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Abstract4

A drawing of a graph is pseudolinear if there is a pseudoline arrangement such that5

each pseudoline contains exactly one edge of the drawing. The pseudolinear crossing6

number c̃r(G) of a graph G is the minimum number of pairwise crossings of edges in7

a pseudolinear drawing of G. We establish several facts on the pseudolinear crossing8

number, including its computational complexity and its relationship to the usual cross-9

ing number and to the rectilinear crossing number. This investigation was motivated10

by open questions and issues raised by Marcus Schaefer in his comprehensive survey11

of the many variants of the crossing number of a graph.12
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1 Introduction16

In his comprehensive survey of the many variants of the crossing number of a graph, Schae-17

fer [16] brought up several issues regarding the pseudolinear crossing number, including its18

computational complexity and its relationship to other variants of crossing number. Our19

aim in this paper is to settle some of these issues.20

A pseudoline is a simple closed curve in the projective plane P2 which does not disconnect21

P2. A pseudoline arrangement is a set of pseudolines that pairwise intersect (necessarily,22

cross) each other exactly once.23

Let D be a drawing of a graph G in the plane, and let C be a disk containing D. By24

identifying antipodal points on the boundary of C and discarding R2 \ C we may regard D25
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as lying in P2. If each edge can be extended to a pseudoline so that the result is a pseudoline26

arrangement, then D is a pseudolinear drawing. The pseudolinear crossing number c̃r(G) of27

G is the minimum number of pairwise crossings of edges in a pseudolinear drawing of G.28

We recall that the crossing number cr(G) of a graph G is the minimum number of pairwise29

crossings of edges in a drawing of G in the plane. A drawing in which each edge is a straight30

line segment is a rectilinear drawing. The rectilinear crossing number cr(G) of G is the31

minimum number of pairwise crossings of edges in a rectilinear drawing of G. A rectilinear32

drawing is clearly pseudolinear. Since pseudolinear and rectilinear drawings are restricted33

classes of drawings, it follows that for any graph G we have cr(G) ≤ c̃r(G) ≤ cr(G).34

The decision problem CrossingNumber, which takes as input a graph G and an integer35

k, and asks if cr(G) ≤ k, is NP-complete [8]. It is not difficult to prove that Rectilin-36

earCrossingNumber (the corresponding variant for cr(G)) is NP-hard (cf. Lemma 5 be-37

low). Bienstock’s reduction from Stretchability to RectilinearCrossingNumber [1]38

implies that computing the rectilinear crossing number is ∃R-complete (see Section 4.4).39

In [16], Schaefer listed the complexity of PseudolinearCrossingNumber (the corre-40

sponding variant for c̃r(G)) as an open problem. Here we settle this question as follows.41

Theorem 1. PseudolinearCrossingNumber is NP-complete.42

Bienstock and Dean [2] showed that for any integers k, m with m ≥ k ≥ 4, there is a43

graph G with cr(G) = k and cr(G) ≥ m. In [16], Schaefer wrote: “Bienstock and Dean’s44

graphs Gm with cr(Gm) = 4 and cr(Gm) = m should give c̃r(Gm) = cr(Gm), since the proof45

of cr(Gm) ≥ m seems to work with pseudolinear drawings.” As we set to work out the details,46

we realized that the Bienstock and Dean proof does not carry over to the pseudolinear case47

in a totally straightforward way: an obstacle to extend a set of segments to an arrangement48

of pseudolines needs to be found. As it is often the case when settling a stronger result,49

our proof of the following statement turned out to be simpler than the proof in [2]. For50

this reason, and because this also implies the Bienstock and Dean result, it seems worth to51

include here the following statement and its proof.52

Theorem 2. For any integers k, m with m ≥ k ≥ 4, there is a graph G with cr(G) = k and53

c̃r(G) ≥ m.54

As Schaefer observes, this also separates the monotone crossing number mon-cr from the55

pseudolinear crossing number, since for any graph G we have mon-cr(G) ≤
(

2cr(G)
2

)
[12].56

Although pseudoline arrangements are defined in P2, we can alternatively think of them57

