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Abstract4

We recall that a book with k pages consists of a straight line (the spine) and k half-5

planes (the pages), such that the boundary of each page is the spine. If a graph is drawn6

on a book with k pages in such a way that the vertices lie on the spine, and each edge7

is contained in a page, the result is a k-page book drawing (or simply a k-page drawing).8

The pagenumber of a graph G is the minimum k such that G admits a k-page embedding9

(that is, a k-page drawing with no edge crossings). The k-page crossing number νk(G)10

of G is the minimum number of crossings in a k-page drawing of G. We investigate the11

pagenumbers and k-page crossing numbers of complete bipartite graphs. We find the12

exact pagenumbers of several complete bipartite graphs, and use these pagenumbers13

to find the exact k-page crossing number of Kk+1,n for k ∈ {3, 4, 5, 6}. We also prove14

the general asymptotic estimate limk→∞ limn→∞ νk(Kk+1,n)/(2n2/k2) = 1. Finally,15

we give general upper bounds for νk(Km,n), and relate these bounds to the k-planar16

crossing numbers of Km,n and Kn.17
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Zarankiewicz conjecture19
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1 Introduction21

In [5], Chung, Leighton, and Rosenberg proposed the model of embedding graphs in books.22

We recall that a book consists of a line (the spine) and k ≥ 1 half-planes (the pages), such23

that the boundary of each page is the spine. In a book embedding, each edge is drawn on a24

single page, and no edge crossings are allowed. The pagenumber (or book thickness) p(G) of25
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a graph G is the minimum k such that G can be embedded in a k-page book [2, 5, 11, 13].26

Not surprisingly, determining the pagenumber of an arbitrary graph is NP-Complete [5].27

In a book drawing (or k-page drawing, if the book has k pages), each edge is drawn on a28

single page, but edge crossings are allowed. The k-page crossing number νk(G) of a graph29

G is the minimum number of crossings in a k-page drawing of G.30

Instead of using a straight line as the spine and halfplanes as pages, it is sometimes con-31

venient to visualize a k-page drawing using the equivalent circular model. In this model,32

we view a k-page drawing of a graph G = (V,E) as a set of k circular drawings of graphs33

G(i) = (V,E(i)) (i = 1, . . . , k), where the edge sets E(i) form a k-partition of E, and such34

that the vertices of G are arranged identically in the k circular drawings. In other words,35

we assign each edge in E to exactly one of the k circular drawings. In Figure 1 we illustrate36

a 3-page drawing of K4,5 with 1 crossing.37

Figure 1: A 3-page drawing of K4,5 with 1 crossing. Vertices in the chromatic class of size 4 are
black, and vertices in the chromatic class of size 5 are white. We have proved (Theorem 3) that the
pagenumber of K4,5 is 4, and so it follows that ν3(K4,5) ≥ 1. Now this 1-crossing drawing implies
that ν3(K4,5) ≤ 1, and so it follows that ν3(K4,5) = 1.

Very little is known about the pagenumbers or k-page crossing numbers of interesting fam-38

ilies of graphs. Even computing the pagenumber of planar graphs is a nontrivial task;39

Yannakakis proved [24] that four pages always suffice, and sometimes are required, to em-40

bed a planar graph. It is a standard exercise to show that the pagenumber p(Kn) of the41

complete graph Kn is dn/2e. Much less is known about the k-page crossing numbers of42

complete graphs. A thorough treatment of k-page crossing numbers (including estimates43

for νk(Kn)), with general lower and upper bounds, was offered by Shahrokhi et al. [21].44

In [9], de Klerk et al. recently used a variety of techniques to compute several exact k-page45

crossing numbers of complete graphs, as well as to give some asymptotic estimates.46

Bernhart and Kainen [2] were the first to investigate the pagenumbers of complete bipartite47

graphs, giving lower and upper bounds for p(Km,n). The upper bounds in [2] were then48

improved by Muder, Weaver, and West [18]. These upper bounds were further improved by49

Enomoto, Nakamigawa, and Ota [12], who derived the best estimates known to date. Much50

less is known about the k-page crossing number of Km,n.51
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1.1 1-page drawings of Km,n52

Although calculating the 1-page crossing number of the complete graph Kn is trivial, this53

is by no means the case for the complete bipartite graph Km,n. Still, our knowledge about54

ν1(Km,n) is almost completely satisfactory, due to the following result by Riskin [20].55

Theorem 1 (Riskin [20]). If m
∣∣n then ν1(Km,n) = 1

12n(m − 1)(2mn − 3m − n), and this56

minimum value is attained when the m vertices are distributed evenly amongst the n vertices.57

1.2 2-page drawings of Km,n58

Zarankiewicz’s Conjecture states that the (usual) crossing number cr(Km,n) of Km,n equals59

Z(m,n) := bm2 cb
m−1
2 cb

n
2 cb

n−1
2 c, for all positive integers m,n. Zarankiewicz [25] found60

drawings of Km,n with exactly Z(m,n) crossings, thus proving cr(Km,n) ≤ Z(m,n). These61

drawings can be easily adapted to 2-page drawings (without increasing the number of cross-62

ings), and so it follows that ν2(Km,n) ≤ Z(m,n).63

Since cr(G) ≤ ν2(G) for any G, Zarankiewicz’s Conjecture implies the (in principle, weaker)64

conjecture ν2(Km,n) = Z(m,n). Zarankiewicz’s Conjecture has been verified (for cr(Km,n),65

and thus also for ν2(Km,n)) for min{m,n} ≤ 6 [14], and for the special cases (m,n) ∈66

{(7, 7), (7, 8), (7, 9), (7, 10), (8, 8), (8, 9), (8, 10)} [23]. Recently, de Klerk and Pasechnik [8]67

used semidefinite programming techniques to prove that limn→∞ ν2(K7,n)/Z(7, n) = 1.68

