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Abstract

The structure of previous known infinite families of crossing–critical graphs had led to the
conjecture that crossing–critical graphs have bounded bandwidth. If true, this would im-
ply that crossing–critical graphs have bounded degree, that is, that they cannot contain
subdivisions of K1,n for arbitrarily large n. In this paper we prove two new results that
revolve around this question. On the positive side, we show that crossing–critical graphs
cannot contain subdivisions of K2,n for arbitrarily large n. On the negative side, we show
that there are simple 3-connected graphs with arbitrarily large maximum degree that are
2-crossing–critical in the projective plane. Although the former conjecture is now disproved
in a subsequent manuscript by Dvořák and Mohar, our results are not affected, and some
interesting questions remain. Namely, can the bandwidth conjecture still be true for simple
3-connected graphs in the plane?
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1 Crossing Numbers and Crossing–Critical Graphs

Unless otherwise stated, throughout this paper our notation and terminology follows Diestel [5].
The crossing number crΣ(G) of a graph G in a surface Σ is the minimum number of pairwise

crossings of edges in a drawing of G in Σ. Whenever the reference to Σ is omitted, it is assumed
that Σ is the plane (or, equivalently in the realm of crossing numbers, the sphere).

Calculating the exact crossing number of a graph is a computationally hard problem, and
for many years most crossing number papers focused on calculating or estimating the crossing
number of interesting families of graphs. This trend has been reversed in the last few years, as
questions of a more structural character have been successfully tackled (see for instance [2, 3,
10, 13, 16, 19].

As with other classical graph theoretical parameters, we gain a great insight into crossing
numbers by looking at graphs that are minimal with respect to having a certain crossing number.
A graph G is k–critical in Σ if crΣ(G) ≥ k but crΣ(G − e) < k for each edge e of G. Many
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interesting questions and results in crossing–critical graphs in the plane are related to the work
of Richter and Thomassen [16].

A little over two decades ago, Širáň [18] and Kochol [12] gave nice constructions of crossing–
critical graphs. Kochol’s family of critical graphs has inspired a good deal of research. These
constructions have been generalized by several authors [17, 14, 1]. All such generalizations share
one key feature from Kochol’s original construction; the infinite families consist of “long and
thin” graphs. This led Salazar and Thomas to conjecture that crossing–critical graphs have
bounded path–width (see [7]). This conjecture has been proved in [10].

Thomassen observed that all constructions formerly known, including the slightly different
flavoured constructions by Hliněný [9, 11], satisfy the stronger property of having bounded
bandwidth. A graph G has bandwidth at most k if there is a bijection β : V (G) → {1, . . . , |V (G)|}
such that |β(u) − β(v)| ≤ k for each edge e = uv in G. This observation was recorded as a
conjecture in [15] which we repeat here for the sake of completeness (though it is known to be
false nowadays; see Theorem 1.5 and Question 1.6).

Conjecture 1.1 (Disproved in [6].) For each integer k > 0 there is a number B(k) such that
if G is k–crossing–critical, then the bandwidth of G is at most B(k).

The following was a weaker and perhaps simpler form of Conjecture 1.1:

Conjecture 1.2 (Disproved in [6].) For each integer k > 0 there is a number D(k) such that
if G is k–crossing–critical, then the maximum degree of G is at most D(k).

In this paper we bring two new results formerly inspired by the bounded bandwidth question.
From the positive side, we have the following weaker result.

Theorem 1.3 For each integer k > 0, there is a f(k) such that if G is k–crossing–critical,
then G does not contain a subdivision of K2,f(k). In particular, f(k) ≤ 30k2 + 200k.

We also show that the projective-plane version of Conjecture 1.2 is false in a very strong sense—
even for simple 3-connected graphs and the least interesting value of k = 2 (we extend this to
all nonorientable surfaces in Section 5, at the expense of dropping 3-connectedness).

Theorem 1.4 There is an infinite family of simple 3-connected graphs Ht, t ≥ 4, such that
each Ht is 2-crossing-critical in the projective plane and has a vertex of degree 6t.

While preparing a revised version of this paper, we have learned about the following sur-
prising new construction, given in [6], which disproves both Conjectures 1.1 and 1.2.

Theorem 1.5 (Dvořák and Mohar [6]) For every k ≥ 171 and every d, there exists a k-
crossing-critical graph H containing a vertex of degree at least d.

In view of this Theorem 1.5, our Theorem 1.3 now seems to gains even more importance.
On the other hand, regarding Theorem 1.4, we remark that the graphs constructed by Dvořák
and Mohar are not guaranteed to be simple 3-connected (they are using so called “thick edges”
which are then replaced with bunches of parallel edges). Therefore, we suggest the following
question as an interesting and still open problem worth further research:

Question 1.6 Is Conjecture 1.2 (or 1.1) true when restricted to simple 3-connected graphs G?

The rest of this paper is organized as follows. In Section 2 we study the structure of {u, v}–
bridges in crossing–critical graphs, where u, v are distinct vertices. This is used in Section 3 to
prove Theorem 1.3. In Section 4, we give the construction proving Theorem 1.4. We close with
some concluding remarks and questions in Section 5.
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2 2–cuts and {u, v}–bridges in crossing-critical graphs

Recall that a drawing D of a graph G is a mapping of G into the plane (or the surface Σ), such
that the vertices of G are points and the edges are simple curves joining their endvertices. More-
over, it is required that no edge passes through a vertex (except at its ends), every intersection
of edges (other than at their endpoints) is a crossing rather than tangential, and no three edges
cross in a common point. Throughout this section, we consider graphs drawn in the plane R2

(equivalently, the sphere). We are mostly interested in optimal drawings of a k–crossing–critical
graph G, i.e. in drawings D of G such that cr(D) = cr(G).

