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Abstract. It is known that cyclic arrangements are the only unavoidable simple arrange-
ments of pseudolines: for each fixed m ≥ 1, every sufficiently large simple arrangement of
pseudolines has a cyclic subarrangement of size m. In the same spirit, we show that there
are three unavoidable arrangements of pseudocircles.

1. Introduction

A pseudoline is a noncontractible simple closed curve in the projective plane RP2. An
arrangement of pseudolines is a set of pseudolines that cross each other exactly once. Two
arrangements of pseudolines are isomorphic if the cell complexes they induce in RP2 are
isomorphic. An arrangement of pseudolines is simple if no three pseudolines have a common
point. A simple arrangement is cyclic if its pseudolines can be labelled 1, 2, . . . ,m, so that
each pseudoline i ∈ [m] intersects the pseudolines in {1, 2, . . . ,m}\{i} in increasing order,
as in Figure 1. We use Am to denote a cyclic arrangement of size m.
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Figure 1. The cyclic arrangement A5.

In the spirit of [10], the following states that cyclic arrangements are the only unavoidable
arrangements of pseudolines.

Theorem 1 ([8, Proposition 3.4.7]). For each fixed m ≥ 1, every sufficiently large simple
arrangement of pseudolines has a subarrangement isomorphic to Am.

We prove an analogue of Theorem 1 for arrangements of pseudocircles. A pseudocircle is a
simple closed curve in the sphere S2. We use Grünbaum’s original notion that an arrangement
of pseudocircles is a set of pseudocircles that pairwise intersect at exactly two points, at which
they cross, and no three pseudocircles have a common point [5]. This notion is still adopted
nowadays [9], and some more general notions are also used in the literature [4, 6].

In Figure 2 we illustrate arrangements C 1
5
,C 2

5
, C 3

5
, and it is clear how to generalize them to

C 1
m
,C 2

m
, and C 3

m
, for any m ≥ 1. These are the unavoidable arrangements of pseudocircles.
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Theorem 2. For each fixed m ≥ 1, every sufficiently large arrangement of pseudocircles has
a subarrangement isomorphic to C 1

m
,C 2

m
, or C 3

m
.
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Figure 2. The arrangements C 1
5

(left), C 2
5

(center), and C 3
5

(right).

We note that Theorem 2 is best possible, as no pseudocircle can be added to the collection
{C 1

m
,C 2

m
,C 3

m
}. This follows since for all integers m,n with m ≤ n, all subarrangements of

C 1
n

(respectively, C 2
n
,C 3

n
) of size m are isomorphic to C 1

m
(respectively, C 2

m
,C 3

m
). Thus it

is accurate to say that these are the unavoidable arrangements of pseudocircles.
For the rest of the paper, for brevity we refer to an arrangement of pseudocircles simply

as an arrangement.

2. Reducing Theorem 2 to two kinds of arrangements

There are, up to isomorphism, only two arrangements of size 3. Following [3], these are the
Krupp arrangement and the NonKrupp arrangement. We refer the reader to Figure 3. Note
that the Krupp arrangement is isomorphic to C 1

3
, and the NonKrupp arrangement is iso-

morphic to C 2
3

and C 3
3
. If an arrangement P of size at least 3 has all its 3-subarrangements

isomorphic to the Krupp arrangement (respectively, to the NonKrupp arrangement), then
we say that P is Krupp-packed (respectively, NonKrupp-packed).

Figure 3. The Krupp arrangement (left) and the NonKrupp arrangement (right).

We now state Theorem 2 for Krupp-packed and for NonKrupp-packed arrangements. As
we shall see shortly, the general version of Theorem 2 easily follows as a consequence.

Lemma 3. Theorem 2 holds for Krupp-packed arrangements.

Lemma 4. Theorem 2 holds for NonKrupp-packed arrangements.

We use Ramsey theory in our arguments. We recall that the order of a hypergraph is
its number of vertices, and rk(`1, `2, . . . , `n) denotes the Ramsey number for complete k-
uniform hypergraphs. That is, if each k-edge of a complete k-uniform hypergraph of order
at least rk(`1, `2, . . . , `n) has colour i for some i ∈ [n], then there is an i ∈ [n] and a complete
subhypergraph of order `i, all of whose k-edges have colour i.
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Proof of Theorem 2, assuming Lemmas 3 and 4. Let m ≥ 1 be a fixed integer. Assum-
ing Lemmas 3 and 4, it follows that there is an integer p such that every Krupp-packed
or NonKrupp-packed arrangement of size at least p has a subarrangement isomorphic to
C 1

m
,C 2

m
, or C 3

m
. Let Q be an arrangement of size q = r3(p, p). Regard Q as a complete

3-uniform hypergraph, and colour a 3-edge blue (respectively, red) if the pseudocircles in
the 3-edge form an arrangement isomorphic to the Krupp arrangement (respectively, to the
NonKrupp arrangement).

