On the crossing number of complete graphs

Gelasio Salazar

Universidad Autónoma de San Luis Potosí (Mexico)

TGT 25
Yokohama

November 20, 2013
In Geometric Graph Theory the edges are straight segments. The techniques of Geometric Graph Theory do not apply (in general) to Topological Graph Theory.
In Geometric Graph Theory the edges are *straight segments.*
In Geometric Graph Theory the edges are **straight segments**.

The techniques of Geometric Graph Theory do **not** apply (in general) to Topological Graph Theory.
What we did

We adapted Geometric Graph Theory techniques to attack an old (open) problem in Topological Graph Theory.
Two different *drawings* of the same graph
Two different *drawings* of the same graph

Drawing with 9 crossings Drawing with 1 crossing
Crossing numbers of graphs

- G can be drawn with 1 crossing
- G cannot be drawn with 0 crossings

Drawing of graph G
Crossing numbers of graphs

- G can be drawn with 1 crossing
- G cannot be drawn with 0 crossings

\implies

The crossing number of G is 1
We write $\text{cr}(G) = 1$
Do we know the crossing number $\text{cr}(K_n)$ of K_n?

No. We only know it for very small values of n ($n \leq 12$).
Do we know the crossing number $\text{cr}(K_n)$ of K_n?

No. We only know it for very small values of n ($n \leq 12$).

Do we have good estimates (close lower and upper bounds)?

Not really. Well, more or less... if you believe in computer-assisted proofs. We do not have any good “computer-free” estimates.
Do we know the crossing number $\text{cr}(K_n)$ of K_n?
No. We only know it for very small values of n ($n \leq 12$).

Do we have good estimates (close lower and upper bounds)?
Not really. Well, more or less... if you believe in computer-assisted proofs. We do not have any good “computer-free” estimates.

So... what’s new? What have we done?
We now know (2013) the exact crossing number of K_n, for all n, for two very important classes of drawings. We did it by “importing” techniques from discrete geometry.
Outline

1 Crossing number of K_n: the conjecture

2 Our results

3 The proof: ideas from discrete geometry

4 Concluding Remarks
On the crossing number of complete graphs
Crossing number of K_n: the conjecture
An artist drawing graphs with few crossings

Anthony Hill (1930–)
English artist, painter and relief-maker from the “constructivist tradition”.
On the crossing number of complete graphs
Crossing number of K_n: the conjecture
An artist drawing graphs with few crossings
On the crossing number of complete graphs
Crossing number of K_n: the conjecture
An artist drawing graphs with few crossings

1977
On the crossing number of complete graphs
Crossing number of K_n: the conjecture
An artist drawing graphs with few crossings

1957
On the crossing number of complete graphs

Crossing number of K_n: the conjecture

An artist drawing graphs with few crossings
Late 1950’s

These are drawings of K_3, K_4, K_5, K_6, K_7, K_8, and K_9.
Together with American painter John Ernest, Anthony Hill investigated drawings of K_n — aiming to minimize the number of crossings.
Together with American painter John Ernest, Anthony Hill investigated drawings of K_n — aiming to minimize the number of crossings.

Eventually, Hill approached graph theorist Frank Harary to write a paper with his findings.
On the crossing number of complete graphs
Crossing number of K_n: the conjecture
An artist drawing graphs with few crossings

Hill’s method

Place $n/2$ vertices on top lid, $n/2$ on bottom lid, and join each pair using geodesics:
Hill’s method

Place $n/2$ vertices on top lid, $n/2$ on bottom lid, and join each pair using geodesics:
Hill’s method

Place $n/2$ vertices on top lid, $n/2$ on bottom lid, and join each pair using geodesics:
Hill’s method

Place \(n/2 \) vertices on top lid, \(n/2 \) on bottom lid, and join each pair using geodesics:
Hill’s method

Place $n/2$ vertices on top lid, $n/2$ on bottom lid, and join each pair using geodesics:
Hill’s method

Counting the number of crossings from Hill’s method:

Hill (1958)

The complete graph K_n can be drawn with exactly

$$Z(n) := \frac{1}{4} \left\lfloor \frac{n}{2} \right\rfloor \left\lfloor \frac{n-1}{2} \right\rfloor \left\lfloor \frac{n-2}{2} \right\rfloor \left\lfloor \frac{n-3}{2} \right\rfloor$$

crossings.
Hill’s method

Counting the number of crossings from Hill’s method:

Hill (1958)

The complete graph K_n can be drawn with exactly

$$Z(n) := \frac{1}{4} \left\lfloor \frac{n}{2} \right\rfloor \left\lfloor \frac{n - 1}{2} \right\rfloor \left\lfloor \frac{n - 2}{2} \right\rfloor \left\lfloor \frac{n - 3}{2} \right\rfloor$$

crossings.

Therefore,

Hill (1958)

The crossing number $\text{cr}(K_n)$ of K_n satisfies

$$\text{cr}(K_n) \leq Z(n) := \frac{1}{4} \left\lfloor \frac{n}{2} \right\rfloor \left\lfloor \frac{n - 1}{2} \right\rfloor \left\lfloor \frac{n - 2}{2} \right\rfloor \left\lfloor \frac{n - 3}{2} \right\rfloor.$$
On the crossing number of complete graphs
Crossing number of K_n: the conjecture
An artist drawing graphs with few crossings

A conjecture is born...