1.3 k-page drawings of Km,n for k ≥ 3: lower bounds69

As far as we know, neither exact results nor estimates for νk(Km,n) have been reported in70

the literature, for any k ≥ 3. Indeed, all the nontrivial results known about νk(Km,n) are71

those that can be indirectly derived from the thorough investigation of Shahrokhi, Sýkora,72

Székely, and Vrt’o on multiplanar crossing numbers [22].73

We recall that a multiplanar drawing is similar to a book drawing, but involves unrestricted74

planar drawings. Formally, let G = (V,E) be a graph. A k-planar drawing of G is a set of75

k planar drawings of graphs G(i) = (V,E(i)) (i = 1, . . . , k), where the edge sets E(i) form a76

k-partition of E. Thus, to obtain the k-planar drawing, we take the drawings of the graphs77

G(i), and (topologically) identify the k copies of each vertex. The k-planar crossing number78

crk(G) of G is the minimum number of crossings in a k-planar drawing of G. A multiplanar79

drawing is a k-planar drawing for some positive integer k.80

It is very easy to see that νk(G) ≥ crdk/2e(G), for every graph G and every nonnegative81

integer k. Thus lower bounds of multiplanar (more specifically, r-planar) crossing numbers82

immediately imply lower bounds of book (more specifically, 2r-page) crossing numbers. A83

strong result by Shahrokhi, Sýkora, Székely, and Vrt’o is the exact determination of the84
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r-planar crossing number of K2r+1,n ([22, Theorem 3]:85

crr(K2r+1,n) =

⌊
n

2r(2r − 1)

⌋(
n− r(2r − 1)

(⌊
n

2r(2r − 1)

⌋
− 1

))
.

Using this result and our previous observation νk(G) ≥ crdk/2e(G), one obtains:86

Theorem 2 (Follows from [22, Theorem 3]). For every even integer k and every integer n,87

νk(Kk+1,n) ≥
⌊

n

k(k − 1)

⌋(
n−k

2

(
k−1

)(⌊
n

k(k − 1)

⌋
−1

))
. �

Regarding general lower bounds, using the following inequality from [22, Theorem 5]88

crr(Km,n) ≥ 1

3(3r − 1)2

(
m

2

)(
n

2

)
, for m ≥ 6r − 1 and n ≥ max{6r − 1, 2r2},

and the observation νk(Km,n) ≥ crdk/2e(Km,n), one obtains89

νk(Km,n) ≥ 1

3(3dk2e − 1)2

(
m

2

)(
n

2

)
, for m ≥ 6dk/2e−1 and n ≥ max{6dk/2e−1, 2dk/2e2}.

(1)

We finally remark that slightly better bounds can be obtained in the case k = 4, using the90

bounds for biplanar crossing numbers by Czabarka, Sýkora, Székely, and Vrt’o [6, 7].91

1.4 k-page drawings of Km,n for k ≥ 3: upper bounds92

We found no references involving upper bounds of νk(Km,n) in the literature. We note that93

since not every dk/2e-planar drawing can be adapted to a k-page drawing, upper bounds94

for dk/2e-planar crossing numbers do not yield upper bounds for k-page crossing numbers,95

and so the results on (k/2)-planar drawings of Km,n in [22] cannot be used to derive upper96

bounds for νk(Km,n).97

Below (cf. Theorem 6) we shall give general upper bounds for νk(Km,n). We derive these98

bounds using a natural construction, described in Section 7.99

2 Main results100

In this section we state the main new results in this paper, and briefly discuss the strategies101

of their proofs.102
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2.1 Exact pagenumbers103

We have calculated the exact pagenumbers of several complete bipartite graphs:104

Theorem 3. For each k ∈ {2, 3, 4, 5, 6}, the pagenumber of Kk+1,b(k+1)2/4c+1 is k + 1.105

The proof of this statement is computer-aided, and is based on the formulation of νk(Km,n)106

as a vertex coloring problem on an associated graph. This is presented in Section 3.107

By the clever construction by Enomoto, Nakamigawa, and Ota [12], Kk+1,b(k+1)2/4c can be108

embedded into k pages, and so Theorem 3 implies (for k ∈ {2, 3, 4, 5, 6}) that b (k+1)2

4 c+1 is109

the smallest value of n such that Kk+1,n does not embed in k pages. The case k = 2 follows110

immediately from the nonplanarity of K3,3; we have included this value in the statement111

for completeness.112

2.2 The k-page crossing number of Kk+1, n: exact results and bounds113

Independently of the intrinsic value of learning some exact pagenumbers, the importance of114

Theorem 3 is that we need these results in order to establish the following general result.115

We emphasize that we follow the convention that
(
a
b

)
= 0 whenever a < b.116

Theorem 4. Let k ∈ {2, 3, 4, 5, 6}, and let n be any positive integer. Define ` :=
⌊ (k+1)2

4

⌋
117

and q := nmod
⌊ (k+1)2

4

⌋
. Then118

νk(Kk+1,n) = q ·
(n−q

` + 1

2

)
+
(
`− q

)
·
(n−q

`

2

)
.

In this statement we have included the case k = 2 again for completeness, as it asserts the119

well-known result that the 2-page crossing number of K3,n equals Z(3, n) =
⌊
n
2

⌋⌊
n−1
2

⌋
.120

Although our techniques do not yield the exact value of νk(Kk+1,n) for other values of k,121

they give lower and upper bounds that imply sharp asymptotic estimates:122

Theorem 5. Let k, n be positive integers. Then123

2n2
(

1

k2 + 2000k7/4

)
− n < νk(Kk+1,n) ≤ 2n2

k2
+
n

2
.

