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Abstract. The calculation of the rectilinear crossing number of complete
graphs is an important open problem in combinatorial geometry, with impor-
tant and fruitful connections to other classical problems. Our aim in this work
is to survey the body of knowledge around this parameter.

1. Introduction

In a rectilinear (or geometric) drawing of a graph G, the vertices of G are re-
presented by points, and an edge joining two vertices is represented by the straight
segment joining the corresponding two points. Edges are allowed to cross, but an
edge cannot contain a vertex other than its endpoints. The rectilinear (or geometric)
crossing number cr(G) of a graph G is the minimum number of pairwise crossings
of edges in a rectilinear drawing of G in the plane.

1.1. The relevance of cr(Kn). As with every graph theory parameter, there is
a natural interest in calculating the rectilinear crossing number of certain families
of graphs, such as the complete bipartite graphs Km,n and the complete graphs
Kn. The estimation of cr(Kn) is of particular interest, since cr(Kn) equals the
minimum number �(n) of convex quadrilaterals defined by n points in the plane
in general position; the problem of determining �(n) belongs to a collection of
classical combinatorial geometry problems, the so-called Erdős-Szekeres problems.
For a comprehensive survey on results and open questions on these and related
problems, we refer the reader to the monography by Brass, Moser, and Pach [18].

Another important motivation to study cr(Kn) is its close connection with the
celebrated Sylvester Four Point Problem from geometric probability. Sylvester
asked what is the probability that four points chosen at random in the plane form a
convex quadrilateral [31]. After it became clear that this is an ill-posed question [32],
Sylvester put forward a related conjecture. Let R be a bounded convex open set in
the plane with finite area, and let q(R) be the probability that four points chosen
randomly from R define a convex quadrilateral. Then (Sylvester’s Conjecture [22])
q(R) is minimized when R is a circle or an ellipse, and maximized when R is a
triangle. This conjecture was proved by Blashke in 1917 [17]. Scheinerman and
Wilf addressed in [29] the general problem when R is not required to be convex. It
is easy to see that in this case q(R) can be made arbitrarily close to 1 by choosing
R to be very thin annulus. The remaining problem is to determine the infimum
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q∗ := inf q(R), taken over all open sets R with finite area. Scheinerman and Wilf
established the striking connection

(1) q∗ = lim
n→∞

cr(Kn)
(

n
4

) ,

thus inextricably linking the estimation of Sylvester’s Four Point Constant q∗ to
the (asymptotic) behaviour of cr(Kn).

As we shall see below, recent developments have unveiled a close relationship
between cr(Kn) and yet another classical combinatorial geometry parameter: the
number of (≤ k)-edges in an n-point set.

1.2. Purpose and timeliness of this survey. Up until 2000, very little was
known about cr(Kn). Since then, our knowledge of this problem has seen a tremen-
dous growth. Surprising and useful connections to other classical problems have
been unveiled. The current estimates for cr(Kn) have reached a point that would
have seemed unlikely (to say the least) at the beginning of the previous decade.

For instance, before 2000 the ratio between the best lower and upper bounds for
q∗ was about 0.755; at the time of writing this survey, this ratio has been raised
above 0.998. The implied success in our understanding of the problem cannot be
understated —hence the “closing in” words in the title of this survey. Moreover, as
we have already mentioned above and shall see below in more detail, the problem
of estimating cr(Kn) has turned out to be intimately related to other classical
combinatorial geometry problems. Nowadays, anyone seriously interested in (≤
k)-edges or in halving lines, has no alternative but to take a careful look at the
literature on cr(Kn) that has been produced in the last seven or eight years.

On the more cautious side, we must also note that the steady progress achieved
on the estimation of cr(Kn), both from the lower and the upper bounds fronts, seems
to have reached an impasse. To a researcher not too familiar with the field, the
ratio 0.998 mentioned in the previous paragraph might signal an imminent closure
on the determination of q∗. This is by no means the prevalent feeling among most
(if not all) researchers actively working on this problem. Hardly any relevant new
insights have been reported for some time. This humbling reality prompted us to
include a word of caution (“or are we?”) in the title of this survey.