Hill's Conjecture

$$\text{cr}(K_n) = Z(n) := \frac{1}{4} \left\lfloor \frac{n}{2} \right\rfloor \left\lfloor \frac{n-1}{2} \right\rfloor \left\lfloor \frac{n-2}{2} \right\rfloor \left\lfloor \frac{n-3}{2} \right\rfloor.$$
In a *cylindrical* drawing:

- The vertices are placed on the rims of the cylinder; and
- No edge crosses the rims (every edge is contained in the top lid, the bottom lid, or in the side of the cylinder).
In a *cylindrical* drawing:

- The vertices are placed on the rims of the cylinder; and
- No edge crosses the rims (every edge is contained in the top lid, the bottom lid, or in the side of the cylinder).

Cylindrical crossing number $\text{Cyl-Cr}(G)$ of a graph G

Minimum number of crossings in a cylindrical drawing of G.
Cylindrical drawings, cylindrical crossing number

In a *cylindrical* drawing:
- The vertices are placed on the rims of the cylinder; and
- No edge crosses the rims (every edge is contained in the top lid, the bottom lid, or in the side of the cylinder).

Cylindrical crossing number $\text{Cyl-Cr}(G)$ of a graph G

Minimum number of crossings in a cylindrical drawing of G.

Hill’s drawings are cylindrical...
Cylindrical crossing number of K_n

<table>
<thead>
<tr>
<th>Hill (1958)</th>
</tr>
</thead>
<tbody>
<tr>
<td>The crossing number $\text{cr}(K_n)$ of K_n satisfies</td>
</tr>
<tr>
<td>$\text{cr}(K_n) \leq Z(n) := \frac{1}{4} \left\lfloor \frac{n}{2} \right\rfloor \left\lfloor \frac{n-1}{2} \right\rfloor \left\lfloor \frac{n-2}{2} \right\rfloor \left\lfloor \frac{n-3}{2} \right\rfloor.$</td>
</tr>
</tbody>
</table>

Hill’s drawings are cylindrical. . . therefore:

<table>
<thead>
<tr>
<th>Hill (1958)</th>
</tr>
</thead>
<tbody>
<tr>
<td>The cylindrical crossing number of G satisfies</td>
</tr>
<tr>
<td>Cyl-Cr$(K_n) \leq Z(n) := \frac{1}{4} \left\lfloor \frac{n}{2} \right\rfloor \left\lfloor \frac{n-1}{2} \right\rfloor \left\lfloor \frac{n-2}{2} \right\rfloor \left\lfloor \frac{n-3}{2} \right\rfloor.$</td>
</tr>
</tbody>
</table>
For crossing number purposes, drawing a graph on the sphere and on the plane makes little difference: a graph can be drawn on the plane with k crossings if and only if it can be drawn on the sphere with k crossings.
Plane, sphere... who cares

For **crossing number** purposes, drawing a graph on the sphere and on the plane makes little difference: a graph can be drawn on the plane with k crossings if and only if it can be drawn on the sphere with k crossings.

Proof: From plane to sphere, use one-point compactification; from sphere to plane, punch a little hole in a face of the drawing.
2-disk drawings: Blažek and Koman (1962)

The Blažek-Koman way

Draw a graph on the sphere by putting all vertices on the equator. Then draw the edges so that no edge crosses the equator.
The Blažek-Koman way

Draw a graph on the sphere by putting all vertices on the equator. Then draw the edges so that **no edge crosses the equator**.

Equatorial drawing of K_4
The Blažek-Koman way

Draw a graph on the sphere by putting all vertices on the equator. Then draw the edges so that no edge crosses the equator.

Equatorial drawing of K_4
The Blažek-Koman way

Draw a graph on the sphere by putting all vertices on the equator. Then draw the edges so that no edge crosses the equator.

Equatorial drawing of K_4
2-disk drawings: Blažek and Koman (1962)

Now cut along the equator, and flatten each hemisphere to obtain two disks: one gets the 2-disk representation of the same drawing.
Now cut along the equator, and flatten each hemisphere to obtain two disks: one gets the 2-disk representation of the same drawing.
2-disk drawings of K_n

Drawing K_n the Blažek-Koman way

Put in one disk the edges with positive slope, and in the other disk the edges with negative slope.
Drawing K_n the Blažek-Koman way

Put in one disk the edges with positive slope, and in the other disk the edges with negative slope.

2-disk drawing of K_8
2-disk drawings of K_n

Drawing K_n the Blažek-Koman way

Put in one disk the edges with positive slope, and in the other disk the edges with negative slope.

2-disk drawing of K_8
2-disk drawings of K_n

Drawing K_n the Blažek-Koman way

Put in one disk the edges with positive slope, and in the other disk the edges with negative slope.

2-disk drawing of K_8
On the crossing number of complete graphs
Crossing number of K_n: the conjecture
The Blažek-Koman construction

From 2 disks to 2 pages
From 2 disks to 2 pages

2-page drawing of K_8
2-page drawings, 2-page crossing number

2-page drawings

The vertices are on a line, and each vertex is completely contained in the upper halfplane or in the lower halfplane (each halfplane is a page).
2-page drawings, 2-page crossing number

2-page drawings
The vertices are on a line, and each vertex is completely contained in the upper halfplane or in the lower halfplane (each halfplane is a page).