as lying in the Euclidean plane R2: starting with the P2 representation, we delete the disk58

boundary and extend infinitely (to rays) the segments that used to intersect the disk bound-59

ary. An arrangement of pseudolines may then be naturally regarded as a cell complex cover-60

ing the plane. Two arrangements are isomorphic if there is a one-to-one adjacency-preserving61

correspondence between the objects in their associated cell complexes. Ringel [14] was the62

first to exhibit a pseudoline arrangement (in R2) that is non-stretchable, that is, not isomor-63

phic to any arrangement in which every pseudoline is a straight line.64
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Schaefer wrote in [16]: “It should be possible to take a non-stretchable pseudoline arrange-65

ment A and use Bienstock’s machinery [1] to build a graph GA for which c̃r(GA) < cr(GA).”66

Using Schaefer’s roadmap, we have constructed a family of graphs to prove the following.67

Theorem 3. For each integer m ≥ 1 there exists a graph G such that c̃r(G) = 36(1 + 4m)68

and cr(G) ≥ 36(1 + 4m) + m.69

Yet another reason that makes worth to include in its full detail the construction proving70

this last result, is that we use it to prove the following.71

Theorem 4. The decision problem “Is c̃r(G) = cr(G)”? is ∃R-complete.72

Theorems 1 and 2 are proved in Sections 2 and 3, respectively. Theorems 3 and 4 are73

proved in Section 4. Section 5 contains some concluding remarks and open questions.74

1.1 Observations and terminology for the rest of the paper75

Unless otherwise stated, a drawing is understood to be a drawing in R2. All drawings of76

a graph G under consideration either minimize cr(G), or are pseudolinear or rectilinear77

drawings of G. All such drawings are good, that is, no two edges cross each other more78

than once, no adjacent edges cross each other, and no edge crosses itself. Thus we implicitly79

assume that all drawings under consideration are good. A drawing D (in any surface Σ)80

may be regarded as a one-dimensional subset of Σ. Taking this viewpoint, a region of D is81

a connected component of Σ \ D. Thus, in the particular case in which D is an embedding,82

the regions of D are simply the faces. Finally, two drawings D and D′ of the same graph in83

a surface Σ are isomorphic if there is a self-homeomorphism of Σ that takes D to D′.84

2 Complexity of PseudolinearCrossingNumber:85

proof of Theorem 186

We prove NP-hardness in Lemma 5 and membership in NP in Lemma 6.87

The fact that PseudolinearCrossingNumber is NP-hard is not difficult to prove, and88

although we could not find any reference in the literature, perhaps it could be considered a89

folklore result. It seems worth to include this proof, for completeness.90

Lemma 5. PseudolinearCrossingNumber, RectilinearCrossingNumber, and Mo-91

notoneCrossingNumber are NP-hard.92

Proof. We claim that for any graph G there is a graph G′ obtained by subdividing each edge93

of G at most 2|E(G)| times, and such that cr(G′) = cr(G). We note that the Rectilinear-94

CrossingNumber part of the lemma follows at once from this claim. The other statements95

also follow, since cr(G) ≤ mon-cr(G) ≤ c̃r(G) ≤ cr(G) hold for any graph G.96

We now prove the claim. Let D be a crossing-minimal drawing of G. A segment of D is97

an arc of D whose endpoints are either two vertices, or one vertex and one crossing, or two98
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crossings, and is minimal with respect to this property. (Put differently, if we planarize D99

by converting crossings into degree 4 vertices, the segments correspond to the edges of this100

plane graph). By Fáry’s theorem [7], every planar graph has a plane rectilinear drawing.101

Therefore there is a drawing D′ of G, with the same number of crossings as D, in which102

every segment is straight. Now for each edge e of G, let ×(e) denote the number of crossings103

of e. It is easy to see that if we subdivide each edge e a total of 2 · ×(e) times, then the104

resulting graph G′ has a rectilinear drawing with cr(G) crossings: indeed, it suffices to place105

two pairs of new (subdivision) vertices in a small neighborhood of each crossing of D′, one106

pair on each of the crossing edges, and join each pair with a straight segment.107

