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Abstract

A book with k pages consists of a straight line (the spine) and k half-planes (the
pages), such that the boundary of each page is the spine. If a graph is drawn on a book
with k pages in such a way that the vertices lie on the spine, and each edge is contained
in a page, the result is a k-page book drawing (or simply a k-page drawing). The k-page
crossing number νk(G) of a graph G is the minimum number of crossings in a k-page
drawing of G. In this paper we investigate the k-page crossing numbers of complete
graphs. We use semidefinite programming techniques to give improved lower bounds on
νk(Kn) for various values of k. We also use a maximum satisfiability reformulation to
calculate the exact value of νk(Kn) for several values of k and n. Finally, we investigate
the best construction known for drawing Kn in k pages, calculate the resulting number
of crossings, and discuss this upper bound in the light of the new results reported in
this paper.
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1 Introduction

Motivated by applications to VLSI design, Chung, Leighton and Rosenberg [7] studied
embeddings of graphs in books. A book consists of a line (the spine) and k ≥ 1 half-planes
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(the pages), such that the boundary of each page is the spine. In a book embedding, each
edge is drawn on a single page, and no edge crossings are allowed. In a book drawing (or
k-page drawing, if the book has k pages), each edge is drawn on a single page, but edge
crossings are allowed.

Obviously every fixed graph can be embedded in a book with sufficiently many pages. On
the other hand, it is desirable to do so using as few pages as possible. Given a graph G,
the minimum k such that G can be embedded in a k-page book is the pagenumber (or
book thickness) of G [2, 7, 21]. Determining the pagenumber of an arbitrary graph is NP-
Complete [7], but some results are known for particular families of graphs. For instance, it
is not difficult to prove that the pagenumber of the complete graph Kn is dn/2e. On the
other hand, with few exceptions, the pagenumbers of the complete bipartite graphs Km,n

are unknown (see [11, 26]). Yannanakis proved [40] that four pages are always sufficient,
and sometimes required, to embed a planar graph.

1.1 The k-page crossing number νk(G) of a graph G

When the number k of pages is fixed, the goal is to minimize the number of crossings in a
k-page drawing of an input graph. The k-page crossing number νk(G) of a graph G is the
minimum number of crossings in a k-page drawing of G.

Clearly, a graph G has ν1(G) = 0 if and only if it is outerplanar. Equivalent to 1-page
drawings are circular drawings, in which the vertices are placed on a circle and all edges are
drawn in its interior. In a similar vein, k-page drawings of G = (V,E) can be alternatively
viewed as a set of k circular drawings of graphs G(i) = (V,E(i)) (i = 1, . . . , k), where the
edge sets E(i) form a k-partition of E. In other words, we assign each edge in E to exactly
one of the k circular drawings. In Figure 1 we illustrate a 3-page drawing of K7.

Figure 1: A 3-page drawing of K7 with 2 crossings.

Several computational approaches and heuristics for estimating (or determining) ν1(G) and
ν2(G) have been devised (see for instance [18, 19, 20, 24, 25]). Few exact results or nontrivial
bounds are known, and very little is known about νk(G) for k > 2.
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Although the special cases k = 1 and 2 have received considerable attention, the only
thorough investigation of νk(G) for arbitrary k is the work by Shahrokhi, Sýkora, Székely,
and Vrt’o [32]. In this paper, Shahrokhi et al. give general lower bounds for νk(G), for any
graph G. They also give lower and upper bounds for νk(Kn), and use their upper bounds
for νk(Kn) to give general upper bounds for νk(G) for arbitrary graphs G.

As with every graph-theoretical parameter, there is a natural interest in computing (or at
least estimating) the k-page crossing number of the complete graph Kn. Besides, estimates
on νk(Kn) are an essential tool to derive bounds for νk(G) for other graphs G, via the
embedding method. This is the approach followed by Sharokhi et al. in [32], where the
constructions that yield their upper bounds for νk(Kn) are used to generate k-page drawings
of dense graphs, whose number of crossings is within a constant factor of their k-page
crossing number.

1.2 Structure of the rest of the paper

Our main contributions in this paper are improved lower bounds for the k-page crossing
numbers of Kn. We also compute the exact value of νk(Kn) for several k and n (no exact
values were previously known for any n, for any k > 2).

In Section 2 we survey the bounds and exact results known for νk(Kn). In Section 3 we
show how νk(Kn) may be obtained from the solution of a maximum-k-cut problem on a
suitable graph, or via the solution of a suitable weighted maximum satisfiability problem.
These reformulations are used in Section 4 to obtain previously unknown exact values and
improved lower bounds on νk(Kn) for various values of k and n via computation. In Section 5
we review the construction that gives the best upper bounds available for νk(Kn), calculate
the resulting number of crossings, and analyze this upper bound in the light of the new
results obtained in the previous sections. Finally, in Section 6 we present some concluding
remarks and open questions.

2 k-page drawings of Kn: exact results and bounds

2.1 1-page drawings of Kn

Calculating the 1-page crossing number of Kn is straightforward. Indeed, it is obvious
that, in every 1-page drawing of Kn, every four vertices define a crossing, and therefore
ν1(Kn) ≥

(
n
4

)
. It is easy to give 1-page drawings with exactly

(
n
4

)
crossings, and so the

reverse inequality ν1(Kn) ≤
(
n
4

)
follows.

It follows that the problem of calculating or estimating νk(Kn) is only of interest for k ≥ 2.
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2.2 2-page drawings of Kn

We recall that the crossing number cr(G) of a graph G is the minimum number of crossings
in a drawing of G in the plane. Harary and Hill [16] described how to draw Kn in the plane
with Z2(n) crossings, where

Z2(n) :=
1

4

⌊
n

2

⌋⌊
n− 1

2

⌋⌊
n− 2

2

⌋⌊
n− 3

2

⌋
. (1)

No drawings of Kn with fewer than Z2(n) crossings are known, and to this date the Harary-
Hill Conjecture cr(Kn) = Z2(n) is still open (it has been settled only for n ≤ 12; see [27]).

The drawings given in [16] are not 2-page drawings, but it was later noticed that 2-page
drawings with Z2(n) crossings do exist [3] (see also [15, 17]). This observation gave rise to
the conjecture ν2(Kn) = Z2(n), popularized by Vrt’o [38].

Buchheim and Zheng [4] proved that ν2(Kn) = Z2(n) for n ≤ 14. Recently, De Klerk and
Pasechnik [10] verified that ν2(Kn) = Z2(n) for n ≤ 18 and n = 20 and 24, and used
semidefinite programming techniques to give asymptotic estimates on ν2(Kn)/Z2(n). More
recently, Ábrego et al. proved that ν2(Kn) = Z2(n) for every n [1].

2.3 k-page drawings of Kn for k ≥ 3: upper bounds

Much less is known of the k-page crossing number νk(Kn) for k > 2.