With this in mind, it makes sense to sit down and reflect on what has been
done, to highlight the key developments, and to record the state-of-the-art of the
problem. We also see this as an opportunity to candidly (and, at times, informally)
explain the obstacles that seem to prevent any further substantial progress with
the current techniques, in the hopes that this will foster the development of refined
or substantially novel techniques to attack this fundamental problem.

1.3. Structure of this survey. The problem of estimating cr(Kn) breaks into
the two problems of establishing upper and lower bounds for this parameter, with
the problem of finding exact values of cr(Kn) lying, evidently, within both realms.

Before moving on to separate discussions on the problems of lower- and upper-
bounding cr(Kn), we shall review one of the main foundations behind our current
knowledge of cr(Kn). The Rectilinear Crossing Number project (RCN), led by
Aichholzer, has been a fruitful source of inspiration as well as an invaluable tool
for establishing results and testing conjectures. In Section 2 we describe the nature
and reach of the RCN project which, as we will see, has both a claim and an impact
on both the lower- and the upper-bounding fronts.
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In Section 3 we give an overview of the state-of-the-art of the problem of lower
bounding cr(Kn) circa 2003.

Besides Aichholzer’s RCN project, there seems to be a general consensus on the
other main foundation behind our current knowledge of cr(Kn). A major break-
through was achieved around 2003, when two independent teams of researchers
elucidated the close connection between cr(Kn) and the number of (≤ k)-edges in
an n-point set [4, 27]. A good estimate on the number of such (≤ k)-edges, also
given in these papers, yielded an impressively improved lower bound on cr(Kn).
We devote Section 4 to a review of these cornerstone results.

In Section 5 we overview the subsequent efforts to refine the bounds for the
number of (≤ k)-edges given in [4] and [27], in the quest for improved lower bounds
for cr(Kn).

In Section 6 we discuss the different approaches to establishing upper bounds for
cr(Kn).

Section 7 contains a brief summary of the state-of-the-art of the problem at the
time of writing this survey. We present the current best estimates (lower and upper
bounds) for q∗, as well as an annotated table with the values of n for which the
exact value of cr(Kn) is known.

We conclude this survey by reflecting on some possible future developments
around this fundamental problem. We discuss the difficulties that lie behind our
current impasse, and outline a somewhat promising approach that may pave the
way towards future improvements.

2. The Rectilinear Crossing Number project

Around 2000, a team of researchers led by Aichholzer undertook the task of
building databases with all the distinct (up to order type equivalence; see below) n-
point configurations in general position, for n ≤ 10 [10, 14, 26]. The raw knowledge
of all possible n-point configurations put Aichholzer and his collaborators in a
position to explore in depth several classical combinatorial geometry problems. In
particular, it allowed for the exact calculation of cr(Kn) for small values of n.

The criterion used by Aichholzer et al. to discriminate if two collections of points
are non-isomorphic is based on the concept of order types. Consider an (ordered)
n-point set P = {p1, p2, . . . , pn} in general position. To each three integers i, j, k
with 1 ≤ i < j < k ≤ n, associate a sign (or order type) sign(ijk) according to the
following rule. If as we traverse the triangle defined by pi, pj , and pk by following
the edges pipj, pjpk, and pkpi in the given order, the resulting closed curve has a
clockwise orientation, then let sign(ijk) := +. Otherwise, let sign(ijk) := −. The
collection of the order types of all the triples of points of P is the order type of P .
Now let Q be another n-point set in general position. If the elements of Q can be
ordered {q1, q2, . . . , qn} so that the order types of P and Q are the same, then P
and Q are order type equivalent (under the mapping pi 7→ qi for i = 1, 2, . . . , n).
We simply say that P and Q have the same order type.