We now settle membership in NP. A pseudolinear model graph is a plane graph H with108

two disjoint distinguished subsets of vertices T = {t1, t2, . . . , t2m} (where each terminal ti109

has degree 1) and V , such that the following hold:110

1. The boundary walk (say, in clockwise order) along the infinite face has the vertices111

t1, t2, . . . , t2m (but not necessarily only these vertices) in this cyclic order.112

2. There is a collection of paths P = {P1, P2, . . . , Pm} in H with the following properties:113

(a) H = P1 ∪ P2 ∪ · · · ∪ Pm.114

(b) The ends of Pi are ti and ti+m, for i = 1, 2, . . . , m.115

(c) Each Pi contains exactly two vertices in V .116

(d) Any two paths in P intersect each other in exactly one vertex, and if they intersect117

in a vertex not in V , then this vertex has degree 4.118

For each i = 1, 2, . . . , m, let ui, vi be the (only two) vertices in V contained in Pi. Then119

the interior vertices of the subpath uiPivi (if any) are special vertices of H. This pseudolinear120

model H induces a graph G with vertex set V , where u, v ∈ V are adjacent in G if and only121

if there is a path in P that contains u and v.122

Lemma 6. PseudolinearCrossingNumber is in NP.123

Proof. The key claim is that a graph G = (V, E) has a pseudolinear drawing with exactly k124

crossings if and only if G is induced by a pseudolinear model with exactly k special vertices.125

For the “only if” part, suppose that G has a pseudolinear drawing with k crossings.126

Extend the edges of G so that the resulting pseudolines form an arrangement; this can clearly127

be done so that no more than two pseudolines intersect at a given point, unless this point128

is in V . By transforming the edge crossings to (degree 4, special) vertices, and transforming129

into vertices the intersections of the pseudolines with the disk boundary, the result is a130

pseudolinear model plane graph H with exactly k special vertices. For the “if” part, suppose131

that G is induced by a pseudolinear model graph with k special vertices. Consider then the132

drawing of G obtained by removing all vertices that are neither in V nor special, and then133

transforming each special vertex into a crossing. The result is a pseudolinear drawing of G134

with k crossings.135
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Thus the existence of a pseudolinear model graph H with k special vertices that induces136

G provides a certificate that the pseudolinear crossing number of G is at most k. Since the137

size of H is clearly polinomially bounded on the size of G, the lemma follows.138

3 Separating c̃r from cr: proof of Theorem 2139

We start by finding a substructure that guarantees that a drawing is not pseudolinear. A140

clam is a drawing of two disjoint 2-paths P and Q, with exactly two faces in which the141

infinite face is incident with the internal vertices of P and Q, and with no other vertices. It142

is easy to see that, up to isomorphism, a clam drawing looks as the one depicted in Figure 1.143

e1

e2

e3

e4

u v

x

y

w

z t

s

Figure 1: A clam.

144

Proposition 7 (An obstacle to pseudolinearity). Let P, Q be disjoint 2-paths of a graph G.145

If D is a drawing of G whose restriction to P ∪Q is a clam, then D is not pseudolinear.146

Proof. It clearly suffices to show that the restriction D′ of D to P ∪ Q is not pseudolinear.147

Without any loss of generality we may assume that D′ is as shown in Figure 1.148

By way of contradiction, suppose that D′ is pseudolinear. Thus there exists a disc C that149

contains D′, such that in the projective plane that results by identifying antipodal points of150

C, there is a pseudoline arrangement {`1, `2, `3, `4} where `i contains ei for i = 1, 2, 3, 4. Since151

s is not incident with the infinite region ofD′, it follows that `1 must intersect the boundary of152

the infinite region at some point in e4 between v and y (if the intersection occurred elsewhere,153