2-page crossing number
The 2-page crossing number \(2\text{-PAGE-CR}(G)\) of \(G\) is the minimum number of crossings in a 2-page drawing of \(G\).
Counting the number of crossings in the 2-page Blažek-Koman construction, one gets the same number as in Hill’s construction (!)

\[Z(n) := \frac{1}{4} \left\lfloor \frac{n}{2} \right\rfloor \left\lfloor \frac{n-1}{2} \right\rfloor \left\lfloor \frac{n-2}{2} \right\rfloor \left\lfloor \frac{n-3}{2} \right\rfloor. \]
2-page crossing number of K_n: upper bound

Counting the number of crossings in the 2-page Blažek-Koman construction, one gets the same number as in Hill’s construction (!)

$$Z(n) := \frac{1}{4} \left\lfloor \frac{n}{2} \right\rfloor \left\lfloor \frac{n-1}{2} \right\rfloor \left\lfloor \frac{n-2}{2} \right\rfloor \left\lfloor \frac{n-3}{2} \right\rfloor.$$
Outline

1. Crossing number of K_n: the conjecture
2. Our results
3. The proof: ideas from discrete geometry
4. Concluding Remarks
On the crossing number of complete graphs

Our results

\[Z(n) := \frac{1}{4} \left\lfloor \frac{n}{2} \right\rfloor \left\lfloor \frac{n-1}{2} \right\rfloor \left\lfloor \frac{n-2}{2} \right\rfloor \left\lfloor \frac{n-3}{2} \right\rfloor \]
On the crossing number of complete graphs

Our results

\[Z(n) := \frac{1}{4} \left\lfloor \frac{n}{2} \right\rfloor \left\lfloor \frac{n-1}{2} \right\rfloor \left\lfloor \frac{n-2}{2} \right\rfloor \left\lfloor \frac{n-3}{2} \right\rfloor \]

Hill (1958); Blažek-Koman (1962)

The 2-page crossing number 2-PAGE-CR(\(K_n\)) and the cylindrical crossing number CYL-CR(\(K_n\)) of \(K_n\) satisfy

\[2\text{-PAGE-CR}(K_n) \leq Z(n) \quad \text{CYL-CR}(K_n) \leq Z(n) \]
Our results

\[Z(n) := \frac{1}{4} \left\lfloor \frac{n}{2} \right\rfloor \left\lfloor \frac{n - 1}{2} \right\rfloor \left\lfloor \frac{n - 2}{2} \right\rfloor \left\lfloor \frac{n - 3}{2} \right\rfloor \]

Hill (1958); Blažek-Koman (1962)

The 2-page crossing number \(2\text{-PAGE-CR}(K_n) \) and the cylindrical crossing number \(C_{\text{YL-CR}}(K_n) \) of \(K_n \) satisfy

\[2\text{-PAGE-CR}(K_n) \leq Z(n) \quad C_{\text{YL-CR}}(K_n) \leq Z(n) \]

The 2-page crossing number \(2\text{-PAGE-CR}(K_n) \) and the cylindrical crossing number \(C_{\text{YL-CR}}(K_n) \) of \(K_n \) satisfy

\[2\text{-PAGE-CR}(K_n) = Z(n) \quad C_{\text{YL-CR}}(K_n) = Z(n) \]
This gives support to Hill’s Conjecture... perhaps the only “valid” support so far!

Hill’s Conjecture

\[
\text{cr}(K_n) = Z(n) := \frac{1}{4} \left\lfloor \frac{n}{2} \right\rfloor \left\lfloor \frac{n-1}{2} \right\rfloor \left\lfloor \frac{n-2}{2} \right\rfloor \left\lfloor \frac{n-3}{2} \right\rfloor.
\]

Our theorem settles Hill’s Conjecture for 2-page and cylindrical drawings.
Outline

1. Crossing number of K_n: the conjecture
2. Our results
3. The proof: ideas from discrete geometry
4. Concluding Remarks
In a *rectilinear drawing*, every edge is a *straight segment*.

Rectilinear drawing of K_5
Rectilinear crossing number

Rectilinear crossing number $\overline{cr}(G)$ of a graph G

Minimum number of crossings in a rectilinear drawing of G.
On the crossing number of complete graphs
The proof: ideas from discrete geometry
Rectilinear crossing number

Rectilinear crossing number

Rectilinear crossing number $\overline{cr}(G)$ of a graph G

Minimum number of crossings in a rectilinear drawing of G.

- The usual and the rectilinear crossing number can be arbitrarily different!
Rectilinear crossing number

Rectilinear crossing number $\overline{cr}(G)$ of a graph G

Minimum number of crossings in a rectilinear drawing of G.

- The usual and the rectilinear crossing number can be arbitrarily different!
- For K_n, it is known that $\overline{cr}(K_n) > cr(K_n)$ for all $n > 10$.
Rectilinear crossing number

Rectilinear crossing number $\overline{cr}(G)$ of a graph G

Minimum number of crossings in a rectilinear drawing of G.

- The usual and the rectilinear crossing number can be arbitrarily different!
- For K_n, it is known that $\overline{cr}(K_n) > cr(K_n)$ for all $n > 10$.
- Finding $\overline{cr}(K_n)$ seems harder than $cr(K_n)$! There is no “Hill’s Conjecture” for $\overline{cr}(K_n)$!
The proof: ideas from discrete geometry

Rectilinear crossing number

Rectilinear crossing number $\text{cr}(G)$ of a graph G

Minimum number of crossings in a rectilinear drawing of G.