Since q = r3(p, p) it follows from Ramsey’s theorem that Q has a subarrangement P of
size p that is either Krupp-packed or NonKrupp-packed. The assumption on p implies that
P, and hence Q, contains a subarrangement isomorphic to C 1

m
,C 2

m
, or C 3

m
. �

We finish this section by proving Lemma 3. The rest of the paper is devoted to the proof
of Lemma 4.

Proof of Lemma 3. The key fact we use here is the following. Every Krupp-packed arrange-
ment P (known in the literature as an arrangement of great pseudocircles) can be obtained
from a simple arrangement L of pseudolines by suitably gluing together two wiring diagrams
of L , as illustrated in Figure 4 (see [4, Section 3.2] and [12, Section 6.1.4]). For a discussion
on the wiring diagram representation of a pseudoline arrangement we refer the reader to [2].

If L is a cyclic arrangement Am, it is readily seen that P is isomorphic to C 1
m

.

Figure 4. Obtaining C 1
5

by suitably gluing together two wiring diagrams of A5.

Let m ≥ 1 be a fixed integer. Let P be a Krupp-packed arrangement of size p := r3(m,m).
Let L be a simple arrangement of pseudolines that induces P, in the sense of the previous
paragraph. Since p = r3(m,m), then by [11, Proposition 1.4] L has a cyclic arrangement
Am as a subarrangement. The subarrangement of P induced by the pseudolines in Am is
obtained by suitably gluing together two copies of Am, and so it is isomorphic to C 1

m
. �

3. Intersection codes

In the proof of Lemma 4 we use intersection codes, as developed in [7, 9]. This framework,
in which one naturally encodes combinatorially essential information of an arrangement, can
be seen as a generalization of the axiomatization of oriented matroids based on hyperline
sequences [1], and its essence goes back to the work of Gauss on planar curves in the 1830s.

Let P = {1, . . . , n} be an arrangement. For each i ∈P choose a point pi not contained
in any other pseudocircle, and also choose one of the two possible orientations for i, so that
for each pseudocircle we can naturally speak of a left side and a right side. Suppose that
as we traverse i starting at pi following the chosen orientation, we intersect j from the left
(respectively, right) side of j. We record this by writing j+ (respectively, j−). By keeping
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track of the order in which the intersections occur, we obtain the code of i in P. Thus the
code of each i is a permutation of

⋃
j∈[n]\{i}{j+, j−}. If we omit the superscripts + and −,

we obtain the unsigned code of i.
For instance, suppose that P is C 2

5
in Figure 2. Choose the counterclockwise orientation

for each pseudocircle. If we choose as starting point for 3 its leftmost point, then its code is
1+2+4−5−5+4+2−1−, and its unsigned code is 12455421.

We make essential use of the following.

Proposition 5 ([7, Section 3],[9, Section 2]). Let P,Q be arrangements, both of which have
their pseudocircles labelled 1, 2, . . . , n, where an orientation and an initial traversal point has
been chosen for each pseudocircle in P and each pseudocircle in Q. Suppose that for each
i ∈ [n], the code of i in P is the same as the code of i in Q. Then P and Q are isomorphic.

We now introduce some notation to describe the codes of C 2
m

and C 3
m

in a compact manner.

Let i,m be integers such that 1 ≤ i ≤ m. We use [1+:i+) to denote the string 1+2+ · · · (i−1)+.
In a similar spirit, we use (i−:1−] to denote (i− 1)−(i− 2)− · · · 1−; we use (i−:m−] to de-
note (i + 1)−(i + 2)− · · ·m−; and we use [m+:i+) to denote m+ · · · (i + 2)+(i + 1)+. Finally,
we use [1+1−:i+i−) to denote 1+1−2+2− · · · (i−1)+(i−1)−. Note that [1+:1+), (1−:1−], and
[1+1−:1+1−) are empty strings, and (m−:m−] and [m+:m+) are also empty strings. With
this notation, we have the following.