`1 would intersect another pseudoline more than once). Totally analogous arguments show154

that `2 intersects e3 at some point between v and x; `3 intersects e2 at some point between155

u and y; and `4 intersects e1 at some point between u and x. Together with u, x, v, and156

y, this gives 8 intersections between the 4 pseudolines, contradicting that any pseudoline157

arrangement with 4 pseudolines has
(

4
2

)
= 6 intersection points.158

Proof of Theorem 2. Consider the graph G drawn in Figure 2. The edges drawn as thick,159

continuous segments are heavy. The other edges (the dotted ones) are light. We regard the160
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drawing D of G in Figure 2 as a drawing in the sphere S2. We say that a drawing of G (in161

either S2 or R2) is clean if no heavy edge is crossed.162

Claim. No clean drawing of G in R2 is pseudolinear.163

164

Proof. Up to isomorphism, there are exactly two clean drawings of G in S2, which correspond165

to the two different embeddings of the subgraph of G induced by the heavy edges. One of166

these clean drawings is D, and the other one, which we call D′, is obtained from D simply by167

a Whitney switching on {a, b}; thus D′ can be obtained from D simply by the relabellings168

v1↔v2, v3↔v4, v5↔v6, f1↔f3, and f2↔f4.169

a

b

u2

u4

f1

f2

e1

e2 u5 u6

u3

u1

f4

e3

e4

f3

v5

v2
v1

v4 v3

v6

Figure 2: The spherical drawing D.

170

Let DR2 be a clean drawing of G in R2. Clearly DR2 can be obtained from a clean drawing171

of G in S2 (that is, either D or D′) by removing a point from a region (yielding the infinite172

region of DR2), which we call the special region (of D or D′). We suppose that DR2 is obtained173

from D; a totally analogous argument is applied if DR2 is obtained from D′.174

We refer to the drawing D in Figure 2. If the special region is outside the darkly shaded175

area, then the restriction of DR2 to the paths u5au6 and u1bu2 is a clam; in this case DR2 is176

not pseudolinear, by Proposition 7. If the special region is outside the lightly shaded area,177

then the restriction of DR2 to the paths v5av6 and v1bv2 is a clam; thus also in this case DR2178

is not pseudolinear, by Proposition 7. We conclude that if DR2 were pseudolinear, then the179

special region would have to be contained in both shaded areas. Since obviously no region180

satisfies this, we conclude that DR2 is not pseudolinear. �181

182

Let G′ be obtained by substituting each heavy edge by m pairwise internally disjoint183

2-paths, and the edge e1 by k − 3 pairwise internally disjoint 2-paths P1, P2, . . . , Pk−3. By184

the Claim, in every pseudolinear drawing of G some heavy edge is crossed. It follows that in185

every pseudolinear drawing of G′ at least m edges are crossed, and so c̃r(G′) ≥ m. Since in186
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a drawing of G isomorphic to neither D nor D′ some heavy edge is crossed, it follows that187

a drawing of G′ with fewer than m crossings has e3 crossing e4, f3 crossing f4, f1 crossing188

f2, and e2 crossing one edge of each path Pi, for i = 1, 2, . . . , k − 3. Thus such a drawing189

has at least 1 + 1 + 1 + (k − 3) = k crossings, and so cr(G′) ≥ k. Since a drawing of G′190

with exactly k crossings is obtained from D by drawing all the paths Pi very close to e1, we191

obtain cr(G′) ≤ k. Thus cr(G′) = k.192

4 Separating cr from c̃r: proof of Theorems 3 and 4193

To prove Theorems 3 and 4 we proceed as suggested by Schaefer in [16]. We make use of194

weighted graphs, whose definition and main properties are reviewed in Section 4.1. We start195

with a pseudoline arrangement A, and construct from A a parameterized (by an integer196

m ≥ 1) family of weighted graphs (GA, wm); this is done in Section 4.2. We then determine197

c̃r(GA, wm), and bound by below cr(GA, wm) (Section 4.3). The key property (cf. Propo-198

sitions 9 and 10) is that cr(GA, wm) is strictly greater than c̃r(GA, wm) if and only if A is199

non-stretchable. Theorems 3 and 4 then follow easily (Section 4.4).200

4.1 Weighted graphs and crossing numbers201

We make essential use of weighted graphs, a simple device exploited in several crossing202

number constructions (see for instance [5, 6]).203

We recall that a weighted graph is a pair (G, w), where G is a graph and w is a weight204