Order type equivalence is a natural isomorphism criterion for point sets in gen-
eral position. For crossing number purposes, it is certainly the relevant paradigm.
Indeed, suppose that P and Q have the same order type. Then there is a bijec-
tion from the points of P to the points of Q so that four points in P span a convex
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quadrilateral if and only if the corresponding four points in Q span a convex quadri-
lateral. Conversely, if this last condition holds, then P and Q have the same order
type.

Aichholzer et al. constructed the complete database of all distinct order types
on n points, for all n ≤ 10. As an application, they verified that cr(K10) = 62 (this
had been proved by Brodsky et al. in [19]).

Without building the complete database for n = 11, the information gathered
by Aichholzer et al. for n ≤ 10 allowed them to calculate cr(K11) and cr(K12). To
achieve this, taking their database for 10 points as a starting point, they analyzed
(for m = 10, and then for m = 11) which m-point order types may possibly be
extended to (m + 1)-point sets that correspond to crossing-minimal drawings of
Km+1.

The determination of the rectilinear crossing numbers of K11 and K12 marks
the beginning of the Rectilinear Crossing Number project (RCN). As one of the
major achievements of the RCN, Aichholzer developed some impressively accurate
heuristics to generate geometric drawings of Kn with few crossings. Aichholzer set
up a web page [8] to keep track of the best geometric drawings of Kn available, as
well as of the number of distinct (up to order type equivalence) drawings achieving
the current minimum.

The results reported by Aichholzer in [8] have had a major lasting impact in the
field. As new results and techniques to find improved lower bounds have become
available (see Sections 4 and 5), it has been possible to determine the exact value of
cr(Kn) for more values of n (see Section 7). The outstanding quality of the upper
bounds obtained by Aichholzer is evidenced by the fact that the drawings reported
in [8] turned out to be crossing optimal for all n ≤ 27 and for n = 30 (for n = 28 and
29 the exact value of cr(Kn) is still unknown). At the time of writing this survey,
the best upper bounds available (see Section 6) are obtained from constructions that
build upon “base” drawings of Kn for relatively small values of n. As a further
evidence of the influence of the RCN, we note that the base drawings used have
been obtained by small modifications of drawings given in [8].

As a final note, let us mention that Aichholzer and Krasser subsequently com-
pleted the database of all distinct order types of 11-point sets [15, 9]. Using this
database as a startpoint, they were able to compute cr(Kn) for all n ≤ 17. Building
the complete database of all the order type nonequivalent 12-point sets seems to
be an unfeasible task; not only it is estimated that the storage of these 12-point
sets would require several petabytes of memory, but there are also some important
technical difficulties.1

3. Lower bounds I: before 2004

In a paper published in 1972, Guy [24] gave the exact value of cr(Kn) for n ≤ 9.
Almost thirty years later, Brodsky, Durocher, and Gethner [19] pushed the existing
techniques to their limit, and introduced some clever new arguments, to calculate
the exact value of cr(K10).

As one of the first results of the Rectilinear Crossing Number project (see Sec-
tion 2), Aichholzer, Aurenhammer, and Krasser [11] gave computer-assisted proofs
that cr(K11) = 102 and cr(K12) = 153.

1Aichholzer, personal communication.
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Because each of the n subsets of size n − 1 of an n-point set P has at most
cr(Kn−1) crossings, and each crossing of P appears in exactly n− 4 such subsets,
it follows that (n− 4)cr(Kn) ≥ ncr(Kn−1). This is equivalent to

1 ≥
cr(Kn)
(

n
4

) ≥
cr(Kn−1)
(

n−1
4

) ,

which shows that the Sylvester’s Four Point Constant q∗ defined in (1) actually
exists. Starting from a lower bound for cr(Km) for any fixed m, one can obtain a
lower bound for cr(Kn) for every n > m (and consequently a lower bound for q∗)
by iterating cr(Kn) ≥ ⌈cr(Kn−1)n/(n − 4)⌉. This technique was used by Brodsky
et al. [19] with cr(K10) = 62 to show that q∗ > 0.3001. Adding to this argument
the fact that cr(Kn) and

(

n
4

)

have the same parity when n is odd (this easily
follows from (2) but was proved for any non-necessarily rectilinear drawing of Kn

by Eggleton and Guy [23]), and using cr(K11) = 102, Aichholzer et al. [11] showed
that q∗ > 0.3115.

