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Abstract

In the influential paper in which he proved that every graph with m edges can
be embedded in a book with O(m1/2) pages, Malitz proved the existence of d-regular

n-vertex graphs that require Ω(n
1
2
− 1

d ) pages. In view of the O(m1/2) bound, this last
bound is tight when d > log n, and Malitz asked if it is also tight when d < log n. We
answer negatively to this question, by showing that there exist d-regular graphs that

require Ω(n
1
2
− 1

2(d−1) ) pages. In addition, we show that the bound O(m1/2) is not tight
either for most d-regular graphs, by proving that for each fixed d, w.h.p. the random
d-regular graph can be embedded in o(m1/2) pages. We also give a simpler proof of
Malitz’s O(m1/2) bound, and improve the proportionality constant.

As we investigated these questions on book embeddings, we stumbled upon, and
shifted our attention to, questions about decompositions of permutations which seem
to be of independent interest. For instance, we proved that if A is a k×n-matrix each of
whose rows is a random permutation of [n], then w.h.p. there is a column permutation
such that in the resulting matrix each row can be decomposed into o(n1/2) monotone
decreasing subsequences.

Keywords: Book thickness, pagenumber, book embedding, random graph,
permutation, decreasing subsequence

∗Department of Mathematics, University of Illinois, Urbana, IL 61801, USA, and Bolyai Institute,
University of Szeged, Szeged, Hungary. Research partially supported by NSF CAREER Grant DMS-
0745185, Arnold O. Beckman Research Award (UIUC Campus Research Board 13039), and Marie Curie
FP7-PEOPLE-2012-IIF 327763. E-mail: jobal@math.uiuc.edu
†Instituto de F́ısica, Universidad Autónoma de San Luis Potośı. San Luis Potośı, Mexico. Supported by
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1 Introduction

We recall that the book with k pages is the topological space Bk that consists of a line (the1

spine) plus and k half-planes (the pages), such that the boundary of each page is the spine.2

A k-page book embedding (or simply a k-page embedding) of a graph G is an embedding of3

G into Bk in which the vertices are on the spine, and each edge is contained in one page. If4

the linear order of the vertices in the spine is π, then the book is a π-book.5

Book embeddings were introduced by Kainen [15], and later investigated by Bernhart and6

Kainen [4]. In their seminal paper [7], Chung, Leighton and Rosenberg investigated several7

theoretical and algorithmical aspects of book embeddings. In [7], several applications of this8

problem were discussed, such as sorting with parallel stacks, single-row routing, fault-tolerant9

processor arrays, and Turing machine graphs.10

Trivially, any finite graph can be embedded in a book with sufficiently many pages; the11

natural goal is to use as few pages as possible. Given a graph G, the minimum k such12

that G can be embedded in a k-page book is the book thickness (or pagenumber) of G.13

Determining the pagenumber of an arbitrary graph is NP-complete [7]. Few results are14

known for particular families of graphs. It is not difficult to show that the pagenumber of15

the complete graph Kn is dn/2e. On the other hand, with few exceptions, the pagenumbers16

of the complete bipartite graphs Km,n are unknown (see [8, 13]).17

The pagenumbers of graphs embeddable in a given surface have also been investigated.18

Bernhart and Kainen had conjectured in [4] the existence of graphs with bounded orientable19

genus and arbitrarily large pagenumber. This was disproved by Heath and Istrail [14],20

who showed that graphs of (orientable or nonorientable) genus g have pagenumber O(g).21

Malitz [18] improved this to O(g1/2), which is a sharp bound, as witnessed by the com-22

plete graphs. Some additional results are known for some low genus surfaces. Yannanakis23

proved [28] that every planar graph can be embedded in four pages. Endo [12] proved that24

every toroidal graph can be embedded in a book with at most seven pages, and Nakamoto et25

al. [20] recently proved that five pages always suffice to embed any toroidal bipartite graph.26

Shahrokhi et al. investigated the related problem in which the number of pages is fixed, and27

the goal is to minimize the number of edge crossings [23].28

In their quest for general lower and upper bounds, Chung, Leighton, and Rosenberg [7]29

showed that d-regular graphs on n vertices have pagenumber O(dn1/2), and proved the30

existence of such graphs requiring Ω
(
n1/2−1/d

log2 n

)
pages. Malitz [19] tightened these bounds,31

establishing a general O(m1/2) bound for graphs with m edges (i.e., not only for bounded32

degree graphs), and showing the existence of d-regular graphs with pagenumber Ω(
√
d ·33

n1/2−1/d).34

Malitz observed that (in view of the O(m1/2) result) the bound Ω(
√
d · n1/2−1/d) is tight35

for d > log n, and he asked if it is tight also for d < log n. In this paper we answer negatively36

to this question:37

Theorem 1. The pagenumber of the random d-regular graph on n vertices is w.h.p. at least

cd ·
(

n

log n

) 1
2
− 1

2(d−1)

,
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where cd is a constant that depends only on d.38

Moreover, we show that the answer is negative even in the bipartite case:39

Theorem 2. The pagenumber of the random bipartite d-regular graph on n vertices is
w.h.p. at least

cd ·
(

n

log n

) 1
2
− 1

2(d−1)

,

where cd is a constant that depends only on d.40

Regarding upper bounds for d-regular graphs, the Chung-Leighton-Rosenberg bound and41

the Malitz bound are essentially the same for each fixed d, namely O(n1/2). In this direction,42

we prove that the pagenumber of most d-regular graphs is actually smaller:43

Theorem 3. The pagenumber of the random d-regular graph on n vertices is w.h.p. at most

Cd · n
1
2
− 1

2+8·3d−2 ,

where Cd is a constant that depends only on d.44

We have a corresponding statement for the bipartite case:45

Theorem 4. The pagenumber of the random d-regular bipartite graph on n vertices is
w.h.p. at most