As we mentioned above, Blažek and Koman [3] seemed to have been the first to construct
2-page drawings of Kn with Z2(n) crossings. In the same paper they briefly observed that
their construction could be extended to k pages. Although no details were given, they gave
the number of crossings obtained for the case k = 3 (see Section 5.4).

Damiani, D’Antona and Salemi proposed a way to draw Kn on k pages [8], using the
adjacency matrix representation (we call this the DDS construction). They included a
table with the resulting number of crossings for n ≤ 18, and all k ≤ dn/2e (recall that
νk(Kn) = 0 if k > dn/2e). The exact number of crossings resulting from their construction
was not explicitly given (we have calculated this number; see Proposition 5). The (table)
results given in [8] coincide for the case k = 3 with the expression given by Blažek and
Koman. Although Blažek and Koman did not explain in detail their proposed construction
for k > 2, it is not difficult to fill out the details; by doing so, one can confirm that the (or,
at least, one possible) natural way to generalize their construction for k > 2 yields precisely
the DDS construction.

In [32], Shahrokhi et al. described a construction that draws Kn on k pages. This is also
a natural generalization of the Blažek-Koman construction to k > 2 pages. Moreover,
it agrees with the DDS construction whenever k divides n (the DDS construction yields
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slightly better results for other values of k and n). Based on their construction, Shahrokhi
et al. gave the following general upper bound:

νk(Kn) ≤ 2

k2

(
1− 1

2k

)(
n

4

)
+
n3

2k
. (2)

In Section 5 we include a detailed discussion on the DDS construction, including the calcu-
lation of the number of crossings that result by drawing Kn on k pages using this paradigm.

2.4 k-page drawings of Kn for k ≥ 3: lower bounds

Shahrokhi et al. proved in [32] that for every graph G and every positive integer k, one has
νk(G) ≥ m3/37k2n2 − 27kn/37. Following the derivation of this bound, it is easy to see
that the factor 1/37 in this expression can be improved, but only marginally so. Applying
this bound to Kn, we obtain

νk(G) ≥ n(n− 1)3

296k2
− 27kn

37
=

3

37k2

(
n

4

)
+O(n3).

This lower bound can be improved if n is sufficiently large compared to k, as follows. We
recall that a k-planar drawing is similar to a k-page drawing, but involves k unrestricted
planar drawings. Formally, let G = (V,E) be a graph. A k-planar drawing of G is a set of
k planar drawings of graphs G(i) = (V,E(i)) (i = 1, . . . , k), where the edge sets E(i) form a
k-partition of E. Loosely speaking, to obtain the k-planar drawing, we take the drawings
of the graphs G(i), and (topologically) identify the k copies of each vertex. The k-planar
crossing number crk(G) of G is the minimum number of crossings in a k-planar drawing of
G.

If k is even, then it is easy to obtain, from a k-page drawing of a graph G, a k/2-planar
drawing of G with the same number of crossings. Therefore νk(G) ≥ crk/2(G) for every
graph G and any positive even integer k. In [33], Shahrokhi et al. proved that for all
n ≥ 2r2 + 6r − 1 and all r ≥ 1,

crr(Kn) ≥ 1

2(3r − 1)2

(
n

4

)
.

From our previous observation, it follows that for all n ≥ 2(k/2)2+6(k/2)−1 = k2/2+3k−1
and all even k ≥ 2, νk(Kn) ≥ 2

(3k−2)2
(
n
4

)
. Obviously νk−1(G) ≥ νk(G) for any graph G and

any integer k ≥ 2, and so for any odd k ≥ 3 and any n ≥ (k − 1)2/2 + 3(k − 1) − 1 =
k2/2 + 2k − 7/2 we have νk(Kn) ≥ νk+1(Kn) ≥ 2

(3(k+1)−2)2
(
n
4

)
= 2

(3k+1)2

(
n
4

)
. Now in their

exhaustive investigation of biplanar (2-planar) crossing numbers [5, 6], Czabarka, Sýkora,
Székely, and Vrt’o prove the slightly better bound (for the 2-planar, or biplanar crossing
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number) cr2(Kn) ≥ n4/952. From this it follows that ν4(Kn) ≥ n4/952. Putting all these
results together, we obtain the following lower bounds:

νk(Kn) ≥


3

119

(
n
4

)
+O(n3), if k = 4;

2
(3k−2)2

(
n
4

)
, if k is even, k > 4, and n ≥ k2/2 + 3k − 1 ;

2
(3k+1)2

(
n
4

)
, if k is odd, and n ≥ k2 + 2k − 7/2.

(3)

2.5 k-page drawings of Kn: asymptotic lower and upper bounds

The following type of result is well-known and easily shown; see e.g. [29] or [31, Theorem
2].

Claim 1. For any integers k > 0 and n > m ≥ 4,

νk(Kn)(
n
4

) ≥ νk(Km)(
m
4

) .

As a consequence, the sequence νk(Kn)

(n4)
is monotonically non-decreasing in n. Since it is also

bounded from above by (2), the limit exists, and using (2) and (3) one has:

3

119
≤ lim

n→∞

ν4(Kn)(
n
4

) ≤ 7

64
; (4)

2

(3k − 2)2
≤ lim

n→∞

νk(Kn)(
n
4

) ≤ 2

k2

(
1− 1

2k

)
, if k is even, k > 4. (5)

2

(3k + 1)2
≤ lim

n→∞

νk(Kn)(
n
4

) ≤ 2

k2

(
1− 1

2k

)
, if k is odd, k ≥ 3. (6)

3 Formulating νk(Kn) as a maximum k-cut
or maximum satisfiability problem

We will show that νk(Kn) can be obtained by computing the maximum k-cut size in a
certain graph Gn = (Vn, En), say, which is a certain subgraph of the complement of the
line graph of Kn. The same graph was used in [10] to investigate ν2(Kn), and the general
construction of graphs of this type is due to Buchheim and Zheng [4].

To define the graph Gn = (Vn, En), we consider a Hamiltonian cycle Cn with vertices
v1, v2, . . . , vn. Let Vn be the set of chords of the cycle, that is, the edges vivj with vi and
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vj at cyclic distance at least 2. Let us say that the chords vivj and vkv` overlap if i, k, j, `
occur in this cyclic order as we traverse Cn, either in its natural or in its reverse direction.
Finally, to define En, we let two chords vivj and vkv` be adjacent if they overlap.

Thus one has |Vn| =
(
n
2

)
− n, and it is easy to verify that |En| =

(
n
4

)
. The automorphism

group of Gn is isomorphic to the dihedral group Dn on n elements, and there are d − 1
orbits of vertices, where d = bn/2c. The equivalency classes of vertices (i.e. orbits) may
be described as follows: since vertices correspond to chords in Cn, the chords that connect
vertices of Cn at the same cyclic distance belong to the same equivalency class. If n is odd,
then the vertices corresponding to chords with cyclic distance i have valency i(i−1) + 2(i−
1)(d− i), as is easy to check.