- The usual and the rectilinear crossing number can be arbitrarily different!
- For K_n, it is known that $\text{cr}(K_n) > \text{cr}(K_n)$ for all $n > 10$.
- Finding $\text{cr}(K_n)$ seems harder than $\text{cr}(K_n)$! There is no “Hill’s Conjecture” for $\text{cr}(K_n)$!
- If you want to become famous, find $\text{cr}(K_n)$ — this also answers a question of Sylvester from 1863 (150 years ago): “Sylvester’s Four Point”, from geometric probability.
On the rectilinear crossing number

Even if $\overline{cr}(K_n)$ seems so hard that it does not even have a “Hill’s Conjecture”, we are (in principle!) very close to knowing $\overline{cr}(K_n)$ asymptotically:

Theorem (Ábrego, Aichholzer, Fernández, Ramos, and S., 2010)

$$0.37992 < \lim_{n \to \infty} \frac{\overline{cr}(K_n)}{n^4} < 0.38048.$$
On the rectilinear crossing number

Even if $\overline{cr}(K_n)$ seems so hard that it does not even have a “Hill’s Conjecture”, we are (in principle!) very close to knowing $\overline{cr}(K_n)$ asymptotically:

Theorem (Ábrego, Aichholzer, Fernández, Ramos, and S., 2010)

$$0.37992 < \lim_{n \to \infty} \frac{\overline{cr}(K_n)}{n^4} < 0.38048.$$

$$\frac{0.37992}{0.38048} \approx 0.998.$$
On the rectilinear crossing number

Even if $\overline{cr}(K_n)$ seems so hard that it does not even have a “Hill’s Conjecture”, we are (in principle!) very close to knowing $\overline{cr}(K_n)$ asymptotically:

Theorem (Ábrego, Aichholzer, Fernández, Ramos, and S., 2010)

\[
0.37992 < \lim_{n \to \infty} \frac{\overline{cr}(K_n)}{n^4} < 0.38048.
\]

\[
\frac{0.37992}{0.38048} \approx 0.998.
\]

Why are we so close?
k-edges

Take a point set P with n points, and let D be the drawing of K_n it induces. A k-edge of P (or of D) is an edge whose supporting line leaves exactly k points on one of its sides.
In discrete geometry we have nice tools

k-edges

Take a point set P with n points, and let D be the drawing of K_n it induces. A k-edge of P (or of D) is an edge whose supporting line leaves exactly k points on one of its sides.

2-edge (also 1-edge)
On the crossing number of complete graphs
The proof: ideas from discrete geometry

k-edges, E_k, and $E_{<k}$

k-edges and $\overline{\text{cr}}(K_n)$

For a rectilinear drawing D:

$$E_k(D) := \text{number of } k\text{-edges of } D.$$
On the crossing number of complete graphs
The proof: ideas from discrete geometry
k-edges, E_k, and $E_{<k}$

k-edges and $\overline{cr}(K_n)$

For a rectilinear drawing D:

$E_k(D) :=$ number of k-edges of D.

For the rectilinear crossing number $\overline{cr}(K_n)$, the location of the points “is everything”: once you fix the points, the edges are determined (straight segments joining points), and so the number of crossings is determined.
On the crossing number of complete graphs
The proof: ideas from discrete geometry
k-edges, E_k, and $E_{<k}$

k-edges and $\text{cr}(K_n)$

For a rectilinear drawing D:

$E_k(D) := \text{number of } k\text{-edges of } D.$

For the rectilinear crossing number $\text{cr}(K_n)$, the location of the points “is everything”: once you fix the points, the edges are determined (straight segments joining points), and so the number of crossings is determined.

Number of k-edges of a drawing determines its number of crossings

For any rectilinear drawing D of K_n,

$$\text{cr}(D) = 3 \binom{n}{4} - \sum_{k=0}^{\lfloor n/2 \rfloor - 1} k \cdot (n - 2 - k) E_k(D).$$
Bounding E_k does not help

Since

$$\overline{cr}(D) = 3 \binom{n}{4} - \sum_{k=0}^{\lfloor n/2 \rfloor - 1} k \cdot (n - 2 - k)E_k(D),$$

to bound $\overline{cr}(D)$ it seems a good idea to bound $E_k(D)$.
Bounding E_k does not help

Since

$$\overline{\text{cr}}(D) = 3 \binom{n}{4} - \sum_{k=0}^{\lfloor n/2 \rfloor - 1} k \cdot (n - 2 - k)E_k(D),$$

to bound $\overline{\text{cr}}(D)$ it seems a good idea to bound $E_k(D)$. But it doesn’t work well... so we introduce:

$$E_{\leq k}(D) := \sum_{j=0}^{k} E_k(D),$$
Bounding E_k does not help

Since

$$\overline{cr}(D) = 3 \binom{n}{4} - \sum_{k=0}^{\lfloor n/2 \rfloor - 1} k \cdot (n - 2 - k)E_k(D),$$

to bound $\overline{cr}(D)$ it seems a good idea to bound $E_k(D)$. But it doesn’t work well... so we introduce:

$$E_{\leq k}(D) := \sum_{j=0}^{k} E_k(D),$$

A simple calculation yields

$$\overline{cr}(D) = \sum_{k<\frac{n-2}{2}} (n - 2k - 1)E_{\leq k}(D) - \frac{3}{4} \binom{n}{3}$$
On the crossing number of complete graphs
The proof: ideas from discrete geometry
k-edges, E_k, and $E_{\leq k}$