Cd · n
1
2
− 1

2+8·3d−2 ,

where Cd is a constant that depends only on d.46

It remains an open question whether or not for each fixed d, the pagenumber of all47

d-regular graphs is o(n1/2).48

Malitz [19] gave a Las Vegas algorithm to embed a graph with m edges in 31m1/2 pages.49

Shahrokhi and Shi [22] improved this bound to (tm)1/2 for t-partite graphs, and also gave a50

deterministic polynomial time algorithm for these graphs.51

For general graphs, Malitz’s 31m1/2 bound is still the best known. Using the techniques52

we developed to prove the statements given above, we improve on this result and provide a53

somewhat simpler proof.54

Theorem 5. Let G be a graph with n vertices and m edges. Let π be a random linear55

ordering of the vertices of G. If we place the vertices on the spine in the order given by π,56

then w.h.p. the edges of G can be embedded into at most 11m1/2 pages.57

With the original motivation of investigating these problems, we stumbled upon (and58

shifted our attention to) questions about decompositions of permutations which are of in-59

dependent interest. The quest for subsequences of permutations with special properties is60

of great interest in combinatorics. Notable examples include the longest increasing sub-61

sequence [2, 3], the longest common subsequences of two permutations [16, 17], the longest62
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alternating subsequences of permutations [24], and the longest subsequences avoiding a given63

pattern [1]. Let us now present one such result, which we find particularly interesting.64

Let A = {ai,j}i∈[k],j∈[n] be a k × n matrix, where each of the k rows is a permutation of65

[n]. Let µ = µ(A) be the minimum number over all column permutation of A, such that66

each row of A can be decomposed into at most µ monotone decreasing subsequences. For n67

sufficiently large compared to k, it is not difficult to show that a random column permutation68

yields µ ≤ 3
√
n; moreover, it is not hard to see that this bound is tight within a constant69

factor (see Section 6 for more details). The problem is much more interesting when each row70

is a random permutation. In this case, we can prove a bound of o(n1/2):71

Theorem 6. Let k be a fixed integer. Let A be a k × n matrix, each of whose rows is a72

random permutation of [n], chosen independently of each other. Then w.h.p. µ(A) ≤ 3n
1
2
−ak ,73

where ak := 1/(2k+1 − 2).74

The rest of this paper is structured as follows.75

In Section 2 we establish some basic results on decompositions of permutations into76

monotone subsequences, which are a major tool to tackle book embedding problems. The77

proofs of Theorems 1 and 2 are given on Section 3; the proofs of Theorems 3 and 4 are given78

in Section 4; and the proof of Theorem 5 is in Section 5. The proof of Theorem 6, as well as79

further discussions and results on decompositions of permutations, are given in Section 6.80

Throughout this paper, log x means the natural logarithm of x. For simplicity, we of-81

ten omit explicitly taking the integer part of a quantity; this practice has no effect in the82

(asymptotic) results we are interested on in this work.83

2 Decomposing permutations into84

decreasing sequences85

The motivation to investigate decompositions of a permutation (of a set or multiset) into86

monotone decreasing subsequences is given by the following lemma. Given a permutation π87

of a set S, and i, j ∈ S, we write i ≤π j if i appears before j in π, and define ≥π similarly.88

Lemma 7. Let M = {a1b1, a2b2, . . . , asbs} be a matching, and let π be a permutation89

of a1, a2, . . . , as, b1, b2, . . . , bs such that a1 ≥π a2 ≥π · · · ≥π as and bs ≥π bs−1 ≥π bs−2 ≥π90

· · · ≥π b1. Then M can be embedded into a π-book with 2 pages.91

Proof. Let k be the smallest integer such that ak ≥π bk (if no such integer exists, then92

let k = s + 1). Since a1 ≥π a2 ≥π . . . ≥π ak−1 ≥π bk−1 ≥π bk−2 ≥π . . . ≥π b1, it follows93

that all the edges a1b1, a2b2, . . . ak−1bk−1 can be embedded in a single page. If k = s + 194

then we are done; suppose then that k ≤ s. Then, since bs ≥π bs−1 ≥π . . . ≥π bk95

≥π ak ≥π ak+1 ≥π . . . ≥π as, it follows that all the edges akbk, ak+1bk+1, . . . asbs can be96

embedded in a single page.97
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The main tool to decompose a sequence into (few) decreasing sequences is to invoke the98

close relationship between such a decomposition and the length of the longest increasing99

subsequence.100

In his alternative proof of the Erdős-Szekeres theorem [10], Blackwell [5] describes a101

canonical (i.e., leftmost maximal) decomposition of a sequence of integers into monotone102

decreasing sequences. He shows that if a sequence S gets partitioned into t monotone de-103

creasing sequences, then S has a monotone increasing subsequence of length t. This implies104

the following:105

Proposition 8. Let S be a sequence of distinct integers. If the length of the longest increasing106

subsequence of S is `, then S can be decomposed into ` decreasing subsequences. �107

In the particular case of a random permutation of integers, we have the following well-108

known fact:109

Lemma 9. Let π be a random permutation of a set of n distinct integers. Then w.h.p. π110

can be decomposed into at most 3
√
n decreasing subsequences. �111

Combining this last result with Lemma 7, we obtain the following:112

Corollary 10. Let M = {a1b1, a2b2, . . . , asbs} be a matching. Let π be a permutation of the113

vertices obtained by the concatenation of a random permutation of {a1, a2, . . . , as} followed114

by a random permutation of {b1, b2, . . . , bs}. Then w.h.p. M can be embedded in a π-book115

with at most 6
√
s pages. �116

3 Proof of Theorems 1 and 2117

The strategy of the proofs is as follows. Let d be fixed. For each positive integer p, let Gp(n)118