Thus124

lim
k→∞

(
lim
n→∞

νk(Kk+1,n)

2n2/k2

)
= 1.

To grasp how this result relates to the bound in Theorem 2, let us note that the correspond-125

ing estimate (lower bound) from Theorem 2 is limk→∞
(
limn→∞ νk(Kk+1,n)/(2n2/k2)

)
≥126

1/4. Theorem 5 gives the exact asymptotic value of this quotient.127
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In a nutshell, the strategy to prove the lower bounds in Theorems 4 and 5 is to establish128

lower bounds for νk(Kk+1,n) obtained under the assumption that νk(Kk+1,s+1) cannot be129

k-page embedded (for some integer s := s(k)). These results put the burden of the proof of130

the lower bounds in Theorems 4 and 5 in finding good estimates of s(k). For k = 3, 4, 5, 6131

(Theorem 4), these come from Theorem 3, whereas for k > 6 (Theorem 5) these are obtained132

from [12, Theorem 5], which gives general estimates for such integers s(k). The lower bounds133

for νk(Kk+1,n) needed for both Theorems 4 and 5 are established in Section 4.134

In Section 5 we prove the upper bounds on νk(Kk+1,n) claimed in Theorems 4 and 5. To135

obtain these bounds, first we find a particular kind of k-page embeddings of Kk+1,b(k+1)2/4c,136

which we call balanced embeddings. These embeddings are inspired by, although not equal137

to, the embeddings described by Enomoto et al. in [12]. We finally use these embeddings138

to construct drawings of νk(Kk+1,n) with the required number of crossings.139

Using the lower and upper bounds derived in Sections 4 and 5, respectively, Theorems 4140

and 5 follow easily; their proofs are given in Section 6.141

2.3 General upper bounds for νk(Km,n)142

As we mentioned above, we found no general upper bounds for νk(Km,n) in the literature.143

We came across a rather natural way of drawing Km,n in k pages, that yields the general144

upper bound given in the following statement.145

Theorem 6. Let k,m, n be nonnegative integers. Let r := m mod k and s := n mod k.146

Then147

νk(Km,n) ≤ (m− r)(n− s)
4k2

(m− k + r)(n− k + s) ≤ 1

k2

(
m

2

)(
n

2

)
.

The proof of this statement is given in Section 7.148

2.4 k-page vs. (k/2)-planar crossing numbers149

As we have already observed, for every even integer k, every k-page drawing can be regarded150

as a (k/2)-planar drawing. Thus, for every graph G, crk/2(G) ≤ νk(G).151

Since there is (at least in principle) considerable more freedom in a (k/2)-planar drawing152

than in a k-page drawing, it is natural to ask whether or not this additional freedom can153

be translated into a substantial saving in the number of crossings. For small values of m or154

n, the answer is yes. Indeed, Beineke [1] described how to draw Kk+1,k(k−1) in k/2 planes155

without crossings, but by Proposition 15, Kk+1,k2/4+500k7/4 cannot be k-page embedded;156

thus the k/2-planar crossing number of Kk+1,k(k−1) is 0, whereas its k-page crossing number157

can be arbitrarily large. Thus it makes sense to ask about the asymptotic behaviour when158

k,m, and n all go to infinity. Letting γ(k) := limm,n→∞ crk/2(Km,n)/νk(Km,n), we focus on159

the question: is limk→∞ γ(k) = 1?160
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Since we do not know (even asymptotically) the (k/2)-planar or the k-page crossing number161

of Km,n, we can only investigate this question in the light of the current best bounds162

available.163

In Section 8 we present a discussion around this question. We conclude that if the (k/2)-164

planar and the k-page crossing numbers (asymptotically) agree with the current best upper165

bounds, then indeed the limit above equals 1. We also observe that this is not the case for166

complete graphs: the currently best known (k/2)-planar drawings of Kn are substantially167

better (even asymptotically) than the currently best known k-page drawings of Kn.168

3 Exact pagenumbers: proof of Theorem 3169

We start by observing that for every integer n, the graph Kk+1,n can be embedded in170

k + 1 pages, and so the pagenumber p(Kk+1,b(k+1)2/4c+1) of Kk+1,b(k+1)2/4c+1 is at most171

k + 1. Thus we need to show the reverse inequality p(Kk+1,b(k+1)2/4c+1) ≥ k + 1, for172

every k ∈ {3, 4, 5, 6}. It clearly suffices to show that νk(Kk+1,b(k+1)2/4c+1) > 0, for every173

k ∈ {3, 4, 5, 6}.174

These inequalities are equivalent to k-colorability of certain auxiliary graphs. To this end,175

we define an auxiliary graph GD(Km,n) associated with a 1-page (circular) drawing D of176

Km,n as follows. The vertices of GD(Km,n) are the edges of Km,n, and two vertices are177

adjacent if the corresponding edges cross in the drawing D.178

We immediately have the following result, that is essentially due to Buchheim and Zheng [4].179

Lemma 7 (cf. Buchheim-Zheng [4]). One has νk(Km,n) > 0 if and only if the chromatic180

number of GD(Km,n) is greater than k for all circular drawings D of Km,n.181

As a consequence we may decide if νk(Km,n) > 0 by considering all possible circular draw-182

ings D of Km,n, and computing the chromatic numbers of the associated auxiliary graphs183

GD(Km,n). The number of distinct circular drawings of Km,n may be computed using184

the classical orbit counting lemma, often attributed to Burnside, although it was certainly185

already known to Frobenius.186

Lemma 8 (Orbit counting lemma). Let a finite group G act on a finite set Ω. Denote by
Ωg, for g ∈ G, the set of elements of Ω fixed by g. Then the number N of orbits of G on Ω
is the average, over G, of |Ωg|, i.e.