To show that no large K2,n subdivisions exist in a k–crossing–critical graph (k is fixed), we
first take any two vertices u, v, thinking of them as the degree-n vertices in a K2,n subdivision
in G. We wish to analyze the {u, v}–bridges in G. We use “bridge” in the sense of Tutte: a
U–bridge in a graph G, where U ⊆ V (G), is either a single edge with endvertices in U (a trivial
bridge), or a subgraph of G obtained by adding to a connected component F of G − U all the
edges attaching F to U together with their ends.

Our major aim in this section is to prove Lemma 2.4, which claims that if u, v are the
degree-n vertices of a large K2,n subdivision in G, then a large number of u–v paths are drawn
(in every optimal drawing of G) inside a closed disc ∆ bounded by two u–v paths, in such a way
that the chunk of G drawn in ∆ is crossing-free and remains connected even after the removal
of u and v. This is a central prerequisite in the proof of Theorem 1.3.

To prove Lemma 2.4 we need two preliminary results. First we study the implications of
a large enough number of {u, v}–bridges: in an optimal drawing of such a (not necessarily
crossing–critical) graph, distinct {u, v}–bridges are disjointly drawn, and a single face of the
drawing is incident with both u and v. This is the content of Lemma 2.2. Then we show, in
Lemma 2.3, that the number of {u, v}–bridges is bounded as a function of k.

We make essential use of a fundamental result by Richter and Thomassen [16], which
proves an intuitively appealing yet elusive fact: t–crossing–critical graphs have crossing number
bounded by a function of t.

Theorem 2.1 (Richter and Thomassen [16]) Every t–crossing-critical graph has crossing
number at most 2.5t + 16.

Our subsequent proofs rely on this upper bound. Any improvement on this bound would
immediately imply (marginally, though) sharper bounds in our results.

We start by analyzing drawings with a large number of {u, v}–bridges. Having a drawing D
of a graph G, and a subgraph H ⊆ G, we shortly denote by D(H) the corresponding subdrawing
of H. We call a face of D a component of R2 \ D.

Lemma 2.2 Let G be a 2–connected graph, and let u, v be different vertices of G. Let t > 0 be
an integer. Suppose that cr(G) ≤ t, and that G has at least t + 2 {u, v}–bridges. Then every
optimal drawing D of G satisfies the following:

(i) No two edges of different {u, v}–bridges cross each other in D.

(ii) There is a face of D that is incident with both D(u) and D(v).

Proof. Let G,u, v, and t be as in the statement of the claim, and let D be any optimal
drawing of G. Let C1, C2, . . . , Cs be all the {u, v}–bridges of G, where, by hypothesis, s ≥ t+2.

First we note that, for each Ci, the drawing Di = D(Ci) of Ci induced by D has a face
incident with both Di(u) and Di(v). For suppose that some Cj does not satisfy this property.
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Since every Ci contains a u–v path, then every Ci with i 6= j has at least one edge that crosses
(in D) an edge of Cj. But then D has at least t + 1 crossings, a contradiction. We remark that
this observation also implies that if D satisfies (i), then it must satisfy (ii) as well.

A straightforward corollary of the previous paragraph then implies that, for each i =
1, 2, . . . , s, there is a drawing D′

i of Ci such that: (a) cr(D′
i) = cr(Di); (b) D′

i(u) = (0, 1) and
D′

i(v) = (0,−1); and (c) D′
i \ {D

′
i(u),D′

i(v)} is contained in the interior of the region bounded
by the parabolas x = i(1 − y2) and x = (i + 1)(1 − y2).

The drawings D′
i can then be combined to yield a drawing D′ of G that clearly satisfies (i)

and (ii). Now (a) in the previous paragraph implies that cr(D′) ≤ cr(D). Moreover, (a) also
implies that no edges in different {u, v}–bridges cross each other in D, as otherwise D would
have more crossings than D′, contradicting the optimality of D. Thus D itself satisfies (i). As
observed above, this implies that D also satisfies (ii).

Lemma 2.3 Let t > 0 be an integer. Suppose that G is a 2–connected t–crossing-critical graph,
and let u, v be any two distinct vertices of G. Then G has at most 2.5t + 18 {u, v}–bridges.

Proof. Let Cu,v := {C1, C2, . . . , Cs} denote the collection of all {u, v}–bridges of G. We
suppose s ≥ 2.5t + 19, and will show this implies that cr(G − e) = cr(G) for some edge e of G,
thus contradicting the criticality of G.

Let D be an optimal drawing of G. Since cr(G) ≤ 2.5t + 16 by Theorem 2.1, then s ≥
2.5t + 19 ≥ cr(G) + 3 and Lemma 2.2 applies. Then it follows from (i) that the number of
{u, v}–bridges that contain an edge crossed in D is at most cr(G). So there is a {u, v}–bridge,
say C1 without any loss of generality, such that no edge of C1 is crossed in D.

Let D1 be any optimal drawing of G1 = G − V (C1 − {u, v}) (or G1 = G − e in the case
C1 is a single edge e). Note that Cu,v \ {C1} is exactly the set of {u, v}–bridges in G1. Since
cr(G − C1) ≤ cr(G), and so |Cu,v \{C1}| ≥ 2.5t + 18 ≥ cr(G1)+2, then Lemma 2.2 also applies
to G1. Moreover, for each i = 2, 3, . . . , s, cr(D(Ci)) = cr(D1(Ci)) since any strict inequality
would imply that D or D1 is not optimal. By Lemma 2.2 (i), as applied to both G and G1, we
get cr(D) = cr(D1). Thus cr(G) = cr(G1), and hence cr(G − e) = cr(G) for each e ∈ E(C1).