$E_{\leq k}(D)$ turns out to be the right thing

\[
\overline{cr}(D) = \sum_{k < \frac{n-2}{2}} (n - 2k - 1)E_{\leq k}(D) - \frac{3}{4} \binom{n}{3}
\]
On the crossing number of complete graphs
The proof: ideas from discrete geometry

k-edges, E_k, and $E_{<k}$

$E_{\leq k}(D)$ turns out to be the right thing

$$\overline{cr}(D) = \sum_{k < \frac{n-2}{2}} (n - 2k - 1)E_{\leq k}(D) - \frac{3}{4} \binom{n}{3}$$

We have good techniques and tricks to bound $E_{\leq k}(D)$ for any drawing D — that’s why we have such good estimates for $\overline{cr}(K_n)$.
An intriguing calculation

\[\overline{cr}(D) = \sum_{k < \frac{n-2}{2}} (n - 2k - 1)E_{\leq k}(D) - \frac{3}{4} \binom{n}{3} \]
An intriguing calculation

\[
\overline{cr}(D) = \sum_{k < \frac{n-2}{2}} (n - 2k - 1)E_{\leq k}(D) - \frac{3}{4} \binom{n}{3}
\]

Remember Hill’s Conjecture is that \(cr(K_n)\) equals

\[
Z(n) := \frac{1}{4} \left[\frac{n}{2} \right] \left[\frac{n-1}{2} \right] \left[\frac{n-2}{2} \right] \left[\frac{n-3}{2} \right].
\]
On the crossing number of complete graphs
The proof: ideas from discrete geometry
k-edges, E_k, and $E_{<k}$

An intriguing calculation

$$\overline{cr}(D) = \sum_{k < \frac{n-2}{2}} (n - 2k - 1)E_{\leq k}(D) - \frac{3}{4} \binom{n}{3}$$

Remember Hill’s Conjecture is that $cr(K_n)$ equals

$$Z(n) := \frac{1}{4} \left\lfloor \frac{n}{2} \right\rfloor \left\lfloor \frac{n-1}{2} \right\rfloor \left\lfloor \frac{n-2}{2} \right\rfloor \left\lfloor \frac{n-3}{2} \right\rfloor$$

It is not too hard to show that $E_{\leq k}(D) \geq 3\binom{k+2}{2}$.
An intriguing calculation

\[\overline{\text{cr}}(D) = \sum_{k < \frac{n-2}{2}} (n - 2k - 1)E_{\leq k}(D) - \frac{3}{4} \binom{n}{3} \]

Remember Hill’s Conjecture is that \(\text{cr}(K_n) \) equals

\[Z(n) := \frac{1}{4} \left[\frac{n}{2} \right] \left[\frac{n-1}{2} \right] \left[\frac{n-2}{2} \right] \left[\frac{n-3}{2} \right] \]

It is not too hard to show that \(E_{\leq k}(D) \geq 3(k+2) \). Using this in the above expression, one gets **EXACTLY**

\[\overline{\text{cr}}(K_n) \geq Z(n). \]
Curious...

Discrete geometry techniques give **EXACTLY**

\[\overline{cr}(K_n) \geq Z(n). \]
Curious. . .

Discrete geometry techniques give exactly

\[\overline{cr}(K_n) \geq Z(n). \]

This “proves Hill’s Conjecture for rectilinear drawings”, but it is not such a big deal — it is known that the rectilinear crossing number \(\overline{cr}(K_n) \) is strictly bigger than \(Z(n) \).
On the crossing number of complete graphs
The proof: ideas from discrete geometry
k-edges, E_k, and $E_{<k}$

Curious...

Discrete geometry techniques give EXACTLY

$$\text{cr}(K_n) \geq Z(n).$$

This “proves Hill’s Conjecture for rectilinear drawings”, but it is not such a big deal — it is known that the rectilinear crossing number $\text{cr}(K_n)$ is strictly bigger than $Z(n)$.

What is intriguing is that, working in a totally different context, one gets EXACTLY this ugly number $Z(n)$.

The obvious question

Can we adapt geometric techniques to topological drawings? Is there an equivalent of k-edges for topological drawings?
On the crossing number of complete graphs
The proof: ideas from discrete geometry
k-edges, E_k, and $E_{<k}$

It only took us 10 years

The obvious question

Can we adapt geometric techniques to topological drawings? Is there an equivalent of k-edges for topological drawings?
The proof: ideas from discrete geometry

k-edges, E_k, and $E_{\leq k}$

It only took us 10 years

The obvious question

Can we adapt geometric techniques to topological drawings? Is there an equivalent of k-edges for topological drawings?

YES. And it is very natural . . .
k edges: from geometrical to topological

Key: being able to say when a point is “to the left” or “to the right”. How to achieve this in topological drawings?
Key: being able to say when a point is “to the left” or “to the right”. How to achieve this in topological drawings?
Key: being able to say when a point is “to the left” or “to the right”. How to achieve this in topological drawings?
Key: being able to say when a point is “to the left” or “to the right”. How to achieve this in topological drawings?
Key: being able to say when a point is “to the left” or “to the right”. How to achieve this in topological drawings?

w is to the **left** of edge uv
Key: being able to say when a point is “to the left” or “to the right”. How to achieve this in topological drawings?