(respectively, Bp(n)) denote the set of d-regular (respectively, bipartite d-regular) labelled119

graphs on n vertices that can be embedded in p pages. Let Gd(n) (respectively, Bd(n))120

denote the set of d-regular (respectively, bipartite d-regular) labelled graphs. Thus the goals121

are to show that |Gp(n)|/|Gd(n)| is o(1) (Theorem 1) and that |Bp(n)|/|Bd(n)| is also o(1)122

(Theorem 2). Note that since Bp(n) ⊆ Gp(n) and Bd(n) ⊆ Gd(n), both quotients are less123

than or equal to |Gp(n)|/|Bd(n)|, and so it suffices to show that this last quotient is o(1).124

We achieve this by establishing an upper bound for |Gp(n)| (Lemma 11), and then invoking125

a lower bound for |Bd(n)|.126

Lemma 11. Let ε be any (small enough) positive number. Let Gp(n) denote the set of d-

regular labelled graphs on n vertices that can be embedded in p := 1
2ε1/(1−d) ·

(
n

logn

) 1
2
− 1

2(d−1)

pages. Then, for all sufficiently large n,

|Gp(n)| ≤

(
ε

(
2e

d

)d/2
· e

1
d−1

)n

· ndn/2.
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Proof. Let s := ( n
ε2·logn)

1
1−d and t := ε · s− d

2 , so that p = st/2. Note that st2 = n/ log n.127

Let {v1, v2, . . . , vn} be the vertex set of all graphs in Gp(n). Let G ∈ Gp(n), and consider128

a fixed embedding of G into p pages. We associate to G a block graph BG, also embedded129

into p pages, with vertices b1, b2, . . . , bt placed on the spine in this order, defined as follows.130

Suppose that in the p-page embedding of G the vertices appear on the spine in the order131

vi1 , vi2 , . . . , vin . For simplicity, let us assume that t divides n. For j = 1, 2, . . . , n/t, let Bj132

be the set (or block) of vertices {vi(j−1)t+1
, vi(j−1)t+2

, . . . , vijt}. For k, ` ∈ {1, 2, . . . , n/t}, let133

vertices bk, b` be adjacent in BG if and only if G has a vertex in Bk adjacent to a vertex in134

B`. We ask that BG has no parallel edges, but allow the possibility of loops (at most one135

loop per vertex). Thus BG gets unambiguously defined.136

The given p-page embedding of G naturally induces a p-page embedding of BG. Now in137

any p-page embedding of such a graph on t vertices (without parallel edges and at most one138

loop per vertex), each page contains at most t − 2 edges joining non-neighboring vertices,139

there are at most t− 1 edges joining neighboring vertices, and at most t loops. Thus BG has140

at most p(t− 2) + (t− 1) + t = t(p+ 2)− 2p− 1 < 2pt = st2 edges (for the strict inequality141

we use that p ≥ 2).142

Each edge of a block graph joins an unordered pair of vertices in {b1, b2, . . . , bt}, and there143

are
(
t
2

)
+ t = (t + 1)2/2 such unordered pairs (recall that one loop per vertex is allowed).144

Since each block graph has at most st2 edges, it follows that the total number of distinct145

possible block graphs is at most146

st2∑
i=1

( (t+1)2

2

i

)
≤ st2 ·

( (t+1)2

2

st2

)
≤ st2 ·

(
e · (t+ 1)2

2st2

)st2
<
(e
s

)st2
. (1)

Next we estimate (upper bound) how many graphs in Gp can possibly get mapped to a147

given block graph H with vertices b1, b2, . . . , bt (and respective blocks B1, B2, . . . , Bt) and148

edge set F .149

First we note that there are fewer than tn ways in which the vertices v1, v2, . . . , vn can150

be assigned to the blocks B1, B2, . . . , Bt. Now fix any such assignment of vertices to blocks.151

Then for each edge in F , say joining bi to bj, there are (n/t)(n/t) pairs (that is, potential152

edges) with one element in bi and another element in bj. Since a graph in Gp has exactly dn/2153

edges, it follows that for any assignment of vertices to blocks, there are at most
(|F |(n/t)2

dn/2

)
154

possible graphs in Gp having H as its block graph. Since there are fewer than tn possible155

assignments of vertices to blocks, we have that there are fewer than156

tn ·
(
|F |(n/t)2

dn/2

)
≤ tn ·

(
st2 · (n/t)2

dn/2

)
≤ tn ·

(
2esn

d

)dn/2
graphs in Gp associated to each block graph.157

Using this last expression and (1), it follows that

|Gp| ≤ tn
(

2esn

d

)dn/2 (e
s

)st2
≤

(
t

(
2es

d

)d/2 (e
s

) 1
logn

)n

· ndn/2 <

(
ε

(
2e

d

)d/2
· e

1
d−1

)n

· ndn/2,
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where in this last step we used the equality tsd/2 = ε (which follows from the definition of t)158

and the inequality (e/s)1/ logn < e1/(d−1), which follows easily from the definition of s.159

We now derive an lower bound for Bd(n). We know from [21] that asymptotically

|Bd(n)| ≈ e−(d−1)
2/2 ·

(
dn

2

)
! ·
(
d!
)−n

≈ e−(d−1)
2/2 ·
√
πdn

(
dn

2e

)dn/2(√
2πd

(
d

e

)d)−n

≈ e−(d−1)
2/2 ·
√
πdn

(
dn

2e

)dn/2(√
2πd

(
d

e

)d)−n
= e−(d−1)

2/2 ·
√
πdn ·

(
ed/2√

2π2d/2d(d+1)/2

)n
· ndn/2

> e−(d−1)
2/2 ·

(
ed/2√

2π2d/2d(d+1)/2

)n
· ndn/2. (2)