function w : E(G) → N. A drawing of (G, w) is simply any drawing of G, but the caveat205

is that in a drawing D of (G, w), a crossing between edges e, f contributes w(e)w(f) to the206

weighted crossing number cr(D) of D. The weighted crossing number cr(G, w) of (G, w) is207

then the minimum cr(D) over all drawings D of (G, w). (The weighted pseudolinear and208

rectilinear crossing numbers are analogously defined). Weighted graphs are a useful artifice209

for many crossing number related constructions, via the idea that (G, w) can be turned210

into an ordinary, simple graph G′ by replacing each edge e with a collection P(e) of w(e)211

internally disjoint 2-paths with the same endpoints as e. We say that G′ is the simple graph212

associated to the weighted graph (G, w).213

Proposition 8. Let (G, w) be a simple weighted graph, and let G′ be its associated simple214

graph. Then:215

(a) cr(G, w) = cr(G′).216

(b) c̃r(G, w) = c̃r(G′).217

(c) cr(G, w) = cr(G′).218

Proof. Take a drawing D in which cr(G, w) is attained, and then, for each edge e of G, draw219

the w(e) 2-paths in P(e) sufficiently close to e so that the following holds for all edges e′, e′′:220

a 2-path of P(e′) crosses a 2-path of P(e′′) if and only if e′ crosses e′′ in D. This shows221
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that cr(G′) ≤ cr(G, w). For the reverse inequality, note that it is always possible to have a222

crossing-minimal drawing of G′ where the 2-paths of P(e) can be drawn sufficiently close to223

each other, so that a 2-path in P(e) crosses a 2-path in P(f) if and only if every 2-path of224

P(e) crosses every 2-path of P(f). It follows that we can regard the collection of 2-paths225

P(e) as a weighted edge. Thus cr(G, w) ≤ cr(G′), and so (a) follows. For (b), we only need226

the additional observation that each collection P(e) can be drawn so that each edge in P(e)227

can be extended to a pseudoline, so that the final result is a pseudoline arrangement (see228

Figure 3). The proof of (c) is totally analogous.229

e

Figure 3: Above we show an edge e of weight 2 in a pseudolinear drawing of a weighted graph (G, w); the
extension of e to a pseudoline is also shown. Below we illustrate how to replace e by P(e) (two internally
disjoint 2-paths), and how to extend each of these 4 edges to a pseudoline, so that the result is a pseudoline
arrangement. By doing a similar operation on each edge of (G, w), we obtain a pseudolinear drawing of a
simple graph G′ such that c̃r(G′) = c̃r(G, w).

4.2 Construction of the graphs (GA, wm)230

For each integer m ≥ 1, we describe a construction of a weighted graph (GA, wm), based on231

an (any) arrangement A of pseudolines, presented as a wiring diagram (every arrangement232

of pseudolines can be so represented, as shown by Goodman [9]). Let s := |A|, and let233

[s] = {1, 2, . . . , s}. Suppose that the pseudolines of A are labelled `1, `2, . . . , `s, according to234

the order in which they intersect a vertical line in the leftmost part of the wiring diagram (see235

Figure 4 for the case in which A is Ringel’s non-stretchable arrangement of 9 pseudolines).236

`5

`4

`3

`2

`1

`6
`7
`8
`9

`9
`8
`7

`5
`4
`3
`2
`1

`6

Figure 4: Ringel’s non-stretchable pseudoline arrangement R, as a wiring diagram.