Building upon ideas from Welzl [36] and Wagner and Welzl [34], Wagner [33]
used a completely novel approach to show that q∗ > 0.3288. Wagner’s work is
particularly significant, since it deviates from the traditional approach of lower
bounding q∗ by using a particular lower bound and a counting argument. Indeed,
the ideas in [33] are prescient of the revolutionary approach that will be reviewed
in the next section.

4. Lower bounds II: the breakthrough

Our understanding of geometric drawings of Kn underwent a phase transition
by unveiling a close relationship with k-edges. We recall that if P is an n-point
set, and 0 ≤ k ≤ n/2 − 1, a k-edge of P is a line through two points of P leaving
exactly k points on one side. A (≤ k)-edge is a j-edge with j ≤ k. The number of
k- and (≤ k)-edges of P are denoted by Ek(P ) and E≤k(P ), respectively. Finally,
let E≤k(n) denote the minimum E≤k(P ), taken over all n-point sets P in general
position.

For an n-point set P in the plane in general position, let cr(P ) denote the number
of crossings in the rectilinear drawing ofKn induced by P . The following was proved
independently by Lovász, Wagner, Welzl, and Wesztergombi [27], and by Ábrego
and Fernández-Merchant [4]:

(2) cr(P ) =

⌊n/2⌋−2
∑

k=0

(n− 2k − 3)E≤k(P )−
3

4

(

n

3

)

+ (1 + (−1)n+1)
1

8

(

n

2

)

.

The relevance of this connection between cr(P ) and E≤k(P ) was made evident
in both [4] and [27] by proving that

(3) E≤k(n) ≥ 3

(

k + 2

2

)

, for 0 ≤ k ≤ n/2− 1.

Substituting (3) into (2) yields

(4) cr(Kn) ≥
3

8

(

n

4

)

+Θ(n3),

thus implying the remarkably improved bound q∗ ≥ 3/8 = 0.375.
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We recall that the crossing number cr(G) of a graph G is the minimum number of
pairwise crossings of edges in a (nonnecessarily geometric) drawing ofG in the plane.
There are drawings of Kn with exactly λn := (1/4)⌊n/2⌋⌊(n− 1)/2⌋⌊(n− 2)/2⌋
⌊(n− 3)/2⌋ crossings, and it is widely believed that these drawings are crossing-
minimal; that is, it is conjectured that cr(Kn) = λn for every positive integer n.
This conjecture has been verified for n ≤ 12 [24, 28]. Since cr(Kn) ≤ λn, it follows
at once that limn→∞ cr(Kn)/

(

n
4

)

≤ 3/8.
This last upper bound gives an additional significance to (4). With this motiva-

tion, Lovász et al. pushed a little further, invoking the following from [35]:

(5) E≤k(n) ≥

(

n

2

)

− n
√

n2 − 2n− 4k2 + 4k.

This last bound is better than (3) for k > 0.4956n. Using (3) for k ≤ 0.4956n, and
(5) for k > 0.4956n, Lovász et al. derived the slightly improved bound q∗ > (3/8)+
10−5. Although numerically marginal, this improvement is significant because it
shows that cr(Kn) and cr(Kn) differ in the asymptotically relevant term.

5. Lower bounds III: further improvements

Since the key connection (2) was proved in [4] and [27], all subsequent efforts to
lower bound cr(Kn) have been focused on finding better estimates for E≤k(n).

The first improvement was reported in [16], giving a lower bound for E≤k(n) that
is strictly better than (3) for k > 0.4651n. The bound given in [16] is in terms of a
complicated expression. For our current surveying purposes, it suffices to mention
that using this bound Balogh and Salazar proved that cr(Kn) > 0.37553

(

n
4

)

+Θ(n3).
Another significant improvement was achieved by Aichholzer, Garćıa, Orden,

and Ramos [12], who proved that
(6)

E≤k(n) ≥ 3

(

k + 2

2

)

+ 3

(

k + 2− ⌊n/3⌋

2

)

−max
{

0, (k + 1− ⌊n/3⌋)(n− 3⌊n/3⌋)
}

.