Proofs of Theorems 1 and 2. Let ε := (6 · 2d · d1/2)−1, and p := 1
2ε1/(1−d) ·

(
n

logn

) 1
2
− 1

2(d−1) .160

Now:161

(a) The probability that a randomly chosen d-regular n-vertex graph can be embedded into162

p pages equals |Gp(n)|/|Gd(n)|.163

(b) The probability that a randomly chosen bipartite d-regular n-vertex graph can be164

embedded into p pages equals |Bp(n)|/|Bd(n)|.165

Since Bd(n) ⊆ Gd(n) and Bp(n) ⊆ Gp(n), we have the obvious inequalities166

|Gp(n)|
|Gd(n)|

≤ |Gp(n)|
|Bd(n)|

and
|Bp(n)|
|Bd(n)|

≤ |Gp(n)|
|Bd(n)|

. (3)

Using Lemma 11 and (2), we have

|Gp(n)|
|Bd(n)|

≤

(
ε(2e/d)d/2 · e

1
d−1

)n
· ndn/2

e−(d−1)2/2 ·
(

ed/2√
2π2d/2d(d+1)/2

)n
· ndn/2

=

(
ε
√

2π 2dd1/2 · e
1

d−1

)n
e−(d−1)2/2

.

Recalling that ε := (6 · 2d · d1/2)−1, we get that this quotient goes to 0 as n goes to infinity,167

as it is easy to check that ε
√

2π 2dd1/2 · e
1

d−1 < 1. Therefore |Gp(n)|/|Bd(n)| is o(1).168

Thus it follows from (a) and the first inequality in (3) that w.h.p. the pagenumber of a169

randomly chosen d-regular n-vertex graph is at least p. Similarly, it follows from (b) and170

the second inequality in (3) that w.h.p. the pagenumber of a randomly chosen bipartite d-171

regular n-vertex graph is at least p. Thus Theorems 1 and 2 follow, with cd := 1/(2ε1/(1−d)) =172

(1/2)(6 · 2d · d1/2)1/(1−d).173
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4 Proof of Theorems 3 and 4174

For most of this section we work on random d-regular graphs (Theorem 3). The adjustments175

needed for random bipartite d-regular graphs (Theorem 4) will be described at the end of176

the section.177

We use the following model for the d-regular random graph. Let M1, . . . ,Md be d match-178

ings on n labelled vertices, chosen independently and uniformly at random, and let G(n, d)179

be their union. This is sufficiently close to the uniform model [27], as long as d is a constant180

and n is sufficiently large.181

Thus in order to establish Theorem 3 it suffices to prove that w.h.p. M1 ∪M2 ∪ · · · ∪Md
182

can be embedded in at most Cd · n
1
2
− 1

2+8·3d−2 pages, where Cd depends only on d.183

Setup and strategy184

For each edge we randomly assign one endpoint as a head, and the other as a tail. We let185

H i (respectively, T i) denote the set of heads (respectively, tails) in M i. Now for each vertex186

u and each i ∈ {1, 2, . . . , d}, we let M i(u) denote the vertex matched to u under M i.187

We use a randomized algorithm to order the vertices along the spine, using d steps. At188

the beginning of Step t+ 1, for 0 ≤ t ≤ d− 1, we have a linear ordering of the vertices which189

is a concatenation of blocks. Throughout this section, a block is simply an ordered set of190

vertices. Roughly speaking, in Step t + 1 we (i) deterministically refine and rearrange the191

block partition, so that M t+1 can be embedded in relatively few pages; then we (ii) refine192

again the partition, subdividing each block; and finally (iii) randomly reorder the vertices193

within each (smaller) block. The blocks themselves do not get rearranged in the process, in194

the sense that in each step of the iteration, only the order of the vertices inside a block is195

changing. That is, if u is in block A and v is in block B, and A is to the left of B, then u196

will always remain to the left of v. This last property is essential: after accomodating the197

vertices in Step t + 1 so that M t+1 can be embedded into relatively few pages, we want in198

the subsequent steps to destroy as little as possible what has been achieved for M t+1.199

The algorithm200

Define the sequence of integers k0, k1, k2, . . . , kt as follows: k0 := 1, k1 := n1/(1+4·3d−2),201

and ki := k3i−1 for 1 < i ≤ d. For simplicity we assume that k1 (and hence every ki) is an202

integer that divides n.203

Step 0. Place the vertices along the spine, in any order, defining the initial block A0 = A0
1.204

Step t+ 1, for 0 ≤ t ≤ d− 1. When we enter this step the vertices are placed in the spine205

as a block At (attained in Step t), which is the concatenation of blocks At1, . . . , A
t
kt

. At the206

end of the step, the vertices will have been reordered into a block At+1, which will be the207

concatenation of blocks At+1
1 , . . . , At+1

kt+1
. This is done by following these substeps:208

(a) In this substep we partition each Ati. The idea is first to identify, for each vertex u in
Ati, whether it is a head or a tail in M t+1, and then to identify in which block Atj its
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matching vertex M t+1(u) lies. Formally, for each i, j ∈ [kt], let

H t+1
i (j) := {u ∈ Ati ∩H t+1 : M t+1(u) ∈ Atj}, and

T t+1
i (j) := {u ∈ Ati ∩ T t+1 : M t+1(u) ∈ Atj}.