N =
1

|G|
∑
g∈G
|Ωg|.

We will apply this lemma by considering that a circular drawing of Km,n is uniquely de-187

termined by the ordering of the m blue and n red vertices on a circle. We therefore define188

the finite set Ω as the set of all
(
m+n
n

)
such orderings. Now consider the usual action of189

the dihedral group G := Dm+n on the set Ω. For our purposes two orderings are the same,190
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i.e. correspond to the same circular drawing of Km,n, if they belong to the same orbit of G.191

We therefore only need to count the number of orbits by using the last lemma. The final192

result is as follows. (We omit the details of the counting argument, as it is a straightforward193

exercise in combinatorics.)194

Lemma 9. Let m and n be positive integers and denote d = gcd(m,n). The number of195

distinct circular drawings of Km,n equals:196

1

2(m+ n)



m+n
2

((m+n
2

n/2

)
+

(m+n−2
2

m/2

)
+

(m+n−2
2

n/2

))
+

d−1∑
k=0

(m+n
o(k)
m
o(k)

)
(m, n even),

(m+ n)

(m+n−1
2

n/2

)
+

d−1∑
k=0

(m+n
o(k)
m
o(k)

)
(m odd, n even),

(m+ n)

( m+n−2
2

(m− 1)/2

)
+

d−1∑
k=0

(m+n
o(k)
m
o(k)

)
(m, n odd),

where o(k) is the minimal number between 1 and d such that k · o(k) ≡ 0 mod d. In other197

words, o(k) is the order of the subgroup generated by k in the additive group of integers198

mod d.199

In what follows we will present computer-assisted proofs that the chromatic number of200

GD(Km,n) is greater than k, for specific integers k,m, n. We do not need to compute the201

chromatic number exactly if we can prove that it is lower bounded by a value strictly greater202

than k. A suitable lower bound for our purposes is the Lovász ϑ-number.203

Lemma 10 (Lovász [17]). Given a graph G = (V,E) and the value204

ϑ(G) := max
X�0

∑
i,j∈V

Xij

∣∣∣∣∣∣ Xij = 0 if (i, j) ∈ E, trace(X) = 1, X ∈ RV×V

 ,

one has205

ω(Ḡ) ≤ ϑ(G) ≤ χ(Ḡ),

where ω(Ḡ) and χ(Ḡ) are the clique and chromatic numbers of the complement Ḡ of G,206

respectively.207

The ϑ(G)-number may be computed for a given graph G by using semidefinite programming208

software. For our computation we used the software DSDP [3].209

Corollary 11. If, for given positive integers m,n and k, ϑ(GD(Km,n)) > k for all circular210

drawings D of Km,n, then νk(Km,n) > 0.211

If, for a given circular drawing D, we find that ϑ(GD(Km,n)) = k, then we compute the212

chromatic number of GD(Km,n) exactly, by using satisfiability or integer programming213

software. For our computation we used the satisfiability solver Akmaxsat [15], and for214
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the integer programming formulation the solver XPRESS-MP [16]. The formulation of215

the chromatic number as the solution of a maximum satisfiability problem is described in216

[10, §3.3]. The integer programming formulation we used is the following.217

For given G = (V,E) with adjacency matrix A, and set of colors C = {1, . . . , k}, define the218

binary variables219

xij =

{
1 if vertex i is assigned color j,
0 else,

(i ∈ V, j ∈ C),

and consider the integer programming feasibility problem:220

Find an x ∈ {0, 1}V×C such that
∑
j∈C

xij = 1 ∀i ∈ V,
∑
i∈V

Apixij ≤ |E|(1−xpj) ∀p ∈ V, j ∈ C.

(2)

Lemma 12. A given graph G = (V,E) is k-colorable if and only if the integer program (2)221

has a solution.222

We may therefore solve (2) with G = GD(Km,n), for each circular drawing D of Km,n, to223

decide if νk(Km,n) > 0.224

Finally we describe the results we obtained by using the computational framework described225

in this section.226

Case k = 3: proof of ν3(K4,5) > 0.227

By Lemma 9, there are 10 distinct circular drawings D of K4,5. For each D we showed228

numerically that ϑ(GD(K4,5)) > 3. The required result now follows from Corollary 11.229

Case k = 4: proof of ν4(K5,7) > 0.230

By Lemma 9, there are 38 distinct circular drawings D of K5,7. For all but one D we231

showed numerically that ϑ(GD(K5,7)) > 4. The remaining case was settled by showing232

χ(GD(K5,7)) > 4 using the satisfiability reformulation. The required result now follows233

from Corollary 11 and Lemma 7.234

Case k = 5: proof of ν5(K6,10) > 0.235

By Lemma 9, there are 210 distinct circular drawings D of K6,10. For all but one D we236

showed numerically that ϑ(GD(K6,10)) > 5. The remaining case was settled by showing237

χ(GD(K6,10)) > 5 using the satisfiability reformulation. The required result now follows238

from Corollary 11 and Lemma 7.239
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Case k = 6: proof of ν6(K7,13) > 0.240

By Lemma 9, there are 1980 distinct circular drawings D of K7,13. For all but one D we241

showed numerically that ϑ(GD(K7,13)) > 6. The remaining case was settled by showing242

χ(GD(K7,13)) > 4 using the integer programming reformulation (2). The required result243

now follows from Corollary 11, Lemma 12, and Lemma 7.244

4 k-page crossing numbers of Kk+1,n: lower bounds245

Our aim in this section is to establish lower bounds for νk(Kk+1,n). Our strategy is as follows.246

First we find (Proposition 13) a lower bound under the assumption that Kk+1,s+1 cannot be247

k-page embedded (for some integer s := s(k)). Then we find values of s such that Kk+1,s+1248

cannot be k-page embedded; these are given in Propositions 14 (for k ∈ {2, 3, 4, 5, 6}) and 15249

(for every k). We then put these results together and establish the lower bounds required250

in Theorem 4 (see Lemma 16) and in Theorem 5 (see Lemma 17).251

Proposition 13. Suppose that Kk+1,s+1 cannot be k-page embedded. Let n be a positive252

integer, and define q := n mod s. Then253

νk(Kk+1,n) ≥ q ·
(n−q

s + 1

2

)
+ (s− q) ·

(n−q
s

2

)
.