A shorter proof of (6), given in the more general context of pseudolinear drawings
was given in [1].

Substituting (6) into (2), one obtains the improved estimate q∗ ≥ 41/108 >
0.37962. Moreover, it is possible to use the bound by Balogh and Salazar [16] in
the range k > 0.4864n to obtain the marginally better q∗ > 0.37968.

The current best lower bound known for q∗ is derived using a result recently
reported by Ábrego, Cetina, Fernández-Merchant, Leaños, and Salazar [3, 7]. They
proved that for every k and n such that ⌈(4n− 11)/9⌉ − 1 ≤ k ≤ (n− 2)/2,

(7) E≤k(n) ≥ uk(n) ≥

(

n

2

)

−
1

9

√

1−
2k + 2

n
(5n2 + 19n− 31).

The function uk is asymptotic to the latter expression and it is better than all
previous bounds (including (5) (6), and the bound in [16]) across its full range

⌈(4n− 11)/9⌉ ≤ k ≤ (n−2)/2. In addition, Ábrego et al. [3] constructed point-sets
achieving equality on (6) for all k < ⌈(4n− 11)/9⌉. Using (6) for k < ⌈(4n− 11)/9⌉,
and (7) for ⌈(4n− 11)/9⌉ ≤ k ≤ (n − 2)/2, it follows from (2) that cr(Kn) ≥
(277/729)

(

n
4

)

+Θ(n3), thus implying that q∗ ≥ 277/729 > 0.37997.
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6. Upper bounds

The literature on crossing numbers of particular families of graphs is vastly
dominated by papers that focus on establishing lower bounds. Most of the time,
a natural drawing suggests itself with relatively little effort. When successive at-
tempts to produce better drawings fail, this is seen as plausible evidence that the
proposed drawing is indeed optimal. The efforts are then directed in the opposite,
and usually remarkably harder, direction: proving nontrivial lower bounds for the
crossing numbers of the graphs upon consideration.

The problem of upper bounding the rectilinear crossing number ofKn is a notable
exception to this trend. The goal is to describe a way to draw Kn with as few
crossings as possible, for arbitrarily large values of n, so as to have at least an
educated guess at the asymptotic value q∗ = limn→∞ cr(Kn)/

(

n
4

)

. Over the years,
several strategies to draw Kn with few crossings have been put forward. However,
to this day there has not been a clear candidate for an optimal drawing. The
only common characteristic is that almost all drawings with few crossings have (or
are really close to have) 3-fold symmetry with respect to a point. That is, the
underlying point-set P of the drawing is partitioned into three sets (we call them
wings) of size n/3 each, with the property that rotating each wing angles of 2π/3
and 4π/3 around a suitable point generates the other two wings.

Figure 1. (a) Recursive construction by Singer. (b) Recursive
construction by Brodsky et al.

In the early 1970s, Jensen [25] was the first to propose a way to draw Kn for
arbitrarily large values of n. His construction gave specific coordinates for n/3
points in a wing, and then obtained the remaining two wings by rotating 2π/3 and
4π/3 around the origin. As a result he obtained q∗ ≤ 7/18 < 0.38889.

At around the same time, Singer [30] started the trend of recursively constructing
drawings of Kn. His idea was to start with a good drawing of Kn/3, apply an affine
transformation to it to make the slope of each of its edges sufficiently close to zero,
and then add the 2π/3 and 4π/3 rotations of the resulting drawing to obtain the
other two wings. (See Figure 1(a).) This construction shows that

cr(Kn) ≤ 3cr(Kn/3) + 3 ·
n

3

(

n/3

3

)

+ 3

(

n/3

2

)2

.
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Indeed, the first term consists of the crossings obtained from 4 points in the same
wing, the next term counts the crossings from 3 points in one wing and the remain-
ing in one of the other two wings, and the last term counts the crossings from 2
points in one wing and 2 points in another wing. Using cr(K3) = 0 as a starting
point, this inequality gives q∗ ≤ 5/13 < 0.38462.