Thus, for each fixed i, Ati is the disjoint union H t+1
i (1)∪H t+1

i (2)∪· · ·∪H t+1
i (kt)∪T t+1

i (1)∪209

T t+1
i (2) ∪ · · · ∪ T t+1

i (kt).210

Note that for each edge e of M t+1 there exist i, j ∈ [kt] such that e matches a vertex in211

H t+1
i (j) to a vertex in T t+1

j (i).212

(b) For each i, j ∈ [kt], H
t+1
i (j) and T t+1

i (j) are sets, and in this substep we turn them213

into blocks (recall that a block is an ordered set) as follows. First we let each H t+1
i (j)214

become a block by simply letting its elements inherit the order from Ati . Now suppose215

that for a particular pair i, j the block H t+1
i (j) reads u1u2 · · ·ur. Then the elements of216

T t+1
j (i) are M t+1(u1),M

t+1(u2), . . . ,M
t+1(ur). We turn T t+1

j (i) into a block by letting217

its elements be ordered as M t+1(ur)M
t+1(ur−1) · · · M t+1(u1).218

(c) Let Bt+1
i be the block defined by the concatenation

H t+1
i (i−1), . . . , H t+1

i (1), H t+1
i (kt), H

t+1
i (kt−1), · · · , H t+1

i (i), T t+1
i (1), T t+1

i (2), . . . , T t+1
i (kt).

Thus Ati and Bt+1
i have the same elements, only differently ordered.219

(d) Let Bt+1 be the block defined by the concatenation

Bt+1 := Bt+1
1 , Bt+1

2 , . . . , Bt+1
kt
.

Thus Bt+1 is an ordering along the spine of all the vertices of G. The key property of this220

ordering is the following immediate consequence of how the blocks Bt+1
i are constructed:221

Remark 12. In the ordering Bt+1, for each i, j ∈ [kt] all the edges of M t+1 that have their222

heads in H t+1
i (j) can be simultaneously embedded in one page. Thus all the edges of M t+1

223

with its head in Bt+1
i can be simultaneously embedded in kt pages.224

If we were to stop the process at this point, it follows from this remark that all the225

M t+1-edges could be embedded in a book with k2t pages. However, unless we are already226

in Step d (the last step), there are still iterations to be performed. (Actually, if we are227

already in Step d, the next last substep is unnecessary, and thus we omit it.) The crucial228

idea is to preserve as much as possible of what we have achieved for M t+1 in the subsequent229

reorderings. This is done by further refining the basic elements of the partition Bt+1 (the230

blocks H t+1
i (j) and T t+1

i (j)) and then reshuffling the vertices inside these refined subblocks,231

but without changing the relative order of these subblocks. This feature of not changing the232

relative order of the subblocks, allows us to do in the next step a reordering suitable for the233

edges of M t+2, without totally destroying what we have already achieved for M t+1.234

Formally, this last substep of further refining and randomly shuffling is the following.235

Note: If we are already on Step d, we let Ad := Bd, and stop, omitting the next substep.236
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(e) Working with the ordering Bt+1, partition each of the blocks H t+1
i (j) and T t+1

i (j) (there237

are kt · 2kt = 2k2t such blocks in total) into kt/2 blocks of sizes as equal as possible (in238

the particular case t = 0, partition each of these 2k20 = 2 blocks into k1/2 blocks of sizes239

as equal as possible). Thus the total number of such blocks is kt+1; indeed, if t = 0,240

there are 2 ·k1/2 = k1 such blocks, and in the case t > 0 there are 2k2t ·kt/2 = k3t = kt+1241

such blocks. Finally, randomly reorder the vertices inside each of these kt+1 blocks, and242

denote the resulting block system At+1
1 , . . . , At+1

kt+1
. The final ordering At+1 is simply243

the concatenation At+1
1 , . . . , At+1

kt+1
.244

Conclusion. After finishing Step d, we have an ordering Ad of the vertices along the spine.245

This final ordering Ad is the one we shall use to embed all the edges in M1 ∪ · · · ∪Md.246

Analysis of the algorithm: expected number of pages247

The key step (Claim B below) is to estimate the number of pages in which M t+1 can be248

embedded. To achieve this, we first estimate the size of the blocks At+1
i , as follows.249

Claim A. Let t ∈ {0, 1, . . . , d− 2}. Then w.h.p. max{|At+1
` |}`∈[kt+1] ≤ 22tn/kt+1.250

Proof. We proceed by induction on t. In the case t = 0, the first step of the algorithm, we251

simply partition the vertices into two blocks H1
0 and T 1

0 (the M1-heads and the M1-tails),252

and then partition each of these blocks into k1/2 parts as equal as possible, thus obtaining253

A1
1, . . . , A

1
k1

. Thus each A1
i has size n/k1 < 220n/k1. Thus the statement holds for t = 0.254

Suppose now that t ≥ 1. Recall that H t+1
i (j) := {u ∈ Ati ∩H t+1 : M t+1(u) ∈ Atj}. For255

each ` ∈ [kt+1], there exist i, j ∈ [kt] such that the block At+1
` is obtained by subdividing into256

kt/2 parts, as equal as possible, either the block H t+1
i (j) or the block T t+1

i (j). Thus it suffices257

to show that w.h.p. maxi,j∈[kt]{|T t+1
i (j)|} ≤ (22tn/kt+1)(kt/2) and maxi,j∈[kt]{|H t+1

i (j)|} ≤258

(22tn/kt+1)(kt/2). We show the first inequality, as the proof for the second one is totally259

analogous.260

By the inductive hypothesis, the probability |Ati|/n that a vertex u is in Ati is w.h.p. at261

most (22t−1
n/kt)/n = 22t−1

/kt. Since such a u is equally likely to be in H t+1 as in T t+1, the262

probability that u is in Ati ∩H t+1 is then w.h.p. at most 22t−1
/2kt. Now the probability that263

M t+1(u) is in Atj is |Atj|/n, which is w.h.p. at most 22t−1
/kt. Thus |H t+1

i (j)| is w.h.p. at most264

22t/2k2t . Thus the probability that a vertex is in Ati is w.h.p. at most 22t/k2t , and so the size265

of Ati is w.h.p. at most 22tn/k2t . A concentration argument using Chernoff’s inequality then266

shows that w.h.p. maxi,j∈[kt]{|H t+1
i (j)|} ≤ 2 · (22tn/k2t ) = (22tn/kt+1)(kt/2), as required.267

Claim B. For each t ∈ {0, 1, . . . , d − 2}, w.h.p. M t+1 can be embedded into at most268

6kt·22t−1
√
n/kt+1 pages.269

Proof. The core of the proof is to estimate (upper bound), for each i ∈ [kt], the number of270

pages in which one can embed w.h.p. the M t+1-edges whose head is in the block Bt+1
i .271
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So let i ∈ [kt] be fixed. The subblock of Bt+1
i that contains the vertices that are heads of272

M t+1-edges is273

H t+1
i (i− 1) · · · H t+1

i (1)H t+1
i (kt)H

t+1
i (kt − 1) · · · H t+1

i (i).