Lemma 2.4 Let t,m > 0 be integers. Let G be a 2–connected t–crossing-critical graph, and
let D be an optimal drawing of G. Suppose that for some vertices u, v of G, there are at least
(7.5t + 50)m pairwise internally-disjoint u–v paths in G. Then there are m + 1 such u–v paths,
say P0, P1, . . . , Pm, such that:

(i) D(P0 ∪ Pm) bounds a closed disc ∆ containing no crossings of D,

(ii) D(Pi) ⊆ ∆ for i = 1, . . . ,m − 1, and

(iii) the subgraph of G − {u, v} drawn on ∆ is connected, and so P0, . . . , Pm all belong to one
{u, v}–bridge of G.

Proof. Let Cu,v := {C1, C2, . . . , Cs} denote the collection of all {u, v}–bridges of G, and let
pi be the cardinality of a maximal set of pairwise internally-disjoint u–v paths in Ci. Let ri be
the number of crossings in D involving edges of Ci, with a crossing counting twice if both edges
involved are in Ci.

We first prove that there exists i ∈ {1, . . . , s} such that pi ≥ m(ri + 1). Indeed, seeking a
contradiction, suppose that pi ≤ m(ri+1)−1 for each i. Then, since

∑s
i=1 ri = 2cr(G) ≤ 5t+32

by Theorem 2.1, and s ≤ 2.5t + 18 by Lemma 2.3, we can bound the total number of pairwise
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Qj . . . . . . . . . . . . Qj+l . . . . . . Qj+m. . . . . . . . . .

Q1
Qp′

i

∆

u

v

Figure 1: Proof of Lemma 2.4. A collection Q1, Q2, . . . , Qp′
i

of u–v paths in a {u, v}–bridge Ci

of G; its bad indices j − 1, j + m (Type I) and p′i (Type II), depicted with shaded strips, and
consecutive m good indices j, j + 1, . . . , j + m − 1 whose strips form ∆.

internally-disjoint u–v paths in G from above by

s∑

i=1

pi ≤
s∑

i=1

(m(ri + 1) − 1) < m
s∑

i=1

ri + ms ≤ m(5t + 32 + 2.5t + 18) ,

contrary to our assumption.
So there is an i such that pi ≥ m(ri+1). Consider a maximum-size collection Q1, Q2, . . . , Qp′

i

of pairwise internally-disjoint u–v paths in G belonging to Ci and not involved in a crossing
in D, labeled in agreement with the clockwise cyclic order in which they appear in D around
u. See Figure 1. Note that p′i ≥ pi − ri. We say that an index j ∈ {1, . . . , p′i} is bad if either;
(Type I) the closed disc ∆j bounded by D(Qj∪Qj+1) in the sphere and disjoint from the interior
of Qj+2 contains a crossing of D, or (Type II) ∆j contains a face of D(Ci) incident both with u
and v (indices are modulo p′i).

We argue that the number of bad indices is at most ri + 1. Indeed, as at most ri of the
disks ∆j contain a crossing of D involving an edge of Ci, there are at most ri bad indices of
Type I. If ∆j contains a crossing of D, but no one involving Ci, then ∆j contains the drawing
of another {u, v}–bridge not crossing Ci and so there is a face of D(Ci) incident both with u
and v in ∆j. Finally, there is at most one such face, as otherwise Ci would not be a single
{u, v}–bridge. Thus there is at most one bad index of Type II, and therefore at most ri +1 bad
indices in total.

Now p′i ≥ pi − ri ≥ (m − 1)(ri + 1) + 1, and hence there exist m consecutive good (i.e.,
not bad) indices j, j + 1, . . . , j + m − 1 in the cyclic ordering modulo p′i. Let (P0, . . . , Pm) :=
(Qj , . . . , Qj+m). It is now straightforward to verify validity of (i), (ii), and (iii) from the defini-
tion of a bad index.
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3 Large bonds in crossing-critical graphs:

proof of Theorem 1.3

In this section we prove Theorem 1.3. We start with a technical dealing with face distance
in graph drawings (Lemma 3.1). We then prove Theorem 1.3 for 2–connected graphs (Theo-
rem 3.2), and we finish the section with a proof for the general case.

Let x, y be vertices of a graph H, and let D be a drawing of H. A face chain is a sequence of
(different) faces of D such that each consecutive pair of them shares (a segment of) an edge. A
face chain joins x and y if it starts from a face incident with x and ends in a face incident with
y. The face distance fdD(x, y) in D between x and y is the length (i.e. cardinality) of a shortest
face chain that joins x and y. A subgraph G of H is crossing-free in a drawing D if no edge of
G is crossed in D. Suppose F is an {x, y}-bridge in H, and the subdrawing D(F ) intersects the
rest of D only in x, y. A 2-flip of D(F ) at x, y is an operation of cutting-out D(F ) from D and
pasting back the mirror image of it (properly identifying the cutvertices x, y again).

Lemma 3.1 Let H be a planar graph, x, y ∈ V (H), and Q1, Q2, Q3 be three internally disjoint
paths connecting x to y in H. Suppose D1 is a planar drawing (i.e. without crossings) of H,
and D2 is an arbitrary drawing of H such that Q := Q1 ∪Q2 ∪Q3 is drawn crossing-free in D2.
Then fdD2

(x, y) ≥ fdD1
(x, y).