For later use, we will label the vertices of Gn so that its adjacency matrix is partitioned
into symmetric circulant blocks. To this end, consider the cycle Cn with vertices numbered
{0, 1, . . . , n− 1} in the usual way. The vertices of Gn that correspond to chords connecting
points at cyclic distance i are now labeled successively, starting with the chord

{bn/2c × i mod n, (bn/2c+ 1)× i mod n} ,

and then obtaining the next chords in the ordering via clockwise cyclic shifts.

Thus the adjacency matrix of Gn is partitioned into a block structure, where each row of
blocks is indexed by a cyclic distance i ∈ {2, . . . , d}, and each block has size n× n.

Moreover, one may readily verify that block (i, j) (i, j ∈ {2, . . . , d}, i ≤ j) is given by the
symmetric n× n circulant matrix with first row

[0 0T`ij 1
T
i−1 0

T
n−2(i−1)−1−2`ij 1

T
i−1 0

T
`ij

], (7)

where 1k and 0k denote the all-ones and all-zeroes vectors in Rk, respectively, and

`ij =

{
d(i− j) mod n if i and j have the same parity

d(i− j)− j mod n otherwise. (8)

We may now relate the maximum k-cut problem for Gn to νk(Kn).

Lemma 2. One has
νk(Kn) = |En| −max-k-cut(Gn),

where max-k-cut(Gn) denotes the cardinality of a maximum k-cut in Gn.

Proof. First of all, recall that the maximum k-cut problem for G = (V,E) may be seen as
a vertex coloring problem, where the vertices V are colored with k colors in such a way
that the number of edges with differently colored endpoints is maximized. Consider a fixed
k-page drawing of Kn, viewed as k circular drawings. Fix a set of k colors. Assign the edges
on page i of the drawing the ith color (1 ≤ i ≤ k). This defines a k-partition (or k-coloring)
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of the vertices Vn of Gn. Moreover, the number of edges in En with endpoints of the same
color equals the number of crossings in the drawing, by construction.

As a consequence of this lemma, one may calculate νk(Kn) for fixed (in practice, sufficiently
small) values of n by solving a maximum cut problem. This was done by Buchheim and
Zheng [4] for k = 2 and n ≤ 13, by solving the maximum cut problem with a branch-and-
bound algorithm. Using the BiqMac solver [28], De Klerk and Pasechnik [10] computed the
exact value of ν2(Kn) for n ≤ 18 and for n ∈ {20, 24}.

3.1 The Frieze-Jerrum max-k-cut bound

We follow the standard practice to use Rp×q (respectively, Cp×q) to denote the space of
p × q matrices over R (respectively, C). For A ∈ Rp×p, the notation A � 0 means that
A is symmetric positive semidefinite, whereas for A ∈ Cp×p, it means that A is Hermitian
positive semidefinite.

Let G be a graph with p vertices, and let L be its Laplacian matrix. Frieze and Jerrum
introduced the following semidefinite programming-based upper bound on max-k-cut(G):

FJ k(G) := max

{
k − 1

k
trace(LX)

∣∣∣∣ X � 0, Xii = 1 (1 ≤ i ≤ p), X ≥ −1

k − 1
J

}
, (9)

where J denotes the all-ones matrix of order p.

For k = 2 this bound coincides with the maximum-cut bound of Goemans and Williamson
[13].

The associated dual semidefinite program takes the form:

FJ k(G) = min
w∈Rp,S≥0

{
p∑
i=1

wi +
1

k − 1
trace(JS)

∣∣∣∣ Diag(w)− k − 1

2k
L− S � 0

}
, (10)

where Diag is the operator that maps a p-vector to a p× p diagonal matrix in the obvious
way.

3.2 The Frieze-Jerrum bound for Gn

Using the technique of symmetry reduction for semidefinite programming (see e.g. [12]),
one can simplify the dual problem (10) for the graphs Gn defined in Section 3, by using the
dihedral automorphism group of Gn. We state the final expression as the following lemma.
The proof is very similar to that of [10, Lemma 4], and we therefore only give an outline.

Lemma 3. Let n > 0 be an odd integer and d = bn/2c. One has

FJ k(Gn) = min
y∈Rd−1

n

d∑
i=2

yi +
n

k − 1
trace(JX(0))
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subject to

Diag
(
y − k − 1

2k
val

)
+ Λ(m) � 0 (0 ≤ m ≤ d), (11)

where

vali = i(i− 1) + 2(i− 1)(d− i), 2 ≤ i ≤ d,

Λ
(m)
ij =

k − 1

k

`ij+i∑
t=`ij+1

e
−2πmt

√
−1

n −X(0)
ij − 2

d∑
t=1

X
(t)
ij e

−2πmt
√
−1

n 2 ≤ i ≤ j ≤ d,

`ij =

{
d(i− j) mod n if i and j have the same parity

d(i− j)− j mod n otherwise

X(m) = (X(m))T ≥ 0, for all 0 ≤ m ≤ d.

Proof. Assume that w,S are optimal in (10) for G = Gn and denote the Laplacian matrix
of Gn by L. We now project the posititive semidefinite matrix

Diag(w)− k − 1

2k
L− S � 0

onto the centralizer ring of Aut(Gn), via the Reynolds projection operator (or group aver-
age), say RGn :

RGn(X) :=
1

|Aut(Gn)|
∑

P∈Aut(Gn)
P TXP (X ∈ R|Vn|×|Vn|),

where the matrices P are given by the permutation matrix representation of Aut(Gn). Note
that this projection preserves positive semidefiniteness as well as entrywise nonnegativity.
Moreover, as explained in Section 3, we may assume that RGn(X) is a block matrix con-
sisting of symmetric circulant blocks of order n.

Also note that the projection RGn(Diag(w)) simply averages the components of w over
the d − 1 orbits of Aut(Gn). Denoting the average of the w components in orbit i by yi
(2 ≤ i ≤ d), and Z = RGn(S) ≥ 0, we obtain

Diag(y ⊗ 1n)− k − 1

2k
L− Z � 0, (12)

since RGn(L) = L.

Thus we have obtained the reformulation

FJ k(Gn) = min
y∈Rd−1,0≤Z∈A

{
n

d∑
i=2

yi +
1

k − 1
trace(JZ) | s.t. (12)

}
,
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where A ⊂ R|Vn|×|Vn| denotes the centralizer ring of Aut(Gn), i.e. the matrix ∗-algebra
consisting of matrices of order |Vn| that are partitioned into symmetric circulant blocks of
order n.

We may now reduce this formulation further by using the discrete Fourier transform matrix
to simultaneously diagonalize the circulant blocks of Z and L.