Proof. It is readily verified that if n ≤ s then the right hand side of the inequality in the254

proposition equals 0, and so in this case the inequality trivially holds. Thus we may assume255

that n ≥ s+ 1.256

Let D be a k-page drawing of Kk+1,n. Construct an auxiliary graph G as follows. Let V (G)257

be the set of n degree-(k+ 1) vertices in Kk+1,n, and join two vertices u, v in G by an edge258

if there are edges eu, ev incident with u and v (respectively) that cross each other in D.259

Since Kk+1,s+1 cannot be embedded in k pages, it follows that G has no independent set of260

size s+ 1. Equivalently, the complement graph G of G has no clique of size s+ 1. Turán’s261

theorem asserts that G cannot have more edges than the Turán graph T (n, s), and so G262

has at least as many edges as the complement T (n, s) of T (n, s). We recall that T (n, s) is263

formed by the disjoint union of s cliques, q of them with (n − q)/s + 1 vertices, and s − q264

of them with (n− q)/s vertices. Thus265

|E(G)| ≥ q ·
(n−q

s + 1

2

)
+ (s− q) ·

(n−q
s

2

)
.

Since clearly the number of crossings in D is at least |E(G)|, and D is an arbitrary k-page266

drawing of Kk+1,n, the result follows.267

Proposition 14. For each k ∈ {2, 3, 4, 5, 6}, K
k+1,

⌊
(k+1)2

4

⌋
+1

cannot be k-page embedded.268
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Proof. This is an immediate consequence of Theorem 3.269

Proposition 15. For each positive integer k, the graph Kk+1,k2/4+500k7/4 cannot be k-page270

embedded.271

Proof. Define g(n) := min{m | the pagenumber of Km,n is n}. Enomoto et al. proved that272

g(n) = n2/4 + O(n7/4) ([12, Theorem 5]). Our aim is simply to get an explicit estimate273

of the O(n7/4) term (without making any substantial effort to optimize the coefficient of274

n7/4).275

In the proof of [12, Theorem 5], Enomoto et al. gave upper bounds for three quanitites276

m1,m2,m3, and proved that g(n) ≤ m1 + m2 + m3. They showed m1 ≤ n3/4(n − r) (for277

certain r ≤ n), m2 ≤ (n1/4 + 1)(2n1/4 + 2)(n − 1), and m3 ≤ (n1/4 + 1)(n1/4 + 2)(2n1/4 +278

3)(n− 1) + r′(n− r′) (for certain r′ ≤ r).279

Noting that r′ ≤ r, the inequality m1 ≤ n3/4(n − r) gives m1 ≤ n3/4(n − r′). Elementary280

manipulations give m2 < 2n(n1/4+1)2 = 2n(n1/2+2n1/4+1) ≤ 2n(4n1/2) = 8n3/2 < 8n7/4,281

and m3 < n(2n1/4 + 3)3 + r′(n− r′) < n(5n1/4)3 + r′(n− r′) = 125n7/4 + r′(n− r′). Thus282

we obtain g(n) ≤ m1 + m2 + m3 < 133n7/4 + (n3/4 + r′)(n − r′). An elementary calculus283

argument shows that (n3/4 + r′)(n− r′) is maximized when r′ = (n−n3/4)/2, in which case284

(n3/4 + r′)(n− r′) = (1/4)(n3/4 + n)2 = (1/4)(n3/2 + 2n7/4 + n2) < (1/4)(n2 + 3n7/4).285

Thus we get g(n) < 133n7/4 + n2/4 + (3/4)n7/4 < n2/4 + 134n7/4, and so g(k + 1) <286

(k + 1)2/4 + 134(k + 1)7/4 < k2/4 + k/2 + 1/4 + 134(2k)7/4 < k2/4 + 136(2k)7/4 = k2/4 +287

136 ·27/4 ·k7/4 < k2/4+500k7/4. This means, from the definition of g, that Kk+1,k2/4+500k7/4288

cannot be k-page embedded.289

Lemma 16. For each k ∈ {2, 3, 4, 5, 6}, and every integer n,290

νk(Kk+1,n) ≥ q ·
(n−q

` + 1

2

)
+ (`− q) ·

(n−q
`

2

)
,

where ` := b(k + 1)2/4c and q := nmod b(k + 1)2/4c.291

Proof. It follows immediately from Propositions 13 and 14.292

Lemma 17. For all positive integers k and n,293

νk(Kk+1,n) > 2n2
(

1

k2 + 2000k7/4

)
− n.

Proof. By Proposition 15 it follows that Kk+1,k2/4+500k7/4 cannot be k-page embedded.