Observation 6. Label C 2
m

with the natural extension of the labelling of C 2
5

in Figure 2.
Orient all pseudocircles counterclockwise, and for each pseudocircle choose as initial traversal
point its leftmost point. Then the code of each i in C 2

m
is [1+:i+)(i−:m−][m+:i+)(i−:1−].

Observation 7. Label C 3
m

with the natural extension of the labelling of C 3
5

in Figure 2.
Orient all pseudocircles clockwise, and for each pseudocircle choose as initial traversal point
its bottom right corner. Then the code of each i in C 3

m
is [1+1−:i+i−)(i−:m−][m+:i+).

We close this section with a remark on NonKrupp-packed arrangements. We say that an
arrangement is bad if its pseudocircles can be labelled 1, . . . , n so that for each pseudocircle
i = 1, 2, . . . , n − 2, the unsigned code of i in the subarrangement {i, i + 1, . . . , n} is (i +
1)(i + 1)(i + 2)(i + 2) · · ·nn. Up to isomorphism, there is only one bad NonKrupp-packed
arrangement of size 4, namely the arrangement X4 shown in Figure 5. This is easily checked
by hand, or by an inspection of [4, Figure 2], which contains all arrangements of size 4.

Figure 5. The arrangement X4.

In a bad NonKrupp-packed arrangement of size 5, all 4-subarrangements would then be
isomorphic to X4. A routine case analysis by hand shows that no arrangement of size 5
satisfies this property. We highlight this remark, as we use it in the proof of Lemma 4.

Observation 8. There is no bad NonKrupp-packed arrangement of size 5 (or larger).
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4. Proof of Lemma 4

First we identify a property shared by C 2
m

and C 3
m

. To motivate this, we refer the reader

to C 2
5

and C 3
5
, shown in Figure 2. If we perform the relabelling i 7→ i−1 to the pseudocircles

in either of these arrangements, the parts of 1, 2, 3, 4 in one component of S2\{0} are pairwise
disjoint, and appear in a rainbow-like fashion: the unsigned code of 0 is 12344321. We say
that an arrangement is rainbow if its pseudocircles can be labelled 0, 1, . . . , n so that (I) one
of the components of S2 \ {0} contains no intersections among the pseudocircles 1, 2, . . . , n;
and (II) the unsigned code of pseudocircle 0 is 12 · · ·nn · · · 21.

Lemma 4 follows easily from the next two statements.

Proposition 9. For each fixed integer n ≥ 5, every sufficiently large NonKrupp-packed
arrangement has a rainbow subarrangement of size n.

Proposition 10. For each fixed integer m ≥ 5, every sufficiently large NonKrupp-packed
rainbow arrangement contains a subarrangement isomorphic to C 2

m
or C 3

m
.

Before proving these propositions, for completeness we give the proof of Lemma 4.

Proof of Lemma 4, assuming Propositions 9 and 10. Obviously it suffices to prove Theorem 2
for every integer m ≥ 5. Let m ≥ 5 be a fixed integer. By Proposition 10, there is an integer
n := n(m) such that every NonKrupp-packed rainbow arrangement contains a subarrange-
ment isomorphic to C 2

m
or C 3

m
. By Proposition 9, there is an integer q := q(n) such that

every NonKrupp-packed arrangement has a rainbow subarrangement of size n. Thus every
NonKrupp-packed arrangement of size at least q contains a subarrangement isomorphic to
C 2

m
or C 3

m
. �

Proof of Proposition 9. Let n≥ 5 be a fixed integer. Let p := r3(n, n)+1 and q := r3(p, p, p, p).
We let Q = {1, . . . , q} be a NonKrupp-packed arrangement, and show that Q contains a
rainbow subarrangement of size n.

Choose an arbitrary starting traversal point and orientation for each pseudocircle in Q.
The NonKrupp-packedness of Q implies that if j, k, ` are pseudocircles in Q such that
j < k < `, then the unsigned code of j in the subarrangement {j, k, `} is either (i) kk``; or
(ii) ``kk; or (iii) k``k; or (iv) `kk`.

Regard Q as a complete 3-uniform hypergraph, and assign to each 3-edge {j, k, `} with
j<k<` the colour (i), (ii), (iii), or (iv), depending on which of these scenarios holds. By
Ramsey’s theorem, Q has a subarrangement P = {1′, 2′, . . . , p′}, with 1 ≤ 1′ < · · · < p′ ≤ q,
all of whose 3-edges are of the same colour.