To this end, let Q denote the (unitary) discrete Fourier transform matrix of order n. Con-
dition (12) is equivalent to

(Id−1 ⊗Q)

(
Diag(y ⊗ 1n)− k − 1

2k
L− Z

)
(Id−1 ⊗Q)∗ � 0. (13)

Since the unitary transform involving Q diagonalizes any circulant matrix (see e.g. [14]), the
matrix (Id−1⊗Q)L(Id−1⊗Q)∗ becomes a block matrix where each n×n block is diagonal,
with diagonal entries of block (i, j) given by the eigenvalues of the circulant matrix with
first row given by

{
[0 0T`ij − 1Ti−1 0

T
n−2(i−1)−1−2`ij − 1Ti−1 0

T
`ij

] if i 6= j

[vali − 1Ti−1 0
T
n−2(i−1)−1 − 1Ti−1] if i = j,

due to (7). Also, clearly one has

(Id−1 ⊗Q) (Diag(y ⊗ 1n)) (Id−1 ⊗Q)∗ = Diag(y ⊗ 1n).

Finally, the rows and columns of the left hand side of (13) may now be re-ordered to form
a block diagonal matrix with n diagonal blocks, each of size d − 1 × d − 1. Only d + 1
of these n blocks are distinct, and these correspond to the left-hand-side matrices in (11).
The matrices Λ(i) (0 ≤ i ≤ d) in (11) correspond to the distinct blocks obtained from the
reordering of

−(Id−1 ⊗Q)Z(Id−1 ⊗Q)∗

into block-diagonal form. In particular, we use X(m)
ij to denote element m of the first row

of the symmetric circulant block (i, j) of Z.

A few remarks on Lemma 3:

1. Note that we obtain a reduced semidefinite program with d = bn/2c linear matrix
inequalities involving matrices of order d − 1, as well as d + 1 nonnegative matrix
variables of order d− 1. This should be compared to the original formulation (10) to
obtain FJ k(Gn), that involved a linear matrix inequality of order n(d − 1), as well
as a nonnegative matrix variable of the same order.

2. Lemma 3 generalizes [10, Lemma 4] to include the case k > 2, but also refines it in the
sense that the dihedral symmetry of the graph Gn is fully exploited. Indeed in [10,
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Lemma 4], only the cyclic part of Aut(Gn) was used, leading to (complex) Hermitian
linear matrix inequalities, as opposed to the real symmetric linear matrix inequalities
of Lemma 3.

3. The computation of FJ k(Gn) is simpler in the case k = 2, since the bound then
becomes the Goemans-Williamson maximum cut bound. Indeed, in [10], values of
FJ 2(Gn) were reported for n close to 1, 000. For k > 2, one is limited to more
modest values: the largest value of n for which we will report computational results
will be n = 69; see Section 4. The difference in size of n that may be handled is
primarily due to the nonnegative matrix variables X(m) (0 ≤ m ≤ d). These variables
may be eliminated if k = 2, but not if k > 2.

3.3 A maximum satisfiability reformulation

It is well-known that the maximum k-cut problem may be reformulated as a maximum sat-
isfiability problem, and we will use this reformulation later on for computational purposes.

Consider a graph G = (V,E) and a set of k colors (used to color the vertices V ). We define
the following logical variables:

xji =

{
true if vertex i has color j
false otherwise.

Consider the clause:
¬xpi ∨ ¬x

p
j if (i, j) ∈ E (14)

for each color p = 1, . . . , k. For a given edge, and a given color, this clause is satisfied if and
only if the endpoints of the edge are not both colored using this color.

Moreover, each vertex should be assigned a color:

x1i ∨ . . . ∨ xki (i ∈ V ). (15)

In order to obtain the maximum k-cut in G, we therefore need values of the logical variables
that satisfy all the clauses (15), and as many of the clauses (14) as possible. This may
be done by solving a weighted maximum satisfiability problem, where the weights of the
satisfied clauses is maximized. In order to guarantee that the clauses (15) are all satisfied,
we assign these clauses weight k|E|, while the clauses (14) are assigned weight 1.

Thus the cardinality of a maximum k-cut in G = (V,E) coincides with the maximum weight
of satisfied clauses in a truth assignment for the weighted logical formula:

¬xpi ∨ ¬x
p
j ((i, j) ∈ E, 1 ≤ p ≤ k)

k|E|
(
x1i ∨ . . . ∨ xki

)
(i ∈ V ). (16)
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We may now apply this idea to obtain νk(Kn) as follows.

Lemma 4. Consider the set of weighted clauses (16) for the graph G = Gn = (Vn, En).
Then νk(Kn) is the minimum weight of the unsatisfied clauses, taken over all possible truth
assignments.

Proof. The proof follows directly from Lemma 2.

4 Numerical results

4.1 Exact computations

It is possible to compute νk(Kn) exactly using software for the weighted maximum satisfi-
ablity problem in Lemma 4. In Table 1 we show results obtained using the solver Akmaxsat
by Kügel [22].

k
n 7 8 9 10 11 12 13 14 15

3 2 5 9 20 34 51 83 121 165∗

4 0 0 3 7 12 18 34
5 0 0 0 0 4 9

Table 1: Exact values of νk(Kn) for small values of k and n, as computed using the max-
imum satisfiability solver Akmaxsat. ∗The value ν3(K15) = 165 was not determined using
Akmaxsat; see Proposition 12.

Each entry in Table 1 required at most 48 hours of computation on a laptop with 2.5GHz
dual core processor and 4GB RAM; the values that are missing from the table could not be
computed using Akmaxsat within this time.

We finally note that to our knowledge, prior to this work, the exact value of νk(Kn) was not
known for any n, k with 2 < k < dn/2e (we recall that Kn can be drawn without crossings
in dn/2e pages; thus νk(Kn) = 0 for k ≥ dn/2e and νk(Kn) > 0 for k < dn/2e).

Some preliminary computation work was done using Sage [30].

4.2 Asymptotic bounds

As an example of the numerical results presented here, letm = 69 and k = 10. We computed
FJ 10(G69) ≈ 856, 520, and using this value we get

ν10(K69)(
69
4

) ≥
(
69
4

)
−FJ 10(G69)

69
4

≈ 9.2313× 10−3.
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Recall that, for all n > m ≥ 4,
νk(Kn)(

n
4

) ≥ νk(Km)(
m
4

) .

Thus it follows that
ν10(Kn)(

n
4

) ≥ ν10(K69)
69
4

≥ 9.2313× 10−3 (n > 69).

For n > 69, this is an improvement on the best previously known lower bound (from (3)),
namely

ν10(Kn)(
n
4

) ≥ 2

(3(10)− 2)2
≈ 2.5510× 10−3.