\(w\) is to the \textbf{left} of edge \(uv\)
Key: being able to say when a point is “to the left” or “to the right”. How to achieve this in topological drawings?

w is to the left of edge uv
Key: being able to say when a point is “to the left” or “to the right”. How to achieve this in topological drawings?

We can say when a point is to the left/right \Rightarrow we can say when an edge is a k-edge !!!
On the crossing number of complete graphs
The proof: ideas from discrete geometry
k-edges, E_k, and $E_{\leq k}$

Moving on to 2-page drawings

In a rectilinear drawing of K_n we have:

$$\overline{cr}(D) = \sum_{k < \frac{n-2}{2}} (n - 2k - 1)E_{\leq k}(D) - \frac{3}{4} \binom{n}{3}$$
Moving on to 2-page drawings

In a rectilinear drawing of K_n we have:

$$\bar{cr}(D) = \sum_{k<\frac{n-2}{2}} (n - 2k - 1)E_{\leq k}(D) - \frac{3}{4} \binom{n}{3}$$

We now have k-edges for topological drawings (and in particular for 2-page drawings). We can define E_k, and $E_{\leq k}$, and therefore, for any (topological) drawing of K_n:

$$cr(D) = \sum_{k<\frac{n-2}{2}} (n - 2k - 1)E_{\leq k}(D) - \frac{3}{4} \binom{n}{3}$$
A taste of reality

If we can prove $E_{\leq k}(D) \geq 3\binom{k+2}{2}$ for every 2-page drawing D

\implies

Hill’s Conjecture for 2-page drawings.
A taste of reality

If we can prove $E_{\leq k}(D) \geq 3\binom{k+2}{2}$ for every 2-page drawing D

\implies

Hill’s Conjecture for 2-page drawings.

But easy examples show $E_{\leq k}(D) \geq 3\binom{k+2}{2}$ is not always true!
A taste of reality

If we can prove $E_{\leq k}(D) \geq 3\binom{k+2}{2}$ for every 2-page drawing D

\implies

Hill’s Conjecture for 2-page drawings.

But easy examples show $E_{\leq k}(D) \geq 3\binom{k+2}{2}$ is not always true!

A desperate attempt

Investigate

$$E_{\leq \leq k}(D) := \sum_{j=0}^{k} \sum_{i=0}^{j} E_i(D)$$

instead of $E_{\leq k}(D)$.
In terms of E_k (the number of k-edges):

$$cr(D) = 3 \binom{n}{4} - \sum_{k=0}^{[n/2]-1} k \cdot (n - 2 - k)E_k(D)$$

In terms of $E_{\leq k}$:

$$cr(D) = \sum_{k < \frac{n-2}{2}} (n - 2k - 1)E_{\leq k}(D) - \frac{3}{4} \binom{n}{3}$$

In terms of $E_{\leq\leq k}$, an elementary calculation gives

$$cr(D) = 2 \sum_{k=0}^{[n/2]-3} E_{\leq\leq k}(D) - \frac{1}{2} \binom{n}{2} \left\lfloor \frac{n - 2}{2} \right\rfloor$$
On the crossing number of complete graphs

The proof: ideas from discrete geometry

Beyond E_k and $E_{<k}$: introducing $E_{<=k}$

Moving up to $E_{<=k}$... works!

\[
\text{cr}(D) = 2^{\left\lfloor \frac{n}{2} \right\rfloor - 3} \sum_{k=0}^{\left\lfloor \frac{n}{2} \right\rfloor - 3} E_{\leq k}(D) - \frac{1}{2} \binom{n}{2} \left\lfloor \frac{n - 2}{2} \right\rfloor
\]

Theorem (´Abrego, Aichholzer, Fernández, Ramos, and S., 2013)

In any 2-page drawing D, $E_{\leq k}(D) \geq 3 \left(k + \frac{3}{3} \right)$.

Corollary (Hill’s Conjecture for 2-page drawings)

Every 2-page drawing D satisfies $\text{cr}(D) \geq \mathbb{Z}(n)$.

Moving up to $E_{\leq \leq k} \ldots$ works!

$$
cr(D) = 2 \sum_{k=0}^{\lfloor n/2 \rfloor - 3} E_{\leq \leq k}(D) - \frac{1}{2} \binom{n}{2} \left\lfloor \frac{n-2}{2} \right\rfloor
$$

Theorem (Ábrego, Aichholzer, Fernández, Ramos, and S., 2013)

In any 2-page drawing D,

$$
E_{\leq \leq k}(D) \geq 3 \binom{k+3}{3}.
$$
On the crossing number of complete graphs

The proof: ideas from discrete geometry

Beyond E_k and $E_{<k}$: introducing $E_{\leq k}$

Moving up to $E_{\leq k}$. . . works!

$$\text{cr}(D) = 2 \sum_{k=0}^{\lfloor n/2 \rfloor - 3} E_{\leq k}(D) - \frac{1}{2} \binom{n}{2} \left\lfloor \frac{n - 2}{2} \right\rfloor$$

Theorem (Ábrego, Aichholzer, Fernández, Ramos, and S., 2013)

In any 2-page drawing D,

$$E_{\leq k}(D) \geq 3 \binom{k + 3}{3}.$$

Corollary (Hill’s Conjecture for 2-page drawings)

Every 2-page drawing D satisfies $\text{cr}(D) \geq Z(n)$.
On the crossing number of complete graphs

The proof: ideas from discrete geometry

A few words about the proof

A few words about the proof

Goal

Show \(\forall \) 2-page drawing \(D \), \(E_{\leq k}(D) \geq 3\binom{k+3}{3} \).
A few words about the proof

Goal

Show \forall 2-page drawing D, $E_{\leq k}(D) \geq 3\binom{k+3}{3}$.