As we observed in Remark 12, if we had stopped in Substep (d) of Step t, then all the274

M t+1-edges whose heads are in this block could be embedded in a single page. However, in275

Substep (e) of this same step, each of these kt blocks H t+1
i (i−1), H t+1

i (1), H t+1
i (kt), H

t+1
i (kt−276

1), . . . , H t+1
i (i) gets partitioned into kt/2 blocks of sizes as equal as possible; let us call them277

subblocks, and denote them Si1, S
i
2, . . . , S

i
k2t /2

, in the order in which they appear in Bt+1
i .278

Afterwards, the order of the elements within each subblock will be changed, but (this is the279

key property), in all subsequent steps the relative order of these subblocks is maintained. It280

follows that if {e1, e2, . . . , ek2t /2} is a set of M t+1-edges, where for each j = 1, 2, . . . , k2t /2 the281

head vertex of ej is in Sij, then {e1, e2, . . . , ek2t /2} can be simultaneously embedded in one282

page in the final ordering.283

For j ∈ [k2t /2], let pij be the minimum number of pages in which the whole set of M t+1-284

edges whose head vertices are in Sij can be embedded in the final ordering. It follows from the285

observation in the previous paragraph that the whole set of M t+1-edges whose head vertices286

are in Bt+1
i can be embedded in max{pi1, pi2, . . . , pik2t /2} pages. We conclude that the entire287

M t+1 can be embedded in kt ·
(
max{pij}i∈[kt],j∈[k2t /2]

)
pages.288

Let us now estimate pij, for an arbitrary j ∈ [k2t /2]. After defining Sj, in further steps the289

order of the vertices within Sij is changed, possibly several times: first a random reordering290

is done, and the subsequent reorderings depend only on the matchings M t+2,M t+3, . . . ,Md.291

Since these matchings are random independent matchings, we may then assume (for the292

purpose of estimating pij) that the vertices in Sij appear in the final ordering in a random293

order. Thus it follows from Corollary 10 that w.h.p. pij ≤ 6
√
|Sij|.294

Now each Sij is At+1
` for some ` ∈ [kt+1]. Thus w.h.p. the entire M t+1 can be embedded in295

kt ·
(
max{6

√
|At+1

` |}`∈[kt+1]

)
pages. Using Claim A, we conclude that w.h.p. the entire M t+1

296

can be embedded in 6kt · 22t−1
√
n/kt+1 pages.297

Proof of Theorem 3. Applying Claim B with t = 0, we obtain that w.h.p. M1 can be em-298

bedded into at most 6k0·22t−1
√
n/k1 = 6·22t−1

√
n/k1 pages. Applying the same claim with299

0 < t ≤ d− 2, we obtain that w.h.p. M r can be embedded into at most 6kt·22t−1
√
n/kt+1 =300

6·22t−1
√
n/kt pages. Finally, recall that in Step d we omit Substep (e). Thus, as observed301

immediately after Remark 12, all the Md edges can be embedded in a book with k2d−1 pages.302
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It follows that w.h.p. M1 ∪M2 ∪ · · · ∪Md can be embedded into at most

6·2
√
n

k1
+

d−2∑
t=1

6·22t−1

√
n

kt
+ k2d−1 < 6·22d−1

(d− 1)

√
n

k1
+ k1

2·3d−2

= 6·22d−1

(d− 1)
√

2n1−1/(1+4·3d−2) + n2·3d−2/(1+4·3d−2)

= 6
√

2·22d−1

(d− 1) · n
1
2
− 1

2+8·3d−2 + n
1
2
− 1

2+8·3d−2

=
(
6
√

2·22d−1

(d− 1) + 1
)
· n

1
2
− 1

2+8·3d−2

pages.303

Proof of Theorem 4. The proof for random bipartite d-regular graphs is virtually identical304

to the proof for d-regular graphs. The proof for this case is actually easier: we assign all the305

heads to one chromatic class, and all the tails to the other chromatic class, so that every306

vertex is either always a head or always a tail.307

5 Embedding a graph in 11
√
m pages:308

proof of Theorem 5309

Let G be an unlabeled graph with n vertices and m edges. Assign an arbitrary orientation to310

each edge. Consider a random permutation of the vertices of G, and label them 1, 2, . . . , n.311

For each i ∈ [n], let Ai be the set of outneighbors of i, written in decreasing order, and let312

S be the concatenation A1A2 · · ·An. Thus S is a permutation of a multiset on [n].313

Theorem 5 is a consequence of the following:314

Claim. W.h.p. S has no strictly monotone increasing subsequence of length (11/2)
√
m.315

Deferring its proof for the moment, assume the Claim is true. Then w.h.p. S can be316

decomposed into (11/2)
√
m (not necessarily strictly) monotone decreasing subsequences;317

the proof of this is essentially the same as the proof of Proposition 8. By Lemma 7 it follows318

that w.h.p. G can be embedded into 11
√
m pages. Since this event holds w.h.p. for a random319

permutation of the vertices, it follows that there exists a permutation of the vertices of G320

(spine order) for which a 11
√
m-page embedding exists, thus proving Theorem 5.321