Proof. A standard network-flow duality argument gives that the face distance fdD1
(x, y) is at

least ℓ + 1 if, and only if, there exist ℓ pairwise edge-disjoint cycles C1, . . . , Cℓ in H such that
each D1(Ci), i ∈ {1, . . . , ℓ}, separates D1(x) from D1(y). Note that Q1∪Q2∪Q3 is a subdivision
of the 3–bond, and thus it is embedded (drawn with no crossings) in the same way under D1

and D2. Fix any i ∈ {1, . . . ℓ}. If in D2 there was an arc from D2(x) to D2(y) that crossed no
edge of Ci, then clearly there would be a a subpath P of Ci, with one endpoint in Qj and the
other in Qj+1 (for some j ∈ {1, 2, 3}, reading the indices of Qj’s modulo 3), internally disjoint
from Q, such that P crosses Qj+2, contradicting that Q is drawn crossing-free under D2. It
thus follows that for each i ∈ {1, 2, . . . , ℓ}, D2(Ci) also separates D2(x) from D2(y). This is, in
turn, a certificate that fdD2

(x, y) ≥ ℓ + 1.

Theorem 3.2 Let k > 0 be an integer and G be a 2–connected graph. Suppose that G contains
a subdivision of K2, 30k2+200k. Then G is not k–crossing-critical.

Proof. Let D be any optimal drawing of G. By hypothesis, there are distinct vertices u, v
such that there are at least 30k2 + 200k pairwise internally disjoint u–v paths in G. Setting
m = 4k, we obtain using Lemma 2.4 a family P0, . . . , Pm of u–v paths satisfying (i)–(iii) in
Lemma 2.4. Let F denote the {u, v}–bridge of G containing all these paths, and F := D(F ) be
the drawing of F induced by D. Without any loss of generality, the Pi’s are labeled according
to the clockwise cyclic order in which they appear around u in F .

Let e be the edge of P2k that is incident with u. Note that e cannot be the only edge of P2k,
as otherwise P2k would be a {u, v}–bridge (of G) by itself. Let Ge := G−e and Fe := F −e. Let
De be any optimal drawing of Ge, and let Fe := De(Fe) be the drawing of Fe induced by De.

To complete the proof, we assume G is k–crossing-critical, and derive a contradiction. First
note that k–crossing-criticality of G implies that cr(Fe) ≤ cr(De) ≤ k − 1 < cr(G).

Claim 3.3. To prove the theorem, it suffices to construct a drawing F of F such that

(a) cr(F) ≤ cr(Fe),

(b) fd
F

(u, v) ≤ fdFe
(u, v).
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u

v

e
F :

(∆0)

P0

Rx

Px+1

P2k

Py−1

Ry

P4k

Fx,y Fx,y

u

v

Fe(Fx,y):

∆e

P0

Rx

P2k − e

Pz

Ry

P4k

Fx,y Fx,y

u

v

Fe:

∆̄e

(to be replaced

with ∆0)

P0

Rx Ry

C

P4k

Figure 2: Proof of Theorem 3.2 (Claim 3.3); the drawings F , Fe, and Fe. The claimed new
drawing F results by “replacing” ∆̄e in Fe with the content of ∆0.

Indeed, having such F at hand, we simply replace the subdrawing Fe in De with F , iden-
tifying F(u) with De(u) and F(v) with De(v). This yields a drawing D of G. By (a), there
are no more crossings involving two edges of F in D than in De, and by (b) the replacement
operation F 7→ F may be performed so that there are no more crossings involving one edge
of F and one edge of other {u, v}–bridge of G (indeed, in any optimal drawing of G every
{u, v}–bridge distinct from F gets drawn along a shortest u–v face chain of the drawing of F ).
Hence cr(De) ≥ cr(D) ≥ cr(G), providing the required contradiction.

It remains to construct F with properties (a) and (b) in Claim 3.3. We start with the
drawing F of F , cf. Figure 2 left, and recall from Lemma 2.4 the closed disc ∆ bounded by
F(P0 ∪P4k) and containing no crossings of F . Without loss of generality, we may assume there
is no other u–v path in F internally disjoint from our P0, . . . , P4k and drawn under ∆.

For j ∈ {1, . . . , 2k − 1, 2k + 1, . . . , 4k − 1}, let Bj denote the set of those V (Pj)–bridges
that do not intersect (Pj−1 ∪ Pj+1) − {u, v}, and let Rj denote the subgraph of F induced by
Pj ∪ (

⋃
Bj) (informally, we think of Rj as Pj together with its “local bridges”). Note that

F(Rj) is contained in the disc bounded by F(Pj−1)∪F(Pj+1) ⊆ ∆, and only one face of F(Rj)
contains the rest of the drawing F . Clearly, V (Rj) ∩ V (Rj′) = {u, v} and E(Rj) ∩ E(Rj′) = ∅
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whenever j 6= j′. We take the minimum index x ∈ {1, . . . , 2k − 1} and the maximum index
y ∈ {2k + 1, . . . , 4k − 1} such that neither Rx, Ry are crossed in Fe. Such indices exist since
at most 2cr(Fe) ≤ 2k − 2 of the Rj’s may be involved in a crossing. Furthermore, there exists
z ∈ {x + 1, . . . , y − 1} \ {2k} such that also Pz is uncrossed in Fe, for the same reason.