Suppose that all 3-edges of P are of colour (i). Then for each i = 1, . . . , p−2, the unsigned
code of i′ in the subarrangement {i′, (i + 1)′, . . . , p′} is (i + 1)′(i + 1)′ · · · p′p′. Thus P is a
bad arrangement of size p > 5, contradicting Observation 8. Thus not all 3-edges of P can
be of colour (i). An analogous argument shows that not all 3-edges can be of colour (ii).

If all 3-edges of P are of colour (iv) then by relabelling the pseudocircles in the reverse
order we obtain an arrangement in which all 3-edges are of colour (iii). Thus we may assume
that all 3-edges of P are of colour (iii). In particular, the unsigned code of 1′ in {1′, . . . , p′}
is 2′3′ · · · p′p′ · · · 3′2′. Using that p− 1 = r2(n, n), an application of Ramsey’s theorem shows
that there exist i′1, i

′
2, . . . , i

′
n, with 2′ ≤ i′1 < i′2 · · · < i′n ≤ p′ such that one of the connected

components of S2 \ {1′} contains no intersections among the pseudocircles i′1, . . . , i
′
n. The

arrangement {1′, i′1, . . . , i′n} is rainbow. To see this, it suffices to relabel 1′ with 0, and i′j
with j, for each j = 1, . . . , n. �
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Proof of Proposition 10. Let m ≥ 5 be a fixed integer. Let q = r3(m,m,m), and n = r3(q, q).
Let N0 = {0, 1, 2, . . . , n} be a NonKrupp-packed rainbow arrangement. We show that N0

contains a subarrangement isomorphic to either C 2
m

or to C 3
m

.
Our first goal is to show that we may assume that the layout of N0 is as shown on the right

hand side of Figure 6. To achieve this, first we note that by performing a self-homeomorphism
of the sphere we may assume that the pseudocircle 0 is the union of the Greenwich Meridian
and the 180th Meridian, in particular passing through the north pole N and the south pole
S. We orient 0 in the direction from S to N following the Greenwich Meridian, as on the left
hand side of Figure 6.

180th MeridianGreenwich Meridian

0

N

S

N

Sk

Nk

n

2

00

S

k

1

Figure 6. Initial setup in the proof of Proposition 10. On the left hand side
we illustrate pseudocircle 0. On the right hand side we illustrate the eastern
hemisphere, which contains all intersections among the pseudocircles 1, . . . , n.
We illustrate the regions Nk (grey) and Sk (white) of pseudocircle k.

Since N0 satisfies rainbowness Property (II), we may assume that as we traverse the
Greenwich Meridian from S to N we intersect the pseudocircles 1, 2, . . . , n in this order, and as
we traverse the 180th Meridian from N to S, we intersect them in the order n, . . . , 2, 1. Since
N0 satisfies rainbowness Property (I), then either the eastern or the western hemisphere (say
the eastern one) contains all the intersections among the pseudocircles in N := {1, 2, . . . , n}.
We orient all pseudocircles in N so that as we traverse 0 along the Greenwich Meridian from
S to N the code we obtain is 1−2− · · ·n− (that is, these pseudocircles hit 0 from its left hand
side). Thus as we traverse the 180th Meridian from N to S the code is n+(n− 1)+ · · · 1+ .
Each pseudocircle k ∈ N decomposes the eastern hemisphere into two parts, a part Nk that
contains N, and a part Sk that contains S. Thus the setup is as illustrated in Figure 6.

Since N is NonKrupp-packed, for any three pseudocircles j, k, ` in N , either both inter-
sections of j and ` occur in Nk, or they both occur in Sk. Regard N as a complete 3-uniform
hypergraph, and assign to a 3-edge {j, k, `} with j<k<` the colour N (respectively, S) if the
intersections of j and ` lie on Nk (respectively, Sk). Since |N | = n = r3(q, q), then by Ram-
sey’s theorem N has a subarrangement Q = {1′, 2′, . . . , q′} of size q, with 1′<2′< · · ·<q′,
all of whose 3-edges are of the same colour. By symmetry we may assume that all 3-edges
of Q have colour N . To avoid unnecessary cluttered notation, we relabel the pseudocircles
in Q as 1, 2, . . . , q.

Let j, k, ` be such that 1 ≤ j<k<` ≤ q. Since the intersections between j and ` occur in
Nk, that is, above k, and Q is NonKrupp-packed, then there are only three possibilities for
how j and ` can intersect each other, namely as shown in Figure 7(a), (b), and (c). Thus the
code of k in {j, k, `} is either (1) j+`−`+j−, or (2) j+j−`−`+, or (3) `−`+j+j−, respectively.
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(a)

j

k

`

(b)

j

k

`

(c)

k

j

`

Figure 7. Illustration of the proof of Proposition 10.