Brodsky, Durocher, and Gethner [20] modified Singer’s construction by sliding
3 points in each wing toward the center of rotation as shown in Figure 1(b). Their
construction gives q∗ ≤ 6467/16848< 0.38385.

Aichholzer, Aurenhammer, and Krasser [11] devised a different replacement con-
struction. They started with an underlying set P with an even number of points
N . Instead of triplicating P , they replaced every point of P by a cluster of c points
on a small arc of circle flat enough so that all lines among these c points leave N/2
points of P on one side and N/2− 1 on the other side. (See Figure 2(a).) Letting
n = cN , their construction gives

cr(Kn) ≤

(

24cr(P ) + 3N3 − 7N2 + 6N

N4

)(

n

4

)

+Θ(n3).

Using a set P with N = 36 points and cr(P ) = 21 191 they obtained q∗ < 0.380858.
They further explored using different sizes for each of the clusters, which resulted
in an improvement of the latter bound to q∗ < 0.380739. This method of obtaining
lower bounds allowed for improvements by using better initial sets P . Aichholzer
and Krasser [15], as part of their computer-assisted search of the crossing numbers
cr(Kn) for small values of n, obtained a particular drawing of K54 that gives q∗ <
0.380601.

Figure 2. (a) Replacement construction by Aichholzer et al. (b)

Recursive construction by Ábrego and Fernández-Merchant.

Ábrego and Fernández-Merchant started with an underlying set P with an even
number of points N . They obtained a new set Q by replacing every point of P by
a pair of points close to each other and spanning a line that divides the rest of Q
in half. (See Figure 2b). This property of having a halving-line matching is not
satisfied by an arbitrary point-set P , but fortunately it is satisfied by most of the
small sets with optimal crossing number. Moreover, the resulting set Q inherits
this property. Thus, if n = 2kN , then iterating this construction k times gives

(8) cr(Kn) ≤

(

24cr(P ) + 3N3 − 7N2 + (30/7)N

N4

)(

n

4

)

+Θ(n3).
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At the time, using the best known drawing of K30 (now proved to be optimal)
yielded q∗ < 0.380559. To this date, (8) provides the currently best recursive
construction. The restrictions on the base set P were subsequently weakened [2]
in the sense that (8) also holds for arbitrary sets P with an odd number of points.
Applying this inequality to a drawing of K315 with 152 210 640 crossings gives the
currently best upper bound: q∗ < 83 247 328

218 791 125 < 0.380488.
To support the belief that the crossing-minimal sets have nearly 3-fold symmetry,

Ábrego et al. [2] constructed a 3-fold symmetric set of n points for each n multiple
of 3, n < 100. (See Figure 3.) Moreover, 3-fold symmetry is inherited from the base
set in all recursive constructions mentioned before. In fact, the drawing of K315

used as a base set to obtain the best current upper bound has 3-fold symmetry.

Figure 3. The underlying vertex set of an optimal 3-symmetric
geometric drawing of K24. This point set contains optimal nested
3-symmetric drawings of K21,K18,K15,K12,K9,K6, and K3.

7. Summary

In this section we summarize, for quick reference, the state-of-the-art on cr(Kn)
and q∗ at the time of writing this survey.

7.1. Sylvester’s Four Point Constant.

(9) 0.379972 <
277

729
≤ q∗ ≤

83 247 328

218 791 125
< 0.380488.

The lower and upper bounds in (9) are derived in [3] (see also [7]) and [2],
respectively.
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7.2. Exact values of cr(Kn). The exact value of cr(Kn) is known for n ≤ 27 and
for n = 30 (see Table 1).