Thus, if we let s := k2/4 + 500k7/4−1 and q := nmod s, it follows from Proposition 13 that

νk(Kk+1,n) ≥ q ·
(n−q

s
+1

2

)
+ (s− q) ·

(n−q
s
2

)
≥ s ·

(n−q
s

+1
2

)
> (n− q)2/2s. Thus we have

νk(Kk+1,n) >
(n− q)2

2s
>

(n− s)2

2s
>
n2

2s
− n > 2n2

(
1

k2 + 2000k7/4

)
− n.
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5 k-page crossing numbers of Kk+1,n: upper bounds294

In this section we derive an upper bound for the k-page crossing number of Kk+1,n, which295

will yield the upper bounds claimed in both Theorems 4 and 5.296

To obtain this bound we proceed as follows. First, we show in Proposition 18 that if for297

some s the graph Kk+1,s admits a certain kind of k-page embedding (what we call a balanced298

embedding), then this embedding can be used to construct drawings of νk(Kk+1,n) with a299

certain number of crossings. Then we prove, in Proposition 19, that Kk+1,b(k+1)2/4c admits300

a balanced k-page embedding for every k. These results are then put together to obtain301

the required upper bound, given in Lemma 20.302

5.1 Extending balanced k-page embeddings to k-page drawings303

We consider k-page embeddings ofKk+1,s, for some integers k and s. To help comprehension,304

color the k + 1 degree-s vertices black, and the s degree-(k + 1) vertices white. Given such305

an embedding, a white vertex v, and a page, the load of v in this page is the number of306

edges incident with v that lie on the given page.307

The pigeon-hole principle shows that in an k-page embedding of Kk+1,s, for each white308

vertex v there must exist a page with load at least 2. A k-page embedding of Kk+1,s is309

balanced if for each white vertex v, there exist k − 1 pages in which the load of v is 1 (and310

so the load of v in the other page is necessarily 2).311

Proposition 18. Suppose that Kk+1,s admits a balanced k-page embedding. Let n ≥ s, and312

define q := n mod s. Then313

νk(Kk+1,n) ≤ q ·
(n−q

s + 1

2

)
+ (s− q) ·

(n−q
s

2

)
.

Proof. Let Ψ be a balanced k-page embedding of Kk+1,s, presented in the circular model.314

To construct from Ψ a k-page drawing of Kk+1,n, we first “blow up” each white point as315

follows.316

Let t ≥ 1 be an integer. Consider a white point r in the circle, and let Nr be a small317

neighborhood of r, such that no point (black or white) other than r is in Nr. Now place318

t−1 additional white points on the circle, all contained in Nr, and let each new white point319

be joined to a black point b (in a given page) if and only if r is joined to b in that page. We320

say that the white point r has been converted into a t-cluster.321

To construct a k-page drawing of Kk+1,n, we start by choosing (any) q white points, and322

then convert each of these q white points into an ((n − q)/s + 1)-cluster. Finally, convert323

each of the remaining s− q white points into an ((n− q)/s)-cluster. The result is evidently324

an k-page drawing D of Kk+1,n.325
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We finally count the number of crossings in D. Consider the t-cluster Cr obtained from326

some white point r (thus, t is either (n− q)/s or (n− q)/s+ 1), and consider any page πi.327

It is clear that if the load of r in πi is 1, then no edge incident with a vertex in Cr is crossed328

in πi. On the other hand, if the load of r in πi is 2, then it is immediately checked that329

the number of crossings involving edges incident with vertices in Cr is exactly
(
t
2

)
. Now330

the load of r is 2 in exactly one page (since Ψ is balanced), and so it follows that the total331

number of crossings in D involving edges incident with vertices in Cr is
(
t
2

)
. Since to obtain332

D, q white points were converted into ((n− q)/s+ 1)-clusters, and s− q white points were333

converted into ((n− q)/s)-clusters, it follows that the number of crossings in D is exactly334

q ·
(n−q

s + 1

2

)
+ (s− q) ·

(n−q
s

2

)
.

5.2 Constructing balanced k-page embeddings335

Enomoto, Nakamigawa, and Ota [12] gave a clever general construction to embed Km,n336

in s pages for (infinitely) many values of m,n, and s. In particular, their construction337

yields k-page embeddings of Kk+1,b(k+1)2/4c. However, the embeddings obtained from their338

technique are not balanced (see Figure 2). We have adapted their construction to establish339

the following.340

Proposition 19. For each positive integer k, the graph Kk+1,b(k+1)2/4c admits a balanced341

k-page embedding.342

Proof. We show that for each pair of positive integers s, t such that t is either s or s+1, the343

graph Ks+t,st admits a balanced (s+ t− 1)-page embedding. The proposition then follows:344

given k, if we set s := b(k + 1)/2c and t := d(k + 1)/2e, then t ∈ {s, s + 1}, and clearly345

k + 1 = s+ t (and so k = s+ t− 1) and
⌊ (k+1)2

4

⌋
= st.346

To help comprehension, we color the s + t degree-st vertices black, and we color the st347

degree-(s+ t) vertices white. We describe the required embedding using the circular model.348

Thus, we start with s+ t− 1 pairwise disjoint copies of a circle; these copies are the pages349

0, 1, . . . , s + t − 2. In the boundary of each copy we place the s + t + st vertices, so that350

the vertices are placed in an identical manner in all s + t − 1 copies. Each edge will be351

drawn in the interior of the circle of exactly one page, using the straight segment joining352

the corresponding vertices.353

We now describe how we arrange the white and the black points on the circle boundary. We354

use the black-and-white arrangement proposed by Enomoto et al. [12]. We refer the reader355

to Figure 3. First we place the s + t black points b0, b1, . . . , bs+t−1 in the circle boundary,356

in this clockwise cyclic order. Now for each i ∈ {0, 1, . . . , t − 1}, we insert between the357

vertices bs+i and bs+i+1 a collection wis, wis+1, . . . , wis+s−1 of white vertices, also listed in358

the clockwise cyclic order in which they appear between bs+i and bs+i+1 (operations on the359

indices of the black vertices are modulo s + t). For any i, j such that 0 ≤ i ≤ j < st, we360

let W [i : j] denote the set of white vertices {wi, wi+1, . . . , wj}. For i = {0, 1, . . . , t − 1},361
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Figure 2: The 5-page embedding of K6,9 obtained from the general construction of Enomoto,
Nakamigawa, and Ota. This embedding is not balanced (for instance, the white vertex w0 has
degree 4 in Page 0).
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ws−1

w1

w0

bsb0

bs+2

bs+1

ws

ws+1

b1

w(t−1)s

bs+t−1

w(t−1)s+1 Wt−1

W1

W0

w2s−1

wst−1

Figure 3: Layout of the vertices of Ks+t,st.