For each i ∈ [s] add two copies of `i, drawn very close to `i: a pseudoline `′i slightly237

above `i, and another pseudoline `′′i slightly below `i. Then transform this into (a drawing238

of) a graph by converting each of the 3s left-hand side endpoints and each of the 3s right239
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hand-side endpoints into (degree 1) vertices, and by transforming into a degree 4 vertex each240

crossing of an `′i with an `′′j . (The remaining 5
(

s
2

)
crossings are not converted into vertices).241

Before continuing with the construction, we label some of the current objects. For each242

i ∈ [s]: (i) label ai (respectively, bi) the degree 1 vertex on the left (respectively, right)243

hand side incident with `i; (ii) label ui (respectively, yi) the degree 1 vertex on the left244

(respectively, right) hand side incident with `′i; and (iii) label vi (respectively, zi) the degree245

1 vertex on the left (respectively, right) hand side incident with `′′i . Thus for each i ∈ [s],246

there is an edge ei joining ai to bi (`i is the arc representing ei); there is a path Pi joining ui247

to yi (`′i is the drawing of this path); and there is a path Qi joining vi to zi (`′′i is the drawing248

of this path).249

Now add the necessary edges to obtain a cycle C = v1a1u1v2a2 u2 · · · vsasusy1b1z1y2b2z2 · · ·250

· · · ysbszs. Finally, add two vertices a, b, and make a adjacent to ai, ui, and vi for every i ∈ [s],251

and make b adjacent to bi, yi, and zi for every i ∈ [s]. Let GA denote the constructed graph.252

To help comprehension, we color black the edges that are either in C or incident with a or b;253

color blue the edges in ∪s
i=1Pi ∪Qi; and red the edges e1, e2, . . . , es. In Figure 5 we illustrate254

how to turn an arrangement (wiring diagram) A of 2 pseudolines into the graph GA.255

Now for each positive integer m, we turn GA into a weighted graph (GA, wm) as follows.256

Assign to each black edge a weight of k :=
(

s
2

)
(1 + 4m) + 2m; assign to each blue edge a257

weight of m; and assign to each red edge a weight of 1.258

z1

y1

z2

b1

b2

y2

u2

a2

v2

a1

a b

`1

`2 `1

`2

u1

v1

Figure 5: Let A be the arrangement with two pseudolines `1, `2 given above as a wiring
diagram. Below we draw the graph GA. The red edges e1 and e2 are drawn as thin, continuous
arcs; the blue edges are dotted; and the black edges are thick.
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4.3 Determining c̃r(GA, wm) and bounding cr(GA, wm)259

First we determine c̃r(GA, wm), and then we find a lower bound for cr(GA, wm).260

Proposition 9. c̃r(GA, wm) =
(

s
2

)
(1 + 4m). If A is stretchable, then cr(GA, wm) also equals261 (

s
2

)
(1 + 4m).262

Proof. It is not difficult to verify that the drawing of (GA, wm) described in the construction263

is pseudolinear. We claim that this drawing has exactly
(

s
2

)
(1 + 4m) crossings. Indeed, for264

all i, j ∈ [s], i 6= j, edges ei and ej cross each other, yielding
(

s
2

)
crossings. Also, each red265

edge crosses 2(s − 1) blue edges (for all i, j ∈ [s], i 6= j, the edge ei crosses both Pj and266

Qj). Since each blue-red crossing contributes m to the crossing number, we have in total267 (
s
2

)
+ s · 2(s− 1) ·m =

(
s
2

)
(1 + 4m) crossings. Thus c̃r(GA, wm) ≤

(
s
2

)
(1 + 4m).268

Now let D be a (not necessarily pseudolinear) crossing-minimal drawing of (GA, wm). We269

note that since each black edge has weight greater than
(

s
2

)
(1 + 4m), no black edge can be270

crossed in D. We may then assume without loss of generality that in D the paths Pi and271

Qi, and the edges ei, are all drawn inside the disk bounded by C.272

Now for i, j ∈ [s], i 6= j, (i) the endpoints of ei and ej are alternating along C; (ii)273

the endpoints of ei and Pj are alternating along C; and (iii) the endpoints of ei and Qj274

are alternating along C. Thus for all such i, j, ei crosses ej, and ei crosses Pj and also275