Back in the drawing F , let Γ be the face of F(Rx ∪ Ry) containing F(e), and let Fx,y be
the subgraph obtained from F by deleting the vertices drawn in the interior of Γ. We claim
that Fx,y − V (Rx ∪ Ry) has at most two connected components, and if there are exactly two,
then one of the components attaches only to Rx and the other one only to Ry. This follows
easily since any two such components have to be connected in F −{u, v} via a path (since F is
a {u, v}-bridge) intersecting Rx−1 ∪ Ry+1 by Lemma 2.4 (i). See Figure 2 left.

We are now going to analyze the drawing Fe(Fx,y) of Fx,y induced by Fe. See Figure 2
right. As neither Rx nor Ry is crossed in Fe, the subdrawing Fe(Rx ∪ Ry) has a (single) face
∆e containing Fe(P2k − e). In the easy case, ∆e is also a face of Fe(Fx,y), and then we set
Fe = Fe(Fx,y) and ∆̄e = ∆e. Otherwise, by the argument in the previous paragraph, one
component X1 of Fx,y − V (Rx ∪ Ry) drawn under ∆e attaches to (say) Rx, and possibly one
such X2 attaches to Ry (it may even happen that X1 = X2 = Fx,y − V (Rx ∪Ry) ). Then we fix
an interior point p ∈ Fe(P2k − e), take the drawing Fe(Fx,y), and perform a 2-flip at u, v of the
subdrawing induced by Rx ∪ X1. If applicable, we do the same to Ry ∪ X2. Let Fe denote the
resulting drawing of Fx,y, and ∆̄e be the face of Fe(Rx ∪ Ry) containing the point p. Now ∆̄e

is also a face of Fe, as we need.
It follows that the boundary of ∆̄e in Fe forms a cycle C ⊆ Fx,y by 2-connectivity, and C

consists of two u–v paths P ′
x ⊆ Rx and P ′

y ⊆ Ry by the definition of Rx, Ry. By invoking a
Riemann stereographic projection argument if necessary, we may assume ∆̄e is a closed disc.
See Figure 2 bottom. Let ∆0 be (in the original drawing F) the closed disc bounded by F(C)
and containing F(e), and F0 ⊆ F be the graph (thought as “complement” of Fx,y) such that
F0 ∩ Fx,y = C and F0 ∪ Fx,y = F . Notice that F(F0) is drawn crossing-free under ∆0 by
Lemma 2.4(i). The final step in the construction of F simply places a suitable homeomorphic
copy of F(F0) into the face ∆̄e of Fe, properly identifying F(C) with Fe(C). Clearly, (a) it
holds cr(F) = cr(Fe) ≤ cr(Fe).

We finish the proof by showing that F also satisfies (b). Recall that the graphs drawn as
Fe and F − e are isomorphic. By the above construction, the subdrawings of Fx,y induced by
Fe and F are the same up to possible 2-flips at u, v. Particularly, the crossings in Fe(Fx,y) are
the same as in F(Fx,y). Transforming every crossing of both these subdrawings Fe(Fx,y) and
F(Fx,y) into a degree 4 vertex, Fe and F become new drawings F•

e and F•. Then the graphs of
F•

e and F• − e are isomorphic, too. Moreover, the drawing F• is crossing-free, i.e. planar, and
F•

e has the property that Px∪Py ∪Pz is drawn crossing-free. Thus an application of Lemma 3.1
shows (b) that fdFe

(u, v) = fdF•

e
(u, v) ≥ fd

F•−e(u, v) = fd
F−e(u, v) = fd

F
(u, v).

It is hardly surprising that Theorem 1.3 follows easily from the 2–connected case:

Proof of Theorem 1.3.

Suppose G is k–crossing-critical and contains a subdivision of K2,30k2+200k . Let C1, C2,
. . . , Cr be the components of G, labeled so that, without any loss of generality, C1 contains a
subdivision of K2,30k2+200k. A routine argument shows that each Ci is ri–crossing-critical for
some ri (moreover,

∑
i ri = k). Let H1,H2, . . . ,Hs be the blocks of C1, labeled so that, without

any loss of generality, H1 contains a subdivision of K2,30k2+200k. Again, a routine argument
shows that each Hi is si–crossing-critical for some sj (moreover,

∑
i sj = r1). In particular,

H1 is s1–crossing-critical for some s1 ≤ r1 ≤ k, and contains a subdivision of K2,30k2+200k, and
consequently a subdivision of K2,30s1

2+200s1
. This contradicts Theorem 3.2.
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4 Projective critical graphs with large maximum degree:

proof of Theorem 1.4

Throughout this section, crossing numbers refer to drawings in the the projective plane.
We now describe the construction of the graph family Ht, t = 1, . . ., which for t ≥ 4 satisfies

Theorem 1.4. Our construction and its corresponding analysis have been inspired by the fruitful
concept of planar tiles [14]. We, however, turn this classical construction “inside out” to produce
a planar belt of planar tiles which we consequently force to “twist” in the projective plane by
adding an additional high-degree vertex, connected to both sides of the belt. We refer the reader
to Figure 3 for a taste of our construction. This is a projective drawing of H3, obtained from
three copies of the tile T 2 (see Figure 4).

h

h

H ′
3

H3:

Figure 3: The graph H3 drawn in the projective plane (the pairs of opposite points on the
dashed ellipse get identified). If vertex h is removed, we obtain H ′

3.

