, S. Kluth, S. Ljungfelt, P. Lennert, K. Martens, H. Rieseberg, H.-W. Siebert, A. Simon, G. Wälder

Mainz Univ., Inst. of Nucl. Physics

E. Chudakov, U. Müller, G. Rosner, H. Rudolf, B. Volkemer, Th. Walcher

Moscow Lebedev Phys. Inst.

M.I. Adamovich, Yu.A. Alexandrov, S.P. Kharlamov, L.N. Malinina, N.G. Peresadko, M.V. Zavertyaev

Counting gas: Ethan + TMAE, $1 \,\mathrm{KV/cm}, 5 \,\mathrm{cm}/\mu\mathrm{sec}$

Instrumentation

Particle Identification Algorithm

- only discrete particle masses: $e, \mu, \pi, K, p, \Sigma$, etc.
- Track parameter and momentum known
 ⇒ Calculate ring radius for each hypothesis
- "Compare" measured and expected rings for each hypothesis with a maximum likelihood method
- for identification, make cuts on likelihood ratios

published in: U.Müller, J.Engelfried et al.: Particle identification with the RICH detector in experiment WA89 at CERN. Nucl. Instr. Meth. **A 343** (1994) 279-283. Instrumentation 2nd Latin American School of High Energy Physics

Second RICH Example: The SELEX RICH

The SELEX Collaboration

G.P. Thomas Ball State University, Muncie, IN 47306, U.S.A.

E. Gülmez Bogazici University, Bebek 80815 Istanbul, Turkey

R. Edelstein, S.Y. Jun, A.I. Kulyavtsev¹, A. Kushnirenko, D. Mao¹,
P. Mathew², M. Mattson, M. Procario³, J. Russ, J. You⁴
Carnegie-Mellon University, Pittsburgh, PA 15213, U.S.A.

A.M.F. Endler Centro Brasiliero de Pesquisas Físicas, Rio de Janeiro, Brazil

P.S. Cooper, J. Kilmer, S. Kwan, J. Lach, E. Ramberg, D. Skow, L. Stutte Fermilab, Batavia, IL 60510, U.S.A.

V.P. Kubarovsky, V.F. Kurshetsov, A.P. Kozhevnikov, L.G. Landsberg, V.V. Molchanov, S.B. Nurushev, S.I. Petrenko, A.N. Vasiliev, D.V. Vavilov, V.A. Victorov Institute for High Energy Physics, Protvino, Russia

Li Yunshan, Mao Chensheng, Zhao Wenheng, He Kangling, Zheng Shuchen, Mao Zhenlin Institute of High Energy Physics, Beijing, P.R. China

M.Y. Balatz⁵, G.V. Davidenko, A.G. Dolgolenko, G.B. Dzyubenko,
A.V. Evdokimov, M.A. Kubantsev, I. Larin, V. Matveev, A.P. Nilov,
V.A. Prutskoi, A.I. Sitnikov, V.S. Verebryusov, V.E. Vishnyakov
Institute of Theoretical and Experimental Physics, Moscow, Russia

U. Dersch⁶, I. Eschrich⁷, I. Konorov⁸, H. Krüger⁹, J. Simon¹⁰, K. Vorwalter¹¹ Max-Planck-Institut für Kernphysik, 69117 Heidelberg, Germany

I.S. Filimonov⁵, E.M. Leikin, A.V. Nemitkin, V.I. Rud Moscow State University, Moscow, Russia A.G. Atamantchouk, G. Alkhazov, N.F. Bondar, V.L. Golovtsov, V.T. Kim, L.M. Kochenda, A.G. Krivshich, N.P. Kuropatkin, V.P. Maleev, P.V. Neoustroev, B.V. Razmyslovich, V. Stepanov, M. Svoiski, N.K. Terentyev¹², L.N. Uvarov, A.A. Vorobyov Petersburg Nuclear Physics Institute, St. Petersburg, Russia

> I. Giller, M.A. Moinester, A. Ocherashvili, V. Steiner Tel Aviv University, 69978 Ramat Aviv, Israel

J. Engelfried⁴, A. Morelos Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico

> M. Luksys Universidade Federal da Paraíba, Paraíba, Brazil

V.J. Smith University of Bristol, Bristol BS8 1TL, United Kingdom

M. Kaya, E. McCliment, K.D. Nelson¹³, C. Newsom, Y. Onel, E. Ozel, S. Ozkorucuklu, P. Pogodin University of Iowa, Iowa City, IA 52242, U.S.A.