For n ≤ 27, the lower bound for cr(Kn) is derived in [3] (see also [7]). The bound
cr(K30) ≥ 9726 is proved in [21]. In all cases, the upper bounds were obtained by
Aichholzer [8].

n 5 6 7 8 9 10 11 12 13 14 15 16 17 18
cr(Kn) 1 3 9 19 36 62 102 153 229 324 447 603 798 1029

n 19 20 21 22 23 24 25 26 27 30
cr(Kn) 1318 1657 2055 2528 3077 3699 4430 5250 6180 9726

Table 1. Exact rectilinear crossing numbers known.

8. Further thoughts and future research

Since the introduction of (2) in [4] and [27], all the progress achieved on lower
bounding q∗ has been contingent on the derivation of improved bounds for E≤k(n).

Although it may seem natural to expect the continuation of this trend, there is
some evidence that suggests that this approach alone will not lead to the correct
value of q∗. The reasons behind our caution lie on our own investigations of sets
that minimize the number of (≤ k)-edges. So far it has been possible to construct
n-point sets that simultaneously minimize E≤k(n) for al k up to a certain value.
It is not difficult to construct an n-point set that simultaneously achieves equality
in (3) for every k, 0 ≤ k ≤ n/3, and arbitrary n (along this discussion we assume
that n is a multiple of 3). To construct a similar set minimizing E≤k(n) for a larger
range of values of k is notably harder. Aichholzer, Garćıa, Orden, and Ramos [13]
constructed an n-point set that simultaneously achieves equality in (6) for every k,
0 ≤ k ≤ ⌊ 5n

12 ⌋−1 and arbitrary n. A different type of construction was used in [3] to
simultaneously show that (6) is tight for every k, 0 ≤ k ≤ 4n/9− 1. However, this
construction is far from crossing optimal due to a dramatic increase on the number
of (≤ k)-sets when k ≥ 4n/9, and avoiding this seems impossible. That is, insisting
on simultaneously minimizing E≤k(n) for all k, for k as large as possible, seems to
actually increase the crossing number of the point sets under consideration. In view
of this, a new paradigm might be in order. It seems not only possible, but very
likely, that the crossing-minimal drawings of Kn for large values of n are attained
by point sets that are not even close to minimizing E≤k for every k < (4n/9)− 1.
A proper understanding of this intriguing behavior seems out of our reach at the
present time.

Although (2) validates the efforts to lower bound cr(Kn) via lower bounding
E≤k(n), our previous remarks suggest that, no matter how fine the estimates, this
may not suffice in order to determine q∗. It is quite conceivable that the (exact or
asymptotic) value of E≤k(n) be known for every k, and still the estimate for cr(Kn)
obtained from plugging this into (6) does not correspond to the correct (at least
asymptotic) value of cr(Kn).
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The outlook from the upper bounds front is also unclear. We might all be just
one clever idea away from a breakthrough construction that yields (at least asymp-
totically) crossing-minimal geometrical drawings of Kn. Using best-case heuristics,
it can be shown that any recursive construction for large N , where each point is
replaced by a small cluster of points of the same size, can yield at best a bound of
the form

cr(Kn) ≤

(

24cr(P ) + 3N3 − 7N2 + 4N

N4

)(

n

4

)

+Θ(n3).

The improvement using the best drawing of K315 would be less than 10−8.
For all these reasons, we are inclined to think that there is more potential to

close the gap from below than from above; that is, we believe that q∗ is closer to
the current best upper bound than to the current best lower bound.

To end on an optimistic note, there is one more promising observation. Be-
sides 3-fold symmetry, the currently best known constructions (including those
presented in [2]) share another property called 3-decomposability. A set P is called
3-decomposable if there exists a balanced partition of P into three parts A,B, and
C and a triangle T enclosing P such that the orthogonal projections of P onto
the sides of T show A between B and C on one side, B between A and C on
another side, and C between A and B on the third side. As for 3-fold symme-
try, 3-decomposability is inherited from a base set in all recursive constructions

mentioned before. Ábrego et al. [2] conjectured that all crossing-minimal sets are
3-decomposable. If this conjecture happens to be true, then the lower bound for q∗
would be improved to (2/27)(15− π2) > 0.380029 as proved in [2].

References
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