Proof is by induction on n.
A few words about the proof

Goal

Show \(\forall \) 2-page drawing \(D \), \(E_{\leq k}(D) \geq 3\binom{k+3}{3} \).

Proof is by induction on \(n \).
A few words about the proof

Goal

Show \(\forall \) 2-page drawing \(D \), \[E_{\le k}(D) \ge 3^{(k+3)/3}. \]

Proof is by induction on \(n \).
A few words about the proof

Goal

Show \(\forall \) 2-page drawing \(D \), \(E_{\leq k}(D) \geq 3^{\binom{k+3}{3}} \).

Proof is by induction on \(n \).

Remove the \(n \)-th vertex, get drawing \(D' \) of \(K_{n-1} \). By induction, we know \(E_{\leq k-1}(D') \geq 3^{\binom{k-1+3}{3}} \).
Remember \(E_{\leq k}(D) = \sum_{j=0}^{k} \sum_{i=0}^{j} E_i(D) \)

Goal: Prove \(E_{\leq k}(D) \geq 3^{\binom{k+3}{3}} \) \((*)\)

Know: \(E_{\leq k-1}(D') \geq 3^{\binom{k+2}{3}} \)
Remember \(E_{\leq k}(D) = \sum_{j=0}^{k} \sum_{i=0}^{j} E_i(D) \)

Goal: Prove \(E_{\leq k}(D) \geq 3\binom{k+3}{3} \) \((*)\)

Know: \(E_{\leq k-1}(D') \geq 3\binom{k+2}{3} \)

Elementary counting arguments show that it suffices to prove:

\[
\sum_{j=0}^{k} \#(j\text{-edges in } D' \text{ that are } j\text{-edges in } D) \geq \binom{k+2}{2}
\]
On the crossing number of complete graphs
The proof: ideas from discrete geometry
A few words about the proof

Prove: \[\sum_{j=0}^{k} \#(j\text{-edges in } D' \text{ that are } j\text{-edges in } D) \geq \binom{k+2}{2} \]
On the crossing number of complete graphs
The proof: ideas from discrete geometry
A few words about the proof

Prove: \[\sum_{j=0}^{k} \#(j\text{-edges in } D' \text{ that are } j\text{-edges in } D) \geq \binom{k+2}{2} \]

2-page drawing of \(K_8 \)

Matrix representation
Prove: \[\sum_{j=0}^{k} \#(j\text{-edges in } D' \text{ that are } j\text{-edges in } D) \geq \binom{k+2}{2} \]

Key observation: for each blue point \(ij \) the following holds
\[
(\# \text{ blue points to its right } + \# \text{ blue points above it }) = k
\]
\[\implies ij \text{ is a } k\text{-edge.} \]
D a 2-page drawing of K_n

\[E_{\leq k}(D) \geq 3\binom{k+3}{3} \]
On the crossing number of complete graphs
The proof: ideas from discrete geometry
A few words about the proof

\[D \text{ a 2-page drawing of } K_n \]

\[\implies \]

\[E_{\leq k}(D) \geq 3 \binom{k+3}{3} \]

Using

\[\text{cr}(D) = 2 \sum_{k=0}^{\lfloor n/2 \rfloor - 3} E_{\leq k}(D) - \frac{1}{2} \binom{n}{2} \left\lfloor \frac{n-2}{2} \right\rfloor : \]

Theorem (Hill's Conjecture for 2-page drawings)

\[2\text{-PAGE-CR}(K_n) = Z(n). \]
Key property of 2-page drawings for the proof

There is a natural way to construct 2-page drawings by “adding points to the infinite face”
Key property of 2-page drawings for the proof

There is a natural way to construct 2-page drawings by “adding points to the infinite face”
Key property of 2-page drawings for the proof

There is a natural way to construct 2-page drawings by “adding points to the infinite face”
Key property of 2-page drawings for the proof

There is a natural way to construct 2-page drawings by "adding points to the infinite face"
Key property of 2-page drawings for the proof

There is a natural way to construct 2-page drawings by “adding points to the infinite face”
This idea of getting a drawing by “adding points to the infinite face” is captured by the concept of *shellability*.