Regard Q as a complete 3-uniform hypergraph. We assign to a 3-edge {j, k, `} with j<k<`
a colour in {1, 2, 3}, depending, respectively, on which one of (1), (2), and (3) gives the code
of k in {j, k, `}. Since q = r3(m,m,m), by Ramsey’s theorem Q has a subarrangement
M = {1′, 2′, . . . ,m′}, where 1′<2′< · · ·<m′, all of whose 3-edges are of the same colour. If
all the 3-edges are of colour 3, then by changing the traversal directions of all pseudocircles
and inverting the crossing-sign convention we obtain that all the 3-edges become of colour
2. Thus we may assume that either all the 3-edges are of colour 1, or they are all of colour
2. Again, to avoid unnecessary cluttered notation we relabel the pseudocircles in M with
1, 2, . . . ,m.

Suppose first that all the 3-edges of M are of colour 1. Then for each 1≤j<k<`≤m,
the situation is as in Figure 7(a). Thus (i) the code of j in {j, k, `} is k−`−`+k+; (ii) the
code of k in {j, k, `} is j+`−`+j−; and (iii) the code of ` in {j, k, `} is j+k+k−j−. We
first analyze the code of each pseudocircle i ∈ {2, 3, . . . ,m−1}. By (i), the code of i in M
contains the subpermutation (i−:m−][m+:i+); by (iii), this code contains the subpermutation
[1+:i+)(i−:1−]; and by (ii), it contains the subpermutation (i− 1)+(i + 1)−(i + 1)+ (i− 1)−.
These three conditions hold only if the code of i is [1+:i+)(i−:m−][m+:i+) (i−:1−].

We now analyze the codes of pseudocircles 1 and m. By (i), the code of 1 in M is
(1−:m−][m+:1+) = [1+:1+)(1−:m−][m+:1+)(1−:1−] (since [1+:1+) and (1−:1−] are empty
strings). Finally, by (iii), the code of m in M is [1+:m+)(m−:1−] = [1+:m+) (m−:m−]
[m+:m+) (m−:1−] (since (m−:m−] and [m+:m) are empty strings). We conclude that the
code of every i ∈M is [1+:i+)(i−:m−] [m+:i+)(i−:1−]. By Proposition 5 and Observation 6,
then M is isomorphic to C 2

m
.

Suppose finally that all the 3-edges of M have colour 2. Then for each 1≤j<k<`≤m, the
situation is as in Figure 7(b). Thus (i) the code of j in {j, k, `} is k−`−`+k+; (ii) the code of
k in {j, k, `} is j+j−`−`+; and (iii) the code of ` in {j, k, `} is j+j−k+k−. We first analyze
the code of each pseudocircle i ∈ {2, 3, . . . ,m−1}. By (i), the code of i in M contains the
subpermutation (i−:m−][m+:i+); by (iii), this code contains the subpermutation [1+1−:i+i−);
and by (ii), it contains the subpermutation (i− 1)+(i− 1)−(i + 1)− (i + 1)+. These three
conditions hold only if the code of i is [1+1−:i+i−) (i−:m−][m+:i+).

We now analyze the codes of 1 and m. By (i), the code of 1 in M is (1−:m−][m+:1+) =
[1+1−:1+1−)(1−:m−][m+:1+) (since [1+1−:1+1−) is an empty string). Finally, by (iii), the
code of m in M is [1+1−:m+m−) = [1+1−:m+m−)(m−:m−][m+:m+) (since (m−:m−] and
[m+:m+) are empty strings). We conclude that the code of every i ∈M is [1+1−:i+i−)(i−:m−]
[m+:i+). By Proposition 5 and Observation 7, then M is isomorphic to C 3

m
. �
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5. An open question

To prove Theorem 2 we make repeated use of Ramsey’s theorem, and so an explicit bound
for this theorem, derived from our proofs, would be multiply exponential. With additional
effort (and considerably more space) we can save several applications of Ramsey’s theorem,
and show that for each fixed m ≥ 1, every arrangement of pseudocircles of size at least

22cm
2

contains a subarrangement isomorphic to C 1
m
,C 2

m
, or C 3

m
. This bound is still doubly

exponential in m. What is the best explicit bound that can be proved for this theorem?
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