we call the set W [is : is + s − 1] = {wis, wis+1, . . . , wis+s−1} a white block, and denote it362

by Wi. Thus the whole collection of white vertices w0, w1, . . . , wst−1 is partitioned into t363

blocks W0,W1, . . . ,Wt−1, each of size s. Note that the black vertices b0, b1, . . . , bs occur364

consecutively in the circle boundary (that is, no white vertex is between bi and bi+1, for365

i ∈ {0, 1, . . . , s− 1}). On the other hand, for i = s+ 1, s+ 2, . . . , s+ t− 1, the black vertex366

bi occurs between two white vertices: loosely speaking, bi is sandwiched between the white367

blocks Wi−1 and Wi (operations on the indices of the white blocks are modulo t).368

Now we proceed to place the edges on the pages. We refer the reader to Figures 4 and 5369

for illustrations of the edges distributions for the cases k = 5 and 6. We remark that: (i)370

operations on page numbers are modulo s+t−1; (ii) operations on block indices are modulo371

t; (iii) operations on the indices of black vertices are modulo s + t; and (iv) operations on372

the indices of white vertices are modulo st.373

For r = 0, 1, . . . , s− 1, place the following edges in page r:374

Type I For i = r+ 1, r+ 2, . . . , t, the edges joining bs+i to all the vertices in the white375

block Wt+r−i (note that bs+t = b0).376

Type II For 0 < i < r + 1, the edges joining bi to all the vertices in W [rs − i(s − 1) :377

rs− (i− 1)(s− 1)].378

Type III The edges joining br+1 to all the vertices in W [0 : r].379

For r = s, s+ 1, . . . , s+ t− 2, place the following edges in page r:380

Type IV For i = 0, 1, . . . , r− s+ 1, bs+i to all the vertices in the white block Wr−s−i+1.381
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Figure 4: A balanced 5-page embedding of K6,9. In this case k = 5, and so s = t = 3. Pages 0, 1, 2, 3
and 4 are the upper left, upper right, middle left, middle right, and lower circle, respectively. For
Pages 0, 1, and 2, we have edges of Types I, II, and III, whereas for Pages 3 and 4, we have edges
of Types IV, V, and VI. Edges of Types I and IV are drawn with thick segments; edges of Types
II and V are drawn with thinner segments; and edges of Types III and VI are drawn with dashed
segments.
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Type V For 0 < i < s − r + t − 1, the edges joining bs−i to all the vertices in W [(i +382

r − s+ 1)s− i : (i+ r − s+ 1)s− i+ (s− 1)].383

Type VI The edges joining br−t+1 to all the vertices in W [st− t+ r − s+ 1 : st− 1].384

It is a tedious but straightforward task to check that this yields an (s+t−1)-page embedding385

of Ks+t,st. Moreover, since every white vertex has load at least 1 in every page, it follows386

immediately that the embedding is balanced.387

5.3 The upper bound388

Lemma 20. For all positive integers k and n,389

νk(Kk+1,n) ≤ q ·
(n−q

` + 1

2

)
+ (`− q) ·

(n−q
`

2

)
,

where ` := b(k + 1)2/4c and q := nmod b(k + 1)2/4c.390

Proof. It follows immediately by combining Propositions 18 and 19.391

6 Proofs of Theorems 4 and 5392

We first observe that Theorem 4 follows immediately by combining Lemmas 16 and 20.393

Now to prove Theorem 5, we let ` := b(k + 1)2/4c and q := nmod b(k + 1)2/4c, and note
that it follows from Lemma 20 that

νk(Kk+1,n) ≤ q ·
(n−q

` + 1

2

)
+ (`− q) ·

(n−q
`

2

)
≤ ` ·

(n−q
` + 1

2

)
=
`

2
·
(
n− q
`

+ 1

)(
n− q
`

)
=
n− q

2
·
(
n− q
`

+ 1

)
≤ n

2
·
(
n

`
+ 1

)
=
n2

2`
+
n

2
≤ n2

2(k2/4)
+
n

2
=

2n2

k2
+
n

2
.

Combining this with Lemma 17, we obtain394

2n2
(

1

k2 + 2000k7/4

)
− n < νk(Kk+1,n) ≤ 2n2

k2
+
n

2
,

proving Theorem 5.395

7 A general upper bound for νk(Km,n): proof of Theorem 6396

We now describe a quite natural construction to draw Km,n in k pages, for every k ≥ 3.397

Actually, our construction also works for the case k = 2, and for this case the upper bounds398

obtained coincide with the best known upper bound for ν2(Km,n).399
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Figure 5: A balanced 6-page embedding of K7,12. In this case k = 6, and so s = 3 and t = 4. Pages
0, 1, 2, 3, 4, and 5 are the upper left, upper right, middle left, middle right, lower left, and lower right
circles, respectively. For Pages 0, 1, and 2, we have edges of Types I, II, and III, whereas for Pages
3, 4, and 5, we have edges of Types IV, V, and VI. Edges of Types I and IV are drawn with thick
segments; edges of Types II and V are drawn with thinner segments; and edges of Types III and VI
are drawn with dashed segments.
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Proof of Theorem 6. For simplicity, we color the m vertices black, and the n vertices white.400