The rest of this section is structured as follows. First we give the formal definition of Ht.
Then we show that for every t ≥ 1 the crossing number of Ht minus any edge is at most 1
(Lemma 4.1). Then comes the hardest part—proving that the projective crossing number of
Ht is at least 2, for every t ≥ 4 (Lemma 4.3). The main tool for the latter part is a structural
analysis: we examine each edge e of Ht and show that, for most choices of e, the subgraph
Ht − e still contains one of the forbidden minors for the projective plane (Figure 7)—and hence
the crossing number must be ≥ 1 + 1. For the remaining few edges of Ht, we show that if any
two of them cross each other, then the resulting drawing must contain yet another crossing.

Construction of Ht

We let T (the tile) denote the graph on 11 vertices and 15 edges depicted in Figure 4 in solid
lines, and we distinguish its “boundary” vertices a, b, c, and d. Let T ′ be a disjoint copy of T ,
and denote by T 2 the graph obtained from T ∪ T ′ by identifying the vertex c of T with vertex
a′ of T ′, and vertex d of T with vertex b′ of T ′.

Let T 2
1 , . . . , T 2

k be t disjoint copies of the graph T 2, where the boundary vertices of T 2
i are

labeled ai, bi, c
′
i, d

′
i. Identify the vertex pair ai+1, c

′
i and the pair bi+1, d

′
i, for each i, 1 ≤ i ≤ t

(indices are read modulo t, and in the special case t = 1 identify the vertex pairs a1, c
′
1 and

b1, d
′
1). Denote the resulting graph by H ′

t. Thus, t copies of T 2 are sticked together in a circular
fashion to make H ′

t. Notice that, unlike in classical crossing-critical constructions, the resulting
graph is untwisted (H ′

t is a planar graph). Now H ′
t is made of 2t copies of the tile T . Denote

by pi, qi, ri, and p′i, q
′
i, r

′
i, for i = 1, . . . , t, the copies of the vertices p, q, r (cf. Figure 4) in each

T . Finally, let Ht denote the graph that results by adding a new vertex h to H ′
t, and joining h

to pi, qi, ri, p
′
i, q

′
i, and r′i for every i = 1, . . . , t. Figure 3 illustrates H3.

9



p

r

q

p′

r′

q′

s

d′

c′a

b c

d

T

Figure 4: One tile T used in our construction (in solid lines); and another attached copy of T
(a scheme in dashed lines), together forming T 2.

It is clear that every Ht, t ≥ 3, satisfies the connectivity and degree properties claimed in
Theorem 1.4. If we aim to show that Ht is 2-crossing-critical in the projective plane for each
t ≥ 4, we need to show that (i) Ht has a projective crossing number equal to 2, and that (ii)
if we remove any edge from Ht, then the resulting graph has projective crossing number at
most 1. The following statement takes care of (ii) and of the upper–bound part of (i), while
subsequent Lemma 4.3 finishes the more difficult direction of (i).

Lemma 4.1 For every t ≥ 1, Ht can be drawn in the projective plane with at most two cross-
ings. Moreover, for each edge e ∈ E(H t), the graph Ht − e can be drawn in the projective plane
with at most one crossing.

Proof. Figure 3 shows how to draw H3 in the projective plane with two crossings. This
gets easily extended to a projective drawing of Ht with two crossings, for any positive integer
t. This proves the first statement in the lemma.

We now prove that for any edge e ∈ E(H ′
t), H ′

t − e has a projective plane drawing with at
most one crossing. We prove this for t = 1, and simply observe that for t ≥ 2, t − 1 copies of
the graph T 2 can be added to the drawing of H ′

1 − e without adding any crossings.
We start with the case e ∈ H ′

1. Consider the natural cylindrical embedding of H ′
1, as given

in Figure 5.

c = a′ q′p′ s′

r′b′ = dsp qa

x y
z

rb = d′

x′

y′ z′

c′ = a

Figure 5: A cylindrical embedding of H ′
1.

An edge e ∈ E(H ′
1) is of Type I if in this cylindrical embedding there is an arc γe starting at

the top rim and ending at the bottom rim, that intersects e, and intersects either exactly two
other edges (and no vertices), or exactly one vertex (and no edge other than e). Otherwise, we
say that e is of Type II. A quick inspection shows that the only edges of Type II are px and
p′x′, qy and q′y′, and rz and r′z′.

Suppose first that e is of Type I, and let γe be an arc as above. We cut along γe, remove e,
and twist the resulting band along γe, to obtain a Möbius band. If γe only intersects e and a
single vertex, then the result is a Möbius band embedding of H ′

1 − e. If γe intersects two other
edges other than e, then the loose ends (after cutting along γe) of these two edges can be rejoined
by introducing one crossing; thus in this case we obtain a Möbius band drawing of H ′

1 − e with
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b = d′

a

x

q

z

s

r

h

p′

r′b′ = d

y

p s′q′

c′ = a

y′

z′
x′

c = a′

(a) e = p′x′.

b = d′

a

x

q

s

r

h

p′

r′b′ = d

y

p s′q′

c′ = a

y′x′

z′z

c = a′

(b) e = rz

b = d′

a

x

q

h

p′

r′

p s′q′

c′ = a

c = a′

y′x′

z′

b′ = d

r

z

s

y

(c) e = qy

b = d′

a

x

q

r

h

r′b′ = d

y

p s′q′

c′ = a

y′x′

z′

c = a′

p′

z

s

(d) e = hp′

b = d′

a

x

q

z

h

p′

r′b′ = d

y

p s′q′

c′ = a

c = a′

r

s

x′ y′

z′

(e) e = hr

b = d′

a

x

h

p′

r′

p s′q′

c′ = a

c = a′

y′x′

z′

b′ = d

z

s

y

q

r

(f) e = hq

Figure 6: Drawing H1 − e in the projective plane with exactly one crossing. See also Figure 5.
In each case, e is indicated as the dashed segment.

exactly one crossing. In either case, we obtain a Möbius band drawing of H ′
1 − e, with at most

one crossing, in which p, q, r, p′, q′, and r′ are all incident with the Möbius band boundary. By
identifying the boundary with a closed disc, we obtain a projective plane drawing of H ′

1 − e,
with at most one crossing, in which p, q, r, p′, q′, and r′ are all incident with the same face. By
this last property, h and its incident edges can be inserted without adding any crossings, thus
getting a projective plane drawing of H1 − e with at most one crossing.