In Table 2 we give a systematic list of such improved bounds. Computation was done on
a Dell Precision T7500 workstation with 92GB of RAM memory, using the semidefinite
programming solver SDPT3 [36, 37] under Matlab 7 together with the Matlab package
YALMIP [23].

k
m 39 49 59 69 Lower bounds from (3)

3 1.4266× 10−1 1.4827× 10−1 1.5194× 10−1 1.5452× 10−1 2.0000× 10−2

4 7.4205× 10−2 7.9473× 10−2 8.2837× 10−2 8.5127× 10−2 2.5210× 10−2

5 4.2208× 10−2 4.6916× 10−2 5.0019× 10−2 5.2141× 10−2 7.8125× 10−3

6 2.5728× 10−2 2.9633× 10−2 3.2258× 10−2 3.4151× 10−2 7.8125× 10−3

7 1.6260× 10−2 1.9605× 10−2 2.1895× 10−2 2.3524× 10−2 4.1322× 10−3

8 1.0544× 10−2 1.3390× 10−2 1.5356× 10−2 1.6812× 10−2 4.1322× 10−3

9 6.9603× 10−3 9.3377× 10−3 1.1062× 10−2 1.2333× 10−2 2.5510× 10−3

10 4.6086× 10−3 6.6189× 10−3 8.1148× 10−3 9.2314× 10−3 2.5510× 10−3

11 3.0659× 10−3 4.7436× 10−3 6.0329× 10−3 7.0285× 10−3 1.7301× 10−3

12 2.0007× 10−3 3.4078× 10−3 4.5294× 10−3 5.3894× 10−3 1.7301× 10−3

13 1.2987× 10−3 2.4613× 10−3 3.4307× 10−3 4.2025× 10−3 1.2500× 10−3

14 8.2096× 10−4 1.7736× 10−3 2.6077× 10−3 3.2930× 10−3 1.2500× 10−3

15 4.7807× 10−4 1.2613× 10−3 1.9718× 10−3 2.5870× 10−3 9.4518× 10−4

16 2.6556× 10−4 8.9554× 10−4 1.5141× 10−3 2.0348× 10−3 9.4518× 10−4

17 1.3191× 10−4 6.2938× 10−4 1.1514× 10−3 1.6023× 10−3 7.3964× 10−4

18 5.2726× 10−5 4.2802× 10−4 8.5199× 10−4 1.2562× 10−3 7.3964× 10−4

19 8.8699× 10−6 2.7320× 10−4 6.3294× 10−4 9.8258× 10−4 5.9453× 10−4

20 0 1.7127× 10−4 4.7985× 10−4 7.7482× 10−4 5.9453× 10−4

Table 2: Lower bounds for νk(Kn)

(n4)
≥ (m4 )−FJ k(Gm)

(m4 )
, for all n > m, m ∈ {39, 49, 59, 69} and

k = 3, 4, . . . , 20, and comparison with the previous best lower bounds on νk(Kn)

(n4)
(from (3)).

.

Note that the values in the column “m = 69” improve on the known lower bounds (3) in all
cases, for n > 69.
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Previous lower bound Improved lower bound Best upper bound Quotient between lower
k on limn→∞

νk(Kn)

(n4)
on limn→∞

νk(Kn)

(n4)
on limn→∞

νk(Kn)

(n4)
and upper bound

3 2.0000× 10−2 1.5452× 10−1 1.8518× 10−1 0.8344

4 2.5210× 10−2 8.5127× 10−2 1.0937× 10−1 0.7783

5 7.8125× 10−2 5.2141× 10−2 7.2000× 10−2 0.7241

6 7.8125× 10−3 3.4151× 10−2 5.0925× 10−2 0.6706

7 4.1322× 10−3 2.3524× 10−2 3.7900× 10−2 0.6706

8 4.1322× 10−3 1.6812× 10−2 2.9296× 10−2 0.5738

9 2.5510× 10−3 1.2333× 10−2 2.3319× 10−2 0.5287

10 2.5510× 10−3 9.2314× 10−3 1.9000× 10−2 0.4858

11 1.7301× 10−3 7.0285× 10−3 1.5777× 10−2 0.4454

12 1.7301× 10−3 5.3894× 10−3 1.3310× 10−2 0.4049

13 1.2500× 10−3 4.2025× 10−3 1.1379× 10−2 0.3693

14 1.2500× 10−3 3.2930× 10−3 9.8396× 10−3 0.3346

15 9.4518× 10−3 2.5870× 10−3 8.5925× 10−3 0.3010

16 9.4518× 10−4 2.0348× 10−3 7.5683× 10−3 0.2688

17 7.3964× 10−4 1.6023× 10−3 6.7168× 10−3 0.2385

18 7.3964× 10−4 1.2562× 10−3 6.0013× 10−3 0.2093

19 5.9453× 10−4 9.8258× 10−4 5.3943× 10−3 0.1821

20 5.9453× 10−4 7.7482× 10−4 4.8750× 10−3 0.1589

Table 3: Summary of lower and upper bounds for limn→∞ νk(Kn)/
(
n
4

)
. The second column gives

the previously best lower bounds, as given in (4), (5), and (6). The third column presents the
lower bounds we obtained by computing FJ k(G69) for k = 3, 4, . . . , 20 (this is the fifth column of
Table 2). In the fourth column we show the best upper bounds known, given by (2) (alternatively,
using Observation 10 and that νk(Kn) ≤ Zk(n)). Finally, in the fifth column we show the ratio
between the values given in the third and fourth columns.

In Table 3 we summarize the best lower and upper bounds known for limn→∞ νk(Kn)/
(
n
4

)
.

5 Drawing Kn in k pages: conjectures and results

In this section we calculate the number Zk(n) of crossings that result by drawing Kn on
k pages using the construction by Damiani et al. [8] (we recall that we call this the DDS
construction), and a generating function Gk(z) :=

∑
n≥0 Zk(n)zn for it. This construction is

a natural generalization of the construction by Blažek and Koman [3] (who fully described it
for 2 pages, and briefly mentioned that it could be generalized to k > 2 pages), and a slight
refinement of the construction by Shahrokhi et al. [32]. The description of the construction
and the calculation of Zk(n) and Gk(z) are in Section 5.1.

We calculate the exact value of Zk(n) for two reasons. First, the value Zk(n) was determined
in neither [3] nor [8]; since no better (crossing-wise) construction to draw Kn in k pages
is known, this is a calculation worth doing. Second, for all values of k and n for which
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we now (that is, with the results reported in this paper) know the exact value of νk(Kn),
we have νk(Kn) = Zk(n). These confirmations, as well as an additional feature that we
shall explain below (namely Proposition 8, from which we will compute ν3(K15)), lend
credibility to the conjecture νk(Kn) = Zk(n), which we formally put forward in Section 5.2.
As we shall see, the value of Zk(n) depends on nmod k, and for each fixed k and each fixed
q ∈ {0, 1, . . . , k − 1}, there is a degree 4 polynomial Gq,k(n) such that Zk(n) = Gq,k(n) for
all n such that nmod k = q. In Section 5.3 we explicitly give this polynomial for the case
nmod k = 0. We finally present, in Section 5.4, a slightly more detailed discussion and
further results for the case k = 3.

5.1 The DDS construction: an upper bound Zk(n) for the k-page
crossing number of Kn

The DDS construction was described in [8] in terms of the adjacency matrix. We have
found it both more lively and more convenient (for our calculations) to follow the more
geometrical viewpoint of Shahrokhi et al. to describe this construction, and this is the
approach we follow below.