> L.J. Dauwe University of Michigan-Flint, Flint, MI 48502, U.S.A.

M. Gaspero, M. Iori University of Rome "La Sapienza" and INFN, Rome, Italy

L. Emediato, C.O. Escobar¹⁴, F.G. Garcia⁴, P. Gouffon, T. Lungov¹⁵, M. Srivastava, R. Zukanovich-Funchal University of São Paulo, São Paulo, Brazil

> A. Lamberto, A. Penzo, G.F. Rappazzo, P. Schiavon University of Trieste and INFN, Trieste, Italy

Nuclear Instruments and Methods in Physics Research A 431 (1999) 53-69

NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH Section A

www.elsevier.nl/locate/nima

The SELEX phototube RICH detector

J. Engelfried^{a,*,1}, I. Filimonov^{b,2,3}, J. Kilmer^{a,1}, A. Kozhevnikov^{c,3}, V. Kubarovsky^{c,3}, V. Molchanov^{c,3}, A. Nemitkin^{b,3}, E. Ramberg^{a,1}, V. Rud^{b,3}, L. Stutte^{a,1}

^aFermi National Accelerator Laboratory, Batavia, IL, USA ^bMoscow State University, Moscow, Russia ^cInstitute for High Energy Physics, Serpukhov, Russia

Received 6 November 1998

Abstract

In this article, construction, operation, and performance of the RICH detector of Fermilab experiment 781 (SELEX) are described. The detector utilizes a matrix of 2848 phototubes for the photocathode to detect Cherenkov photons generated in a 10 m neon radiator. For the central region an N_0 of 104 cm⁻¹, corresponding to 13.6 hits on a $\beta = 1$ ring, was obtained. The ring radius resolution measured is 1.6%. © 1999 Published by Elsevier Science B.V. All rights reserved.

1. Introduction

The Fermilab experiment E781 (SELEX): a segmented large x_F Baryon spectrometer [1,2], which took data in the 1996/1997 fixed target run at Fermilab, is designed to perform high statistics studies of production mechanisms and decay physics of charmed baryons such as Σ_c , Ξ_c , Ω_c and Λ_c . The physics goals of the experiment require good charged particle identification to look for the different baryon decay modes. One must be able to separate π , K and p over a wide momentum range when looking for charmed baryon decays like $\Lambda_c^+ \rightarrow pK^-\pi^+$.

A RICH [3] detector with a 2848 phototube

Instrumentation

2nd Latin American School of High Energyh Barsia pray has been consurgeness 4,51 guelRegla 1-14 Jun03. 137

do this. The detector begins about 16 m downstream of the charm production target, with two

^{*} Corresponding author. Now at Instituto de Física, Universidad Autonoma de San Luis Potosí, Manuel Nava # 6, Zona

SELEX RICH Vessel and Gas System

SELEX RICH Mirrors

Spherical, nominal 20 m Radius 16 hexagonal mirrors, 46 cm tip to tip

• Glass

- low expansion glass (Schott Tempax), 10 mm thick.
- Polished to $19.82\,\mathrm{m}\pm5\,\mathrm{cm}$
- Measured with Ronchi Method (NIMA 369 (1996) 69-78)

• Coating

- Aluminum, with MgF_2 overcoating (Acton)
- Reflectivity $> 85\,\%$ at $160\,\mathrm{nm}$

• Mounting

- -3 point mount
- Ball bearing, double differential screw
- Honeycomb panel with carbon fiber matrix

• Alignment

- Theodolite with Laser in Center of Curvature
- Vessel movable on wheels lateral to beam

Reprinted from

NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH Section A

Nuclear Instruments and Methods in Physics Research A 369 (1996) 69-78.