Thus if e is of Type I, we are done.

Now suppose that e is of Type II, that is, e ∈ {px, p′x′, qy, q′y′, rz, r′z′}. By symmetry, it
suffices to consider the cases e = p′x′, e = rz, and e = qy. Figures 6(a), 6(b), and 6(c) show
how to draw, respectively, H1 − p′x′, H1 − rz, and H1 − qy with exactly one crossing. This
finishes the proof for edges of Type II, and hence for every e ∈ E(H ′

1).
Finally, suppose that e /∈ E(H ′

1), that is, e is incident with h. By symmetry, it suffices to
consider the cases e = hp′, e = hr, and e = hq. Figures 6(d), 6(e), and 6(f) show how to draw,
respectively, H1 − hp′, H1 − hr, and H1 − hq with exactly one crossing. This completes the
whole proof.
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Projective crossing number of Ht

Our final task to prove the criticality of the graphs Ht is to show that the projective crossing
number of Ht is at least (and, in view of Lemma 4.1, equal to) 2.

Recall that an embedding is a drawing with no edge crossings, and that a minor of a graph
is obtained from a subgraph by means of contracting edges. We need a result that follows
from [8] plus the observation that being embeddable in the projective plane is closed under
taking minors.

Lemma 4.2 [8] A graph that contains as a minor either R1 or R2 (Figure 7) is not embeddable
in the projective plane.

C1 C′

1

C2 C′

2

z1 z2

z

R1 R2

Figure 7: The graphs R1 (≃ K7 − C4) and R2 (≃ K4,5 − M4), two of the “forbidden minors”
for the projective plane.

Lemma 4.3 For each t ≥ 4, the graph Ht has projective crossing number at least 2.

Proof. Let F ⊂ E(H t) consist of those edges that are not copies of the edges (in T ) ep = pq,
er = br, or es = sd (cf. Figure 4).

First we show that (Claim 4.4) if e ∈ F , then Ht − e contains R2 as a minor. Hence, by
Lemma 4.2, the projective crossing number of Ht − e is at least 1, and so such e cannot bear
the only crossing of a projective drawing of Ht. Then we finish the proof with showing that
(Claim 4.5), if a crossing in a projective drawing of Ht involves two edges not from F , then
there is another crossing in the drawing.

Claim 4.4. If e ∈ F , then Ht − e contains an R2 minor.

First, as a warm-up, let us show that Ht has a minor isomorphic to R2, for all t ≥ 2. Let
Cb denote the cycle in H ′

t which results as the union of all copies of the path brcp′q′s′d′ ⊂ T 2.
Let Ca similarly denote the union of all copies of the path apqsdr′c′ ⊂ T 2 in H ′

t. Then Ca, Cb

are disjoint cycles in Ht, and parts of each of them can be contracted to form the cycles C2, C
′
2

of R2 (emphasized by thick dots in Figure 7). The vertex h of Ht then becomes z in R2, and
the rest follows easily (see also Figure 3).

A more careful consideration of the arguments in the previous paragraph reveals that even
the graph Ht − e has a minor isomorphic to R2: this is easy if e 6∈ E(Ca) ∪ E(Cb). Otherwise,
say for e ∈ E(Ca), the edge e may be “bypassed” in the cycle by another two edges in H ′

t not
incident with Cb, unless e is a copy of ep, er or es above (that is, unless e /∈ F ). Thus Ht − e
contains R2 as a minor, as claimed.

Claim 4.5. If there is a crossing in a projective drawing D of Ht involving two edges not from F ,
then D must contain at least one additional crossing.

Consider an edge crossing X in D that involves two edges e1, e2 6∈ F , i.e. both e1, e2 are
copies of ep, er or es in Ht. Let H◦

t denote the graph obtained from Ht by subdividing e1 and
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e2 with new vertices x, x′, respectively, and let H•
t result from H◦

t by identifying x with x′. In
other words, we obtain H•

t from Ht by turning the crossing X into a new degree-4 vertex.
Suppose, for a contradiction, that X is the only crossing in D. Hence the corresponding

drawing D• of H•
t is crossing-free, and H•

t is embeddable in the projective plane. We, however,
are going to show that any H•

t obtained in the described way must have a minor isomorphic to
R1 or R2; by Lemma 4.2, this will complete the proof.

Recall the notation from the proof of Claim 4.4. If, say, e1, e2 ∈ E(Ca), then H•
t contains

a (shorter) circuit C ′
a ⊂ Ca, which can be used together with Cb to argue that H•

t has a minor
isomorphic to R2 for t ≥ 4, as above. So we may assume that e1 ∈ E(Ca) and e2 ∈ E(Cb), or
vice versa. We divide our analysis into three cases up to symmetry:

(a) e1 is a copy of ep;

(b) e1 is a copy of er and e2 is a copy of er or es;

(c) both e1, e2 are copies of es.

e1

x

e1

x

h h

x′

x′

y y

Figure 8: An illustration of Claim 4.5, case (a). R1-minors result in both situations.