Let p, q, r, s be the nonnegative integers defined by the conditions m = kp+ r and 0 ≤ r ≤401

k − 1, and n = kq + s and 0 ≤ s ≤ k − 1 (note that the definitions of r and s coincide402

with those in the statement of Theorem 6). Our task is to describe a drawing of Km,n with403

exactly (m− r)(n− s)(m− k + r)(n− k + s)/(4k2) crossings.404

We start our construction by dividing the set of black vertices into k groupsB0, B1, . . . , Bk−1,405

so that k − r of them (say the first k − r) have size p, and the remaining r have size p+ 1.406

Then we divide the set of white vertices into k groups W0,W1, . . . ,Wk−1, such that k − s407

of them (say the first k − s) have size q, and the remaining s have size q + 1.408

Then (using the circular drawing model) we place the groups alternately on a circumference,409

as in B0,W0, B1,W1, . . . , Bk−1,Wk−1. Now for i = 0, 1, 2, . . . , k − 1, we draw in page i the410

edges joining all black points in Bj to all white points in Ws if and only if j + s = i411

(operations are modulo k).412

A straightforward calculation shows that the total number of crossings in this drawing is413

(k− r)(k− s)
(
p
2

)(
q
2

)
+(k− r)s

(
p
2

)(
q+1
2

)
+r(k− s)

(
p+1
2

)(
q
2

)
+rs

(
p+1
2

)(
q+1
2

)
, and an elementary414

manipulation shows that this equals (m− r)(n− s)(m − k + r)(n − k + s)/(4k2). Thus415

νk(Km,n) ≤ (m− r)(n− s)(m− k + r)(n− k + s)/(4k2), as claimed.416

Finally, note that since obviously m − r ≤ m, n − s ≤ n, m − k + r ≤ m − 1, and417

n−k+ s ≤ n−1, it follows that νk(Km,n) ≤ (1/4k2)m(m−1)n(n−1) = (1/k2)
(
m
2

)(
n
2

)
.418

8 Concluding remarks419

It seems worth gathering in a single expression the best lower and upper bounds we now420

have for νk(Km,n). Since νk(Km,n) may exhibit an exceptional behaviour for small values of421

m and n, it makes sense to express the asymptotic forms of these bounds. The lower bound422

(coming from [22, Theorem 5]) is given in (1), whereas the upper bound is from Theorem 6.423

1

3(3dk2e − 1)2
≤ lim

m,n→∞

νk(Km,n)(
m
2

)(
n
2

) ≤ 1

k2
. (3)

As we have observed (and used) above, crk/2(Km,n) ≤ νk(Km,n), and it is natural to ask424

whether νk(Km,n) is strictly greater than crk/2(Km,n) (we assume k even in this discussion).425

At least in principle, there is much more freedom in k/2-planar drawings than in k-page426

drawings. Thus remains the question: can this additional freedom be used to (substantially)427

save crossings?428

With this last question in mind, we now carry over an exercise which reveals the connections429

between the book and multiplanar crossing numbers of complete and complete bipartite430

graphs.431
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It is not difficult to prove that the constants

BookBipartite := lim
k→∞

k2 ·
(

lim
m,n→∞

νk(Km,n)(
m
2

)(
n
2

) ),
BookComplete := lim

k→∞
k2 ·

(
lim
n→∞

νk(Kn)(
n
4

) )
,

MultiplanarBipartite := lim
k→∞

k2 ·
(

lim
m,n→∞

crk(Km,n)(
m
2

)(
n
2

) )
,

MultiplanarComplete := lim
k→∞

k2 ·
(

lim
n→∞

crk(Kn)(
n
4

) )
,

are all well-defined.432

In view of (3), we have433

4

27
≤ BookBipartite ≤ 1. (4)

Using the best known upper bound for crk(Km,n) (from [22, Theorem 8]), we obtain434

MultiplanarBipartite ≤ 1

4
. (5)

We also invoke the upper bound crk(Kn) ≤ (1/64)k(n+k2)4/(k−1)3, which holds whenever435

k is a power of a prime and n ≥ (k − 1)2 (see [22, Theorem 7]). This immediately yields436

MultiplanarComplete ≤ 3

8
. (6)

We also note that the observation crk/2(Km,n) ≤ νk(Km,n) immediately implies that437

MultiplanarBipartite ≤ 1

4
·BookBipartite. (7)

Finally, applying the Richter-Thomassen counting argument [19] for bounding the crossing438

number of K2n in terms of the crossing number of Kn,n (their argument applies unmodified439

to k-planar crossing numbers), we obtain440

MultiplanarComplete ≥ 3

2
·MultiplanarBipartite. (8)

Suppose that the multiplanar drawings of Shahrokhi et al. [22] are asymptoticall optimal. In441

other words, suppose that equality holds in (5). Using (7), we obtain BookBipartite ≥ 1,442

and by (4) then we get BookBipartite = 1. Moreover (again, assuming equality holds in443

(5)), using (8), we obtain MultiplanarComplete ≥ 3/8, and so in view of (6) we get444

MultiplanarComplete = 3/8. Summarizing:445
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Observation 21. Suppose that the multiplanar drawings of Km,n of Shahrokhi et al. [22]
are asymptotically optimal, so that MultiplanarBipartite = 1

4 . Then

BookBipartite = 1, and

MultiplanarComplete =
3

8
. �

In other words, under this scenario (the multiplanar drawings of Km,n in [22] being asymp-446

totically optimal), the additional freedom of (k/2)-planar over k-page drawings of Km,n447

becomes less and less important as the number of planes and pages grows. In addition, un-448

der this scenario the k-planar crossing number of Kn also gets (asymptotically) determined.449
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