Qj. Recalling again that blue-red crossings contribute m to the crossing number, it follows276

that D has at least
(

s
2

)
+ s · (s − 1) · 2m =

(
s
2

)
(1 + 4m) crossings. Thus cr(GA, wm) (and,277

consequently, c̃r(GA, wm)) is at least
(

s
2

)
(1 + 4m).278

For the rectilinear crossing number part it suffices to prove that if A is stretchable, then279

there is a rectilinear drawing of (GA, wm) with exactly
(

s
2

)
(1 + 4m) crossings. Suppose then280

that A is stretchable. It is an easy exercise to show that then e1, e2, . . . , es can be drawn as281

straight lines in the plane so that each of them has one endpoint on the line x = 0 and the282

other endpoint on the line x = 1, so that the result is an arrangement isomorphic to A. It is283

then straightforward to add Pi, Qi, C, a, b, and the edges incident with a and b, so that every284

edge is a straight segment.285

Proposition 10. If A is non-stretchable, then cr(GA, wm) ≥
(

s
2

)
(1 + 4m) + m.286

Proof. Suppose that A is non-stretchable. Let D be a crossing-minimal rectilinear drawing287

of (GA, wm). As in the proof of Proposition 9, no black edge may be crossed in D, and we288

may assume without any loss of generality that all the paths Pi, Qi, and all the edges ei289

are drawn inside the disk bounded by C. For each i ∈ [s], the path Pi cannot cross Qi, as290

otherwise this would add at least m2 crossings to the
(

s
2

)
(1 + 4m) crossings already counted291

in the proof of Proosition 9. On the other hand, if for every i ∈ [s] the edge ei crosses292

neither Pi or Qi, then the drawing induced by ∪s
i=1Pi forms an arrangement isomorphic to293

A; the same conclusion holds for ∪s
i=1Qi. If no edge ei crosses Pi ∪ Qi, then every ei must294

be drawn inside the strip bounded by Pi ∪ Qi, and so it follows that the drawings of the295

edges e1, e2, . . . , es would form a straight line arrangement isomorphic to A, contradicting296
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its nonstretchability. We conclude that for some i ∈ [s], the edge ei must cross either Pi or297

Qi. In either case, the crossing contributes m to cr(GA, wm), in addition to the
(

s
2

)
(1 + 4m)298

crossings already counted in the proof of Proposition 9.299

4.4 Proofs of Theorems 3 and 4300

Proof of Theorem 3. Let R denote Ringel’s non-stretchable arrangement with 9 pseudolines.301

Theorem 3 follows at once using (GR, wm), by combining Proposition 8 (b) and (c) with302

Propositions 9 and 10.303

Let us denote PCN ?=RCN the decision problem of determining if the pseudolinear cross-304

ing number and the rectilinear crossing number of an input graph are the same. Shor [17]305

proved that Stretchability (the problem of deciding if a pseudoline arrangement is306

stretchable) is NP-complete. By Mnëv’s universality theorem [11], it follows that Stretch-307

ability is ∃R-complete (cf. [15]). We make a reduction to this problem to prove Theorem 4.308

Proof of Theorem 4. We prove that Stretchability ∝ PCN ?=RCN. Let A be a pseudo-309

line arrangement, and consider the weighted graph (GA, w1), which is clearly constructed310

from A in polynomial time. Thus it suffices to prove that the answer to “Is A stretchable?”311

is yes if and only if the answer to “Is c̃r(GA, w1) = cr(GA, w1)?” is yes. But this follows312

immediately from Propositions 9 and 10.313

5 Concluding Remarks314

In Theorem 3 we proved that there exist arbitrarily large graphs G such that (roughly)315

cr(G) ≥ (145/144)c̃r(G). At the end of his survey [16], Schaefer asked if there is a function f316

such that, for every graph G, cr(G) ≤ f(c̃r(G)). The existence (or not) of such an f remains317

an important open question.318

As Bienstock and Dean [2], we make essential use of weighted graphs. Equivalently,319

we allow the existence of collections of internally disjoint 2-paths with common endpoints;320

as a result we get simple (ordinary, unweighted) graphs, but these graphs are clearly not321

3-connected. Are these artifices really necessary to construct graphs with fixed crossing num-322

ber and arbitrarily large rectilinear (or pseudolinar) crossing number? After unsuccessfully323

investigating this issue, we are willing to put forward the following.324

Conjecture 11. There is a function f such that for every 3-connected graph G, cr(G) ≤325

f(cr(G)).326
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