Shellable drawings

Drawing D of K_n is *s-shellable* if there exist a subset $S = \{v_1, v_2, \ldots, v_s\}$ of the vertices and a region R of D with the following property: for all $1 \leq i \leq j \leq s$, if D_{ij} is the drawing obtained from D by removing $v_1, v_2, \ldots, v_{i-1}, v_{j+1}, \ldots, v_s$, then v_i and v_j are on the boundary of the region of D_{ij} that contains R.
Theorem (Ábrego, Aichholzer, Fernández, Ramos, and S., 2013)

If D is an s-shellable drawing of K_n with $s \geq n/2$, then

$$E_{\leq \leq k}(D) \geq 3 \binom{k + 3}{3}.$$
Theorem (Ábrego, Aichholzer, Fernández, Ramos, and S., 2013)

If D is an s-shellable drawing of K_n with $s \geq n/2$, then

$$E_{\leq k}(D) \geq 3 \binom{k+3}{3}.$$

Corollary (Hill’s Conjecture for shellable drawings)

If D is an s-shellable drawing of K_n with $s \geq n/2$, then

$$cr(D) \geq Z(n).$$
Corollary (Hill’s Conjecture for shellable drawings)

If D is an s-shellable drawing of K_n with $s \geq n/2$, then

$$\text{cr}(D) \geq Z(n).$$
Corollary (Hill’s Conjecture for shellable drawings)

If D is an s-shellable drawing of K_n with $s \geq n/2$, then

$$\text{cr}(D) \geq Z(n).$$

Observation (easy)

- 2-page drawings of K_n are n-shellable.
- Cylindrical drawings of K_n are $n/2$-shellable.
- Monotone drawings of K_n are n-shellable.
Corollary (Hill's Conjecture for shellable drawings)

If D is an s-shellable drawing of K_n with $s \geq n/2$, then

$$\text{cr}(D) \geq Z(n).$$

Observation (easy)

- 2-page drawings of K_n are n-shellable.
- Cylindrical drawings of K_n are $n/2$-shellable.
- Monotone drawings of K_n are n-shellable.

Corollary

Every cylindrical or 2-page drawing of K_n has at least $Z(n)$ crossings.
Corollary (Hill’s Conjecture for shellable drawings)

If D is an s-shellable drawing of K_n with $s \geq n/2$, then

$$\text{cr}(D) \geq Z(n).$$

Observation (easy)

- 2-page drawings of K_n are n-shellable.
- Cylindrical drawings of K_n are $n/2$-shellable.
- Monotone drawings of K_n are n-shellable.

Corollary

Every cylindrical or 2-page drawing of K_n has at least $Z(n)$ crossings.

Corollary (Hill’s Conjecture for cylindrical and 2-page drawings)

$$\text{2-PAGE-CR}(K_n) = \text{CYL-CR}(K_n) = Z(n).$$
Outline

1. Crossing number of K_n: the conjecture
2. Our results
3. The proof: ideas from discrete geometry
4. Concluding Remarks
In terms of E_k (the number of k-edges):

$$
cr(D) = 3 \binom{n}{4} - \sum_{k=0}^{\lfloor n/2 \rfloor - 1} k \cdot (n - 2 - k)E_k(D)
$$

In terms of $E_{\leq k}$:

$$
cr(D) = \sum_{k < \frac{n-2}{2}} (n - 2k - 1)E_{\leq k}(D) - \frac{3}{4} \binom{n}{3}
$$

In terms of $E_{\leq\leq k}$:

$$
cr(D) = 2 \sum_{k=0}^{\lfloor n/2 \rfloor - 3} E_{\leq\leq k}(D) - \frac{1}{2} \binom{n}{2} \left\lfloor \frac{n - 2}{2} \right\rfloor
$$
In terms of E_k (the number of k-edges):

$$\text{cr}(D) = 3\binom{n}{4} - \sum_{k=0}^{\lfloor n/2 \rfloor - 1} k \cdot (n - 2 - k)E_k(D)$$

In terms of $E_{\leq k}$:

$$\text{cr}(D) = \sum_{k < \frac{n-2}{2}} (n - 2k - 1)E_{\leq k}(D) - \frac{3}{4}\binom{n}{3}$$

In terms of $E_{\leq\leq k}$:

$$\text{cr}(D) = 2\sum_{k=0}^{\lfloor n/2 \rfloor - 3} E_{\leq\leq k}(D) - \frac{1}{2}\binom{n}{2}\left\lfloor \frac{n - 2}{2} \right\rfloor$$

Can prove this for any drawing, to settle Hill’s Conjecture???
Can prove this for **any** drawing, to settle Hill’s Conjecture???

\[
\text{cr}(D) = 2 \sum_{k=0}^{\left\lfloor \frac{n}{2} \right\rfloor - 3} E_{\leq k}(D) - \frac{1}{2} \binom{n}{2} \left\lfloor \frac{n - 2}{2} \right\rfloor.
\]
Can prove this for any drawing, to settle Hill’s Conjecture???

$$\text{cr}(D) = 2 \sum_{k=0}^{\lfloor n/2 \rfloor - 3} E_{\leq k}(D) - \frac{1}{2} \binom{n}{2} \left\lfloor \frac{n-2}{2} \right\rfloor.$$

No! We would need to prove that for any drawing D of K_n,

$$E_{\leq k}(D) \geq 3 \binom{k+3}{3},$$

but we know it isn’t true!
However...

\[\text{cr}(D) = 2E_{\leq \leq \lfloor n/2 \rfloor} - 2(D) - \frac{1}{8}n(n-1)(n-3). \]

All drawings we know satisfy

\[E_{\leq \leq k}(D) \geq 3\binom{k+4}{4}. \]
However...

\[\text{cr}(D) = 2E_{\leq \leq \lfloor n/2 \rfloor} - 2(D) - \frac{1}{8}n(n - 1)(n - 3). \]

All drawings we know satisfy

\[E_{\leq \leq k}(D) \geq 3 \binom{k + 4}{4}. \]

If we can prove that all drawings of \(K_n \) satisfy this, the full Hill’s Conjecture follows!
Thank you for your attention!