We draw Kn in k pages using the circular model. Label the vertices 0, 1, 2, . . . , n− 1 in the
clockwise order in which they occur in the boundary of the circle. For i = 0, 1, . . . , n − 1,
let Mi be the set of edges whose endpoints have sum i (modulo n). Thus, Mi is a matching
for each i ∈ {0, 1, . . . , n− 1}. We note that each edge belongs to exactly one matching Mi.
For s, t ∈ {0, 1, . . . , n− 1}, s < t, letMs,t := Ms ∪Ms+1 ∪ · · ·Mt. Loosely speaking,Ms,t

consists of the edges of t− s+ 1 “consecutive” matchings. In Figure 2 we illustrate the sets
M0,3 (left),M4,6 (center), andM7,9 (right), for the case n = 10.

0 1

2

3

4

56

7

8

9

0 1

2

3

4

56

7

8

9

0 1

2

3

4

56

7

8

9

Figure 2: To draw K10 in 3 pages, we place the edges in M0,3 = M0 ∪M1 ∪M2 ∪M3

in page 0 (left), the edges in M4,6 = M4 ∪M5 ∪M6 in page 1 (center), and the edges in
M7,9 = M7 ∪M8 ∪M9 in page 2 (right).

Let p := bn/kc and q := n mod k (thus n = pk+ q). The DDS construction consists simply
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on distributing the edges of Kn into k pages 0, 1, . . . , k − 1 as follows:

1. for 0 ≤ ` < q, place in page ` the edges inM`(p+1),`(p+1)+p; and

2. for q ≤ ` < k, place in page ` the edges inM`p+q,`p+q+(p−1).

Thus, if 0 ≤ ` < q, then page ` contains the edges of p + 1 matchings, and if q ≤ ` < k,
then page ` contains the edges of p matchings. Note that if k divides n (that is, q = 0),
then there is no ` such that 0 ≤ ` < q, and so each page contains the edges of p matchings.
In Figure 2 we illustrate the DDS construction for the case k = 3, n = 10.

We shall give Zk(n) in terms of a function F that we now define. First, let

f(r) :=
rn

2
− r2

2
− n

2
+

1

2
,

and then let

F (r, n) :=
r−1∑
`=0

(r − `)f(`) = − r
4

24
+
nr3

12
− nr2

4
+

7r2

24
+
nr

6
− r

4
. (17)

Proposition 5. The number of crossings that result from drawing Kn in k ≥ 1 pages using
the DDS construction is

Zk(n) := (nmod k) · F
(⌊

n

k

⌋
+ 1, n

)
+
(
k − (nmod k)

)
· F
(⌊

n

k

⌋
, n

)
.

Thus Kn can be drawn in k pages with Zk(n) crossings, and so

νk(Kn) ≤ Zk(n).

Note that Zk(n) is a quasi-polynomial of period k in n (cf. e.g. R. Stanley [35, Sect. 4.4]).
This implies that its generating function Gk(z) is rational, i.e. the ratio of two polynomials
in z, with denominator having only k-th roots of unity as roots. We will calculate the
generating function Gk(z) for Zk(n) below (cf. Proposition 6).

Proof of Proposition 5. Suppose first that k = 1. All the edges are then drawn in the same
page. Thus every four points define a crossing, and so we have

(
n
4

)
crossings in total. Since

Z1(n) = F (n, n) = −n
4

24
+
n4

12
− n3

4
+

7n2

24
+
n2

6
− n

4
=

(
n

4

)
,

it follows that the statement is true for k = 1.

Thus we suppose for the rest of the proof that k ≥ 2.
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To calculate the number of crossings in each page, we first need to calculate the crossings
between edges in distinct matchings, when these matchings are placed in the same page.
If Mi and Mj are in the same page, then the number cr(Mi,Mj) of crossings involving an
edge in Mi and an edge in Mj depends on the parity of i, j, and n, as well as on j − i. It is
an easy exercise to show that for all i, j such that 0 ≤ i < j ≤ n− 1 and j − i ≤ n/2,

cr(Mi,Mj) =


f(j − i), if n is odd;

f(j − i)− 1
2 , if i and j are odd and n is even;

f(j − i), if i and j have distinct parity and n is even;
f(j − i) + 1

2 , if i, j, and n are even.

(18)

With this information at hand, we may proceed to calculate the number cr(Ms,t) of crossings
with both edges in Ms,t, when all the edges in Ms,t are in the same page. Formally, for
s, t such that 0 ≤ s < t ≤ n − 1, let cr(Ms,t) :=

∑
s≤i<j≤t cr(Mi,Mj). Our aim (as this is

all we shall need) is to calculate cr(Ms,t) for values of s and t such that 0 ≤ s < t ≤ n− 1
and t− s ≤ n/2.

Note that there are two types of collectionsMs,t that appear in the construction: those of
the formM`(p+1),`(p+1)+p for ` ∈ {0, 1, . . . , q − 1} (these contain the edges in p matchings,
and we call them large collections), and those of the formM`p+q,`p+q+(p−1) for ` ∈ {q, q +
1, . . . , k−1} (these contain the edges in p−1 matchings, and we call them small collections).
Thus there are q large collections and k − q small collections.

We observe that it follows immediately from the construction that

Zk(n) =
∑

Ms,t large

cr(Ms,t) +
∑

Ms,t small

cr(Ms,t), (19)

where the first summation is over all collections Ms,t in the construction that are large,
and the second summation is over all collectionsMs,t in the construction that are small.

We will analyze separately the two possibilities for the parity of n.

Case 1. n is odd

Let n be odd, and let s, t satisfy 0 ≤ s < t ≤ n− 1 and t− s ≤ n/2.

Then

cr(Ms,t) =
∑

s≤i<j≤t
cr(Mi,Mj) =

∑
s≤i<j≤t

f(j − i) =
∑

1≤`≤t−s
((t− s+ 1)− `)f(`)

=
∑

1≤`≤t−s
((t− s+ 1)− `)

(
`n

2
− `2

2
− n

2
+

1

2

)
= F (t− s+ 1, n).
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Thus it follows that ifMs,t is a large collection, then cr(Ms,t) = F (t−s+1, n) = F (p+1, n),
and if it is small, then cr(Ms,t) = F (t−s+1, n) = F (p, n). Using this and (19), and recalling
that there are q = nmod k large collections and k−q small collections, and that p = bn/kc,
we obtain

Zk(n) = q · F (p+ 1, n) + (k − q) · F (p, n)

= (nmod k) · F
(⌊

n

k

⌋
+ 1, n

)
+ (k − (nmod k)) · F

(⌊
n

k

⌋
, n

)
.