A method to evaluate mirrors for Cherenkov counters

Linda Stutte*, Jürgen Engelfried, James Kilmer

Fermi National Accelerator Laboratory', P.O. Box 500, Balassa, R. 60510, USA

Received 19 June 1995

SELEX RICH Photon Detection

- Photomultiplier Holder
 - Aluminum plate, 2848 (89 \times 32) holes
 - individual quartz windows as gas seal
 - aluminized mylar Winston cones
- Photomultipliers
 - $-\frac{1}{2}$ diameter, Photocathode 10 mm
 - 608 Hamamatsu R760
 - -2240 FEU60 (with wavelength shifter)
 - all PM measured to find operating voltage
 - groups of 32 run on same HV

- High Voltage
 - Operating Voltage $900\,\mathrm{V}...1900\,\mathrm{V}$
 - 6 HV Supplies
 - Zener Box (á la "Berkeley Cow"), 96 outputs
- Crates with Hybrid Chips
 - Hybrids contain Amplifier, Discriminator, diff.
 ECL Driver
- Readout: CROS PWC System
 - Integration time $170\,\rm nsec$

Instrumentation

2nd Latin American School of High Energy Physics

SELEX RICH PM Box

Instrumentation

2nd Latin American School of High Energy Physics

Jürgen@SanMiguelRegla 1-14Jun03. 149

Instrumentation

2nd Latin American School of High Energy Physics

Jürgen@SanMiguelRegla 1-14Jun03. 151

Instrumentation

2nd Latin American School of High Energy Physics

SELEX RICH Separation

Momentum of particles: $95 \,\mathrm{GeV}/c - 105 \,\mathrm{GeV}/c$

A Current RICH: DIRC at BaBar

DIRC at BaBar

Detection of internally reflected Cherenkov light

4 x 1.225 m Synthetic Fused Silica Bars glued end-to-end

Instrumentation

Instrumentation

2nd Latin American School of High Energy Physics

Jürgen@SanMiguelRegla 1-14Jun03. 157

DIRC at BaBar – Performance

Future in RICH and México: CKM RICHes

Future Use: CKM

Will use 2 RICHes to really measure velocity. Particle ID comes for free.

How Gaussian is the response?

A Study with SELEX single beam tracks

SELEX Standard Algorithm

Involvement of San Luis Potosi Group in CKM

- Design work on Kaon and Pion RICH
- Mechanical parts for CKM RICH Prototype
- Monte Carlo studies (experiments, RICH detectors)
- Construction of flat, thin mirror for Kaon RICH
- Tests and Classifications of Photomultipliers
- (Maybe:) Supervision of spherical mirror production for Kaon and Pion RICH (in Mexico?)

Summary Particle Identification

- Particle Identification (for charged particles) usually measures the velocity of the particle, identification is combined with the already known momentum.
- Transition Radiation Detectors mostly used in beamlines, but also to measure decay products (mostly electron-pion separation)
- Cherenkov effect is used in Threshold Cherenkov Counters
- Cherenkov effect is used in RICH detectors
- RICHes are an established standard detector now, and have a bright future.

Summary Particle Identification (cont.)

That's it.....

Conclusion and Reminder what we have seen

- First Part: Physics of Particle Detection
 - Interaction of Charged Particles
 - * Ionization, scintillation, Cherenkov and Transition Radiation
 - * Bremsstrahlung and nuclear interactions
 - Interaction of Neutral Particles
 - * photons: photoelectric effect, Compton scattering, pair production
 - * neutrons
 - * neutrinos
 - Electromagnetic Showers
 - Hadron Showers

- Second Part: Basic detector designs
 - Gaseous detectors (wire chambers)
 - Silicon Microstrips
 - Calorimeters
 - Electronics
 - Simulation

- Third Part: Particle Identification
 - Involves lot of instrumentation
 - RICHes are established
 - Instrumentation can be done in Latin America