To deal with (a), we focus on a fragment of the graph H◦
t close to vertex x, which is drawn

in solid lines in Figure 8. Actually, this case has two similar subcases as in the picture, and in
at least one of them none of the solid edges in the picture is incident with the vertex x′.

Now, in the graph H•
t , we contract the three solid edges incident with the vertex y, and

denote by G0 the subgraph consisting of the two shaded triangles after the contraction (see
Figure 8). Notice that G0 together with h and the remaining solid edges forms a subgraph
isomorphic to a subdivision of the graph R1 − z2, where h corresponds to z1 and the shaded
triangles to the cycles C1, C

′
1 in R1. Moreover, there is a collection of paths (in dashed edges

of H•
t ) joining the vertex x = x′ to all vertices of G0, and so x = x′ is “good for” z2 in the

graph R1. Hence the graph H•
t has a minor isomorphic to R1.

e1

x

x′

h

x′ e1

x

h

f

Figure 9: How to get R1-minors in the cases (b)–left and (c)-right of Claim 4.5.

We do similarly in the other two cases (b),(c): e1, e2 are again chosen without loss of
generality such that the subgraphs drawn in solid lines as fragments of H◦

t in Figure 9 are not
incident with the vertex x′. In case (c), if e2 = f happens (where f is as in the picture), then
we interchange e1 and e2. Those “solid-line” subgraphs in both cases evidently contain minors
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isomorphic to the graph R1 − z2, such that the shaded triangles correspond to C1, C
′
1 in R1.

Moreover, the vertex x = x′ in H•
t is connected to vertices of the shaded triangles by five paths,

and hence the desired R1-minor follows in both cases.

5 Concluding Remarks

Since Conjecture 1.2 —the starting point of our research, is now disproved by [6], it appears
highly interesting to investigate other structural properties (perhaps stronger than our Theo-
rem 1.3) of k-crossing-critical graphs. Given the difficulty of our proofs, this may not be an
easy task at all. We note that Theorem 1.3 cannot be strengthened to claim the nonexistence of
a K2,f(k)–minor: Kochol’s 2-crossing-critical family [12] contains arbitrarily large K2,m-minors.

On the other hand, our negative Theorem 1.4 gets straightforwardly generalized to other
nonorientable surfaces if we do not insist on the 3-connectivity property.

Theorem 5.1 For any t ≥ 4 and m ≥ 1, there exists a graph Gm,t that is 2-crossing-critical in
the nonorientable surface Nm of genus m, and has a vertex of degree 6t.

Proof. Let F denote a graph embeddable into the projective plane such that F is 2-crossing-
critical in the ordinary plane, and such that F − e is nonplanar for every edge e of F (K6 minus
an edge is an example of such an F ). We construct the graph Gm,t for m > 1 as the disjoint
union of Ht (any Ht satisfying Theorem 1.4) and m − 1 copies of F .

We claim that Gm,t − e has crossing number at most one in Nm, for any edge e of Gm,t.
For if e is in Ht, then one crosscap may be used to draw Ht − e with ≤ 1 crossing, and the
remaining crosscaps allow us to embed the m − 1 copies of F . On the other hand, if e is in a
copy F1 of F , then one can combine a planar drawing of F1 − e having a single crossing with
m − 2 projective-planar embeddings of F and an embedding of Ht along the remaining two
crosscaps (the projective-planar drawing in Figure 3 can be turned into a 2-crosscap embedding
by introducing a crosscap through the common endvertex of two crossed edges). Thus, in any
case, Gm,t − e has crossing number at most one in Nm, as claimed.

It remains to show that Gm,t cannot be drawn into Nm with only one crossing. By way of
contradiction, suppose that such a drawing D exists. We need to analyze two cases separately.

First, suppose that the only crossing in D involves two edges in Ht. Then each copy of F
is embedded in Nm, and therefore contains a noncontractible cycle. Cutting along these m − 1
disjoint noncontractible cycles leaves a (projective–planar) drawing that contains a (projective-
planar) drawing of Ht with exactly 1 crossing, contradicting that Ht is 2–crossing–critical in
the projective plane.

Second, suppose that the only crossing in D involves at least an edge e in a copy F1 of
F . Thus removing e leaves an embedding of the disjoint union of the other copies of F , and
of F1 − e and Ht. Analogously to the previous paragraph, each of the other copies of F , as
well as (nonplanar) F1 − e, contain a noncontractible cycle, and cutting along these m − 1
disjoint cycles yields an embedding of Ht in the projective plane, again contradicting that Ht

is 2–crossing–critical in the projective plane.

The above construction can be easily modified (by performing 1–sums on the connected
components of Gm,t) to yield a connected graph with m− 1 vertex 1–cuts. This brings us back
to Question 1.6, generalized to arbitrary, orientable and nonorientable, surfaces: so far, we can
only answer (negatively) this question for the projective plane, for the special case k = 2.

The proof above also illustrates the issues involved in a related open problem posed by
DeVos, Mohar, and Šámal [4]: If G is the disjoint union of the (say blue) graph G1 and the
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(say red) graph G2, is it true that an optimal drawing of G always exists that has no red–blue
crossing? A positive answer to this would allow us to apply the principle of the construction in
Theorem 5.1 more generally; in particular, we could then extend Dvořák–Mohar’s example in
Theorem 1.5 to all (orientable) surfaces.
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