Case 2. n is even

Let n be even, and let s, t satisfy 0 ≤ s < t ≤ n − 1 and t − s ≤ n/2. For this case (n
even), the determination of cr(Ms,t) is more involved, since it depends both on the parity
of t − s and on the parity of s. for i < r; and Ri = {Rim+r, Rim+r+1, . . . , R(i+1)m+(r−1)}
for r ≤ i < k.

To simplify the expressions it is convenient to define

oos,t :=
∣∣{(i, j) | s ≤ i < j ≤ t, i odd, j odd}

∣∣,
oes,t :=

∣∣{(i, j) | s ≤ i < j ≤ t, i odd, j even}
∣∣,

eos,t :=
∣∣{(i, j) | s ≤ i < j ≤ t, i even, j odd}

∣∣,
ees,t :=

∣∣{(i, j) | s ≤ i < j ≤ t, i even, j even}
∣∣.

An elementary argument shows that

ees,t − oos,t =


t−s
4 , if both s and t are even;

0, if s and t have distinct parity; and
− t−s

4 , if both s and t are odd.
(20)

We have

cr(Ms,t) =
∑

s≤i<j≤t
cr(Mi,Mj) =

∑
s≤i<j≤t
i even

cr(Mi,Mj) +
∑

s≤i<j≤t
i odd

cr(Mi,Mj)

=
∑

s≤i<j≤t
i even,j even

cr(Mi,Mj) +
∑

s≤i<j≤t
i even,j odd

cr(Mi,Mj)

+
∑

s≤i<j≤t
i odd,j even

cr(Mi,Mj) +
∑

s≤i<j≤t
i odd,j odd

cr(Mi,Mj)

=
∑

s≤i<j≤t
i even,j even

(
f(j − i) +

1

2

)
+

∑
s≤i<j≤t

i even,j odd

f(j − i)
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+
∑

s≤i<j≤t
i odd,j even

f(j − i) +
∑

s≤i<j≤t
i odd,j odd

(
f(j − i)− 1

2

)
=

∑
s≤i<j≤t

f(j − i) +
∑

s≤i<j≤t
i even,j even

1

2
−

∑
s≤i<j≤t
i odd,j odd

1

2

=
∑

s≤i<j≤t
f(j − i) +

1

2
ees,t −

1

2
oos,t

=
∑

1≤`≤t−s
((t− s+ 1)− `)f(`) +

1

2
ees,t −

1

2
oos,t

= F (t− s+ 1, n) +
1

2
ees,t −

1

2
oos,t.

Using this last expression and (20), it follows that

cr(Ms,t) =


F (t− s+ 1, n) + t−s

4 , if s and t are even;

F (t− s+ 1, n), if s and t have distinct parity;

F (t− s+ 1, n)− t−s
4 , if s and t are odd.

(21)

Let us say that a collection Ms,t is even-odd if s is even and t is odd; it is even-even if s
and t are even; it is odd-even if s is odd and t is even; and it is odd-odd if s and t are odd.

We now proceed to compute Zk(n), analyzing separately the cases when p is odd and when
p is even.

Suppose first that p is odd. It is readily verified that in this case (i) each of the q large
collections is either even-odd or odd-even; and (ii) out of the k−q small collections, (k−q)/2
are even-even and (k − q)/2 are odd-odd. Recalling that if a collection Ms,t is large then
t− s = p and that if it is small then t− s = p− 1, and using (19) and (21), it follows that

Zk(n) = q · F (p+ 1, n) +
(k − q)

2
·
(
F (p, n) +

(p− 1)

4

)
+

(k − q)
2

·
(
F (p, n)− (p− 1)

4

)
= q · F (p+ 1, n) + (k − q) · F (p, n)

= (nmod k) · F
(⌊

n

k

⌋
+ 1, n

)
+ (k − (nmod k)) · F

(⌊
n

k

⌋
, n

)
.

Suppose finally that p is even. It is easily checked that in this case (i) out of the q large
collections, q/2 are even-even and q/2 are odd-odd; and (ii) each of the k−q small collections
is either even-odd or odd-even. Recalling again that if a collectionMs,t is large then t−s = p
and that if it is small then t− s = p− 1, and using (19) and (21), it follows that

Zk(n) =
q

2
·
(
F (p+ 1, n) +

p

4

)
+
q

2
·
(
F (p+ 1, n)− p

4

)
+ (k − q) · F (p, n)
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= q · F (p+ 1, n) + (k − q) · F (p, n)

= (nmod k) · F
(⌊

n

k

⌋
+ 1, n

)
+ (k − (nmod k)) · F

(⌊
n

k

⌋
, n

)
.

Proposition 6. For a fixed k, the generating function Gk(z) for Zk(n) is

Gk(z) :=
∑
n≥0

Zk(n)zn = z2k+1 (k − 2)(1− z) + 1− zk+1

(1− z)3(1− zk)3
.

As a first application of this formula, one sees at once that Zk(n) = 0 for n ≤ 2k, as the
first nonzero coefficient in the expansion of Gk into powers of z comes up for the 2k + 1-th
power.

Sketch of proof of Proposition 6. Note that

Gk(z) =
∑
s≥0

zsk
k−1∑
ρ=0

Zk(sk + ρ)zρ, (22)

and in this form one does not have to worry about n mod k and bnk c, as Zk(sk + ρ) is a
polynomial in s and ρ. One computes the inner sum in (22) to see that it is equal to an
explicit degree 4 polynomial in s divided by (z − 1)3, namely,

24(z − 1)3

s(s− 1)

k−1∑
ρ=0

Zk(sk + ρ)zρ = (2k2s2 + 2k2 − 13ks− 12k + 4s+ 16− ks2 + 4k2s)z2+k

+ (−4k2s2 − 8k2s+ 2ks2 − 4k2 + 18ks− 4s− 4 + 16k)z1+k

+ (2ks2 + 4ks− s2 + 2k − 5s− 4)kzk + (4k2s− 2k2s2 + 9ks+ ks2 − 10k − 4s− 16)z2

+ (4k2s2 − 8k2s− 2ks2 − 10ks+ 16k + 4s+ 4)z − 2k2s2 + 4k2s+ ks2 + ks− 6k.

It remains to observe that the outer sum in (22) becomes a finite sum of terms of the
form C

∑
s≥0 s

`zs, with C independent of s. A direct computation then gives the claimed
formula.

5.2 A conjecture for the k-page crossing number of Kn

The DDS construction described in Section 5.1 draws Kn in k pages with Zk(n) crossings.
We conjecture the optimality of this construction:

Conjecture 7. For all positive integers k and n,

νk(Kn) = Zk(n).
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The naturality and aesthetical appeal of the construction, plus the fact that no construction
to draw Kn in k pages with fewer crossings is known, seem good enough reasons to put
forward this conjecture. Still, there is further evidence supporting the conjecture:

• The statement is true for k ≤ 2. For k = 1 this is readily checked, and for k = 2 it
follows since it has been recently verified that ν2(Kn) = Z2(n) [1].

• For all k, n for which we now know the exact value of νk(Kn) (Table 1, plus all k, n
such that k > dn/2e, for which it is known that νk(Kn) = 0), we have νk(Kn) = Zk(n).