Thus it only remains to prove the Claim.322

Proof of Claim. Each element i of S is the head of a directed edge of G; the tail of this323

directed edge is the precursor p(i) of i. A subsequence i1i2 . . . ir of S is good if i1, i2, . . . , ir,324

p(i1), p(i2), . . . , p(ir) are all distinct. If there is an increasing subsequence of S of length `,325

then clearly there is a good increasing subsequence of length `/2. So it suffices to show that326

w.h.p. there is no good increasing subsequence of length k := (11/4)
√
m.327

There is a bijection between the set of good subsequences and the collection of all k-328

matchings (that is, matchings with k edges) of G. Thus it suffices to show that w.h.p. there329

is no k-matching whose corresponding good subsequence is increasing.330
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Let dj denote the outdegree of vertex j. Then there are at most
∑

i1,i2,...,ik
di1di2 · · · dik k-

matchings of G, where the sum is over all k-sets of vertices of G. For each fixed k-matching,
the probability that its corresponding good subsequence is increasing is 1/k!. Thus it follows
from the union bound that the probability that there is a good increasing subsequence of
length k is at most∑

i1,i2,...,ik
di1di2 · · · dik
k!

≤ 1

k!
·
(∑n

i=1 di
)k

k!
=

mk

(k!)2
≤ 1

e2

(
e

k

)2k

mk =
1

e2

(
e2(
11
4

)2) 11
√
m

4

= o(1).

6 Further results on decompositions of permutations331

Before proceeding to the proof of Theorem 6, let us discuss general lower and upper bounds332

for µ(A).333

For k < (1.1)
√
n a random column permutation gives that µ ≤ 3

√
n. This follows from334

the proof of Lemma 9; indeed, for such a random column permutation each row w.h.p. can335

be decomposed into at most 3
√
n decreasing subsequences; routine concentration arguments336

show that the same holds for the whole collection of rows, as long as k < (1.1)
√
n.337

It is worth nothing that this µ ≤ 3
√
n is essentially best possible if the permutations338

are given deterministically, even for k = 2. Indeed, for the following 2 × n matrix we have339

µ >
√
n. Let one row be 1, 2, . . . , n and let the other row be n, n−1, . . . , 1. Then if a column340

permutation makes the first row decomposable into fewer than
√
n decreasing subsequences,341

at least one of this subsequences has size greater than
√
n. The corresponding entries of342

this subsequence in the second row form an increasing subsequence of size greater than
√
n,343

from which it obviously follows that this row cannot be decomposed into fewer than
√
n+ 1344

decreasing subsequences.345

Proof of Theorem 6. We proceed by induction on k. The statement is trivial for k = 1. Let346

t := (n/5)1/(1+ak−1). For simplicity we shall assume that t is an integer and that t divides n.347

Denote R1, R2, . . . , Rk the rows of A.348

For i = 1, 2, . . . , n/t, let Bi be the subsequence of R1 that contains the elements in349

{n− it+ 1, . . . , n− it+ t}. We rearrange the columns of A so that R1 now is B1B2 · · ·Bn/t,350

and let A′ denote the resulting matrix.351

We need to show that in the resulting matrix A′, w.h.p. each row can be decomposed into352

at most 3 · n 1
2
−ak decreasing sequences. First we work with rows 2, . . . , k, and afterwards we353

deal with row 1.354

For i = 1, 2, . . . , n/t, let Mi be the (k−1)× t submatrix of A′ that results by deleting the355

first row and taking the columns corresponding to the block Bi. Thus, the submatrix of A′356

consisting of rows 2, 3, . . . , k is simply the concatenation of the matrices M1,M2 . . . ,Mn/t.357

For each fixed i = 1, 2, . . . , n/t, we apply induction on Mi, and obtain that each of the rows358

of Mi w.h.p. can be decomposed into at most t
1
2
−ak−1 decreasing subsequences. For each i359

this event occurs w.h.p. with a concentration of 1− 2n
c

for some constant c depending only360

on k. Thus the union bound can be applied, and so it follows that w.h.p. the columns of361

13



A′ can be rearranged to obtain a matrix A′′ in which all the rows in all the Mis can be362

simultaneously decomposed into at most363

n

t
· t

1
2
−ak−1 = n · t−

1
2
−ak−1 = n ·

(
n

5

)(− 1
2
−ak−1)/(1+ak−1)

=

(
1

5

)(− 1
2
−ak−1)/(1+ak−1)

· n1+(− 1
2
−ak−1)/(1+ak−1)

≤ 52/3 · n
1
2
−ak < 3 · n

1
2
−ak (since ak−1 ≤ 1/2, then

(−1
2
− ak−1)

(1 + ak−1)
≥ −2/3).

decreasing subsequences.364

For the first row, each of the n/t blocks Bi in A′ is a random permutation of its elements.365

Each of theseBi gets internally reshuffled (say into a blockB′′i ) to get A′′; since this reshuffling366

depends only on R2, . . . , Rk, each of which is a permutation obtained independently of each367

other and of R1, it follows that within A′′ each of the n/t blocks B′′i is a random permutation368

of the elements in Bi. Each of these blocks has size t, and so by Lemma 9 w.h.p. each of369

them can be partitioned into 3
√
t decreasing subsequences. (Here we use a concentration370

argument analogous to the one we used above for rows R2, . . . , Rk). Note that if 1 ≤ i <371

j ≤ n/t, then every element of Bi is strictly greater than every element of Bj. Thus we can372

choose one decreasing subsequence of each block, and we can concatenate them to obtain a373

decreasing sequence. We conclude that w.h.p. the entire first row of A′′ can be partitioned374

into 3
√
t = 3 · (n/5)1/2(1+ak−1) = 3 · (n/5)

1
2
−ak < 3n

1
2
−ak decreasing sequences (here we used375

that 1
2
− ak < 1

2
for all k ≥ 2, and so (1/5)