There is yet another argument that supports Conjecture 7, at a somewhat (but not com-
pletely; see Section 5.4) more speculative level. Recall that Z2(n) := 1

4b
n
2 cb

n−1
2 cb

n−2
2 cb

n−3
2 c.

A well-known counting argument shows that for every positive integer r, ν2(K2r−1) =
Z2(2r − 1) implies ν2(K2r) = Z2(2r). This “odd implies even” phenomenon is used, for
instance, to determine that the (usual) crossing number of K12 is Z2(12): this follows at
once since the crossing number of K11 is Z2(11) [27]. An appealing feature of Conjecture 11
is that it implies a similar phenomenon for every k:

Proposition 8. For every positive integers k and r, one has krZk(kr−1) = (kr−4)Zk(kr),
and

νk(Kkr−1) = Zk(kr − 1) =⇒ νk(Kkr) = Zk(kr).

Proof. The first claim follows from

Zk(kr − 1) = (k − 1)F (r, kr − 1) + F (r − 1, kr − 1) =
kr − 4

r
F (r, kr) =

kr − 4

kr
Zk(kr),

after a long but routine manipulation.

Since νk(Kkr) ≤ Zk(kr) (cf. Proposition 5), we only need to prove the reverse inequality
νk(Kkr) ≥ Zk(kr). Suppose that νk(Kkr−1) = Zk(kr− 1). Consider a k-page drawing D of
Kkr with νk(Kkr) crossings. This drawing contains kr drawings of Kkr−1, each of which has
at least νk(Kkr−1) = Zk(kr − 1) crossings. It is easy to see that each crossing gets counted
exactly kr − 4 times, and so

νk(Kkr) ≥
krZk(kr − 1)

kr − 4
= kF (r, kr) = Zk(kr).

In Section 5.4 we will use Proposition 8 to prove that ν3(K15) = 165 (cf. Proposition 12).

5.3 Explicit estimates for Zk(n)

It is clear that for each fixed k and q ∈ {0, 1, . . . , k − 1}, there exists a polynomial Gk,q(n)
such that Gk,q(n) = Zk(n) for all n such that nmod k = q. For the case q = 0, a routine
manipulation yields the following.
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Observation 9. If k divides n, then

Zk(n) =

((
1

12k2

)(
1− 1

2k

))
n4 +

(
− 1

4k

)
n3 +

(
7

24k
+

1

6

)
n2 +

(
−1

4

)
n.

We recall (see Section 2.5) that νk(Kn)/
(
n
4

)
≥ νk(Km)/

(
m
4

)
, whenever n > m ≥ 4. Using

this and Observation 9, we obtain the following asymptotic general estimate for Zk(n):

Observation 10. For each positive integer k,

Zk(n) =

((
1

12k2

)(
1− 1

2k

))
n4 +O(n3).

We note that the upper bound (2), given by Shahrokhi et al. [32], is in line with this last
observation (this was expected, since the DDS construction and the construction in [32]
agree whenever k divides n).

5.4 Drawing Kn in 3 pages: further results

A long but straightforward manipulation shows that

Z3(n) =


(n−6)(n−3)n(5n−9)

648 , if n ≡ 0 (mod 3);

(n−4)(n−1)(5n2−29n+30)
648 , if n ≡ 1 (mod 3);

(n−2)(n−3)(n−5)(5n−4)
648 , if n ≡ 2 (mod 3).

(23)

We remark that this coincides with the number of crossings given by Blažek and Koman
in [3], where they briefly mentioned that their construction for 2 pages could be generalized
to k > 2 pages, and reported the expression in (23) for the number of crossings obtained by
drawing Kn in 3 pages (no further details were given).

As we have already observed, ν3(Kn) = Z3(n) for all 8 values of n ≥ 7 for which we have
calculated ν3(Kn) (Table 1). This evidence gives special credence to the case k = 3 of
Conjecture 7:

Conjecture 11 (3-page crossing number of Kn). For every positive integer n,

ν3(Kn) = Z3(n).

As an additional support for this conjecture, we note that our calculations reported in Sec-
tion 4 confirm that ν3(Kn) is reasonably close to Z3(n), at least asymptotically. Indeed, from
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Table 3 we have limn→∞ ν3(Kn)/
(
n
4

)
≥ 0.15452. This implies that limn→∞ ν3(Kn)/n4 ≥

0.006438. Now from (23) we have limn→∞ Z3(n)/n4 = 5/648. These results yield

lim
n→∞

ν3(Kn)

Z3(n)
>

0.006438

5/648
≈ 0.8344.

We finally show that, as hinted above, Proposition 8 (the generalization to k > 2 pages of
the “odd implies even” phenomenon for k = 2) is not only a speculative curiosity: we use
this statement to determine the exact value of ν3(K15):

Proposition 12. ν3(K15) = 165.

Proof. It follows from Proposition 8, using (from our calculation, reported in Table 1) that
ν3(K14) = Z3(14).

6 Concluding remarks and open questions

De Klerk, Pasechnik and Warners [9] proved the lower bounds αk on the ratio max-k-cut(G)
FJ (G)

given in Table 4. These lower bounds may be used to obtain upper bounds on νk(Kn)
(3 ≤ k ≤ 10), namely,

νk(Kn) ≤ |En| − αkFJ (Gn),

but these bounds seem weaker than the upper bounds given by the best known drawings,
based on computations for 3 ≤ k ≤ 10 and n ≤ 69.

k: 3 4 5 6 7 8 9 10
αk 0.836008 0.857487 0.876610 0.891543 0.903259 0.912664 0.920367 0.926788

Table 4: MAX-k-CUT approximation guarantees for 3 ≤ k ≤ 10

Limits of the type (6) are of independent interest if one replaces the k-page crossing number
by the rectilinear crossing number. (The rectilinear crossing number of a graph is the
minimum number of edge crossings in a drawing of the graph in the plane if all edges are
drawn by straight lines.) Indeed, for the rectilinear crossing number cr(Kn), the limit

lim
n→∞

cr(Kn)(
n
4

)
is related to the Sylvester four point problem in geometric probability as follows. Consider
an open set R ∈ R2 with finite area. Denote by q(R) the probability that the convex hull
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of four points in R, drawn uniformly at random, is a convex quadrilateral (as opposed to a
line or triangle). Scheinerman and Wilf [31] showed that

inf
R
q(R) = lim

n→∞

cr(Kn)(
n
4

) ,

where the infimum is taken over all open sets R in the plane with finite area.

It remains an interesting question whether these limits also have alternative interpretations
if one replaces the rectilinear crossing number by other notions of crossing numbers, like
the k-page crossing number.

In the second part of this work we will investigate the k-page crossing numbers of certain
complete bipartite graphs. We will once again use optimization techniques, but the de-
tails are somewhat different from those presented here, and are therefore best presented
seperately.
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