1
2
−ak < 1).376

Thus w.h.p. every row of M can be decomposed into at most 3 · n 1
2
−ak decreasing se-377

quences, as needed.378

For general k, the only lower bound we can prove is Ω(n
1
2
− c

k ), for some universal constant379

c. Interestingly enough, our proof follows indirectly from the results we have established for380

the pagenumber of random bipartite k-regular graphs. For suppose A is a k×n matrix, each381

of whose rows is a random permutation of [n], chosen independently of each other. Then382

A can be regarded as encoding the information of a bipartite k-regular random graph with383

bipartition (X, Y ) = ({x1, x2, . . . , xn}, {1, 2, . . . , n}): the columns represent x1, x2, . . . , xn,384

and the k entries of column i are the k vertices of {1, 2, . . . , n} that are adjacent to xi.385

We claim that w.h.p. µ(A) > n
1
2
− 1

k . Indeed, if µ(A) were smaller, then after some column386

rearranging each row could be decomposed into n
1
2
− 1

k decreasing sequences, so the edges387

corresponding to each row could be embedded into 2 ·n 1
2
− 1

k pages (place first the X vertices388

in the order given by the rearranged columns, then the Y vertices in the order 1, 2, . . . , n,389

and apply Lemma 7), so the whole graph could be embedded into at most 2k · n 1
2
− 1

k pages.390

This contradicts that the pagenumber of the random bipartite k-regular graph on n vertices391

is at least
√
k · (n/ log n)

1
2
− 1

2(k−1) (Theorem 2).392

For the particular case k = 2 we use a different argument to show a lower bound of393

Ω(n1/4), in Lemma 14 below (compare with the O(n1/3) bound given by Theorem 6). In394
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the proof we make use of the following variant of the longest common pattern between two395

permutations.396

Suppose that λ = λ1λ2 · · ·λr and ν = ν1ν2 · · · νr are permutations of (possibly distinct)397

subsets of [n]. We say that λ and ν are order equivalent if for all i, j ∈ [r] we have λi < λj398

if and only if νi < νj. Now given two permutations σ = σ1σ2 · · · σn, π = π1π2 · · · πn of399

[n], define L(σ, π) as the length of the longest subsequence i1 < i2 < · · · < ir such that400

σi1σi2 · · ·σir is order equivalent to πi1πi2 · · · πir (this parameter is related to the length of the401

longest common pattern of σ and π [6, 11]).402

It is not difficult to prove the following, using the same ideas as in the proof of Lemma 9).403

Proposition 13. If σ, π are random permutations of [n], then w.h.p. L(σ, π) = O(n1/2). �404

We now state and prove our non-trivial lower bound on µ(A) for the case k = 2.405

Lemma 14. Let A be a 2 × n matrix, each of whose rows is a random permutation of [n],406

chosen independently of each other. Then w.h.p. µ(A) = Ω(n1/4).407

Proof. Suppose that there is a reordering of the columns of A such that each of the resulting408

row permutations σ′, π′ can be decomposed into n1/4

t
decreasing subsequences, for some409

t := t(n). Then for some r ≥ n1/2 · t2 there exist i1 < i2 < · · · < ir such that σ′i1σ
′
i2
· · · σ′ir and410

π′i1π
′
i2
· · · π′ir are both decreasing. This implies that L(σ, π) ≥ n1/2·t2. Since by Proposition 13411

w.h.p. L(σ, π) = O(n1/2), we conclude that w.h.p. µ(A) = Ω(n1/4).412

7 Concluding Remarks413

As we observed in the Introduction, Malitz [19] noted that his bound Ω(
√
d · n1/2−1/d) for414

the pagenumber of (some) d-regular graphs is tight for d > log n, and asked if it was also415

tight for d < log n. Theorem 1 answers this in the negative, and Theorem 3 shows that the416

pagenumber of the typical d-regular graph is o(n1/2). We have no reason to expect that the417

lower bound we established in Theorem 1 is tight, but we believe that this bound is closer418

to being tight than the upper bound in Theorem 3, as follows:419

Conjecture 15. There is a universal constant c > 0 such that for each fixed d ≥ 3 the
pagenumber of the random d-regular graph on n vertices is w.h.p.

Θ
(
n

1
2
− c

d

)
.

A possible approach is the following. The edge set of a d-regular graph can be covered420

by at most (d+1) matchings. Start with a random ordering of the vertices on the spine, and421

perform the same sequence of reorderings of the vertices as in the proof of Theorem 3. The422

technical issue that we have not managed to overcome is that one must have that during423

the reordering process, a sufficient amount of “randomness” should remain, so that a good424

bound on the number of pages could be obtained.425

We also believe that with some additional ideas the following could be proved.426
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Conjecture 16. For each d there is an ad > 0 such that the pagenumber of every d-regular427

graph on n vertices is at most n1/2−ad.428

Even though we do not have a full rigorous proof yet, we think we can establish this429

conjecture for the case of bipartite graphs.430

As we mentioned Section 6, problems on subsequences of permutations are of great in-431

terest in combinatorics. Regarding the bounds for µ(A) (cf. Theorem 6 and Lemma 14),432

we suspect that for k = 2 w.h.p. we have µ(A) = Θ(n1/3). For k ≥ 3 we do not have any433

sensible guess as to which one of the upper bound (Theorem 6) and the lower bound (see434

the discussion after the proof of Theorem 6) is closer to the answer.435

We do conjecture that the bound in Proposition 13 is tight:436

Conjecture 17. If σ, π are random permutations of [n], then w.h.p. L(σ, π) = Θ(n1/2).437

In view of the asymptotic tightness of the related results reported in [11], we feel this438

conjecture should be reasonably straightforward to settle, but so far it has eluded our efforts.439
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