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is in the problem of existene of large substrutures (subsets of edges or subgraphs) suhthat all the edges involved have di�erent labels. Typially, an edge label is a funtion of thelabels of the endverties, e.g. the absolute value of their di�erene (graeful labelings), ortheir sum modulo some n (harmonious graphs). There is another natural rule for assigningthe edge labels: an edge gets a label equal to the produt of its endpoints labels, modulon. Curiously, for n prime we have basially the same model as the multipliative group onf1; : : : ; n � 1g is isomorphi to the additive group on f0; 1; : : : ; n � 2g. For n omposite,some probabilisti-number theoreti issues are likely to arise.For the point set in the plane it is natural to seek large substrutures (paths, mathings)that meet ertain geometri onditions. One popular non{rossing ondition requires thatno two edges in the substruture ross eah other. For a sample of diverse results in thisarea of ombinatorial geometry we refer the reader to [1, 2, 6, 7, 8, 9, 16℄.To desribe the results of this paper, we need some terminology and notations. Following[3℄, let S be a set of points in the plane in a onvex position. Assume that eah point has aninteger label from f0; : : : ; n� 1g. If p; q are distint points (also alled verties) in S, thenwe let (p; q) denote the straight segment (or edge) that has p and q as its endverties. Thisnaturally indues a (omplete) geometri graph GS. In general, we let E(K) denote the setof edges of a graph K. A subset E 0 of E(GS) is non{rossing if no two edges in E 0 intersetin a point other that a ommon endvertex. A subgraph H of GS is non{rossing if E(H) isnon{rossing.As for the edge labels, we use the sum rule; it assigns to eah edge (p; q) a number equal tothe sum of labels of p and q modulo n. One suh rule assigns to eah edge the sum (modulon) of the labels of its endpoints. In this geometri setting, the entral problem is to �ndonditions for existene of large non{rossing subgraphs whose edge labels are all distint.While [3℄ dealt exlusively with the worst{ase instanes of the labeled set S, our goal is tostudy the average (likely) ase behavior under assumption that the labels of points in S arerandom. More spei�ally, we assume that eah of the n points is labeled with an integerdrawn uniformly at random from f0; 1; 2; : : : ; n � 1g, independently of all other labels. Wepose the following questions.Question 1 How many edges are there typially in a maximum size harmoni non{rossingmathing in GS?Question 2 How many edges are there typially in a maximum size harmoni non{rossingpath in GS?In our opinion, we have found a satisfying answer to Question 1. We propose a greedy math-ing algorithm (HMathing) that w.h.p. delivers a mathing of size n=2 � O(n1=3 lnn)|anearly perfet mathing, as the number of unmathed verties is w.h.p. merely of ordern1=3 lnn. Thus the maximum mathing number is n=2 � O(n1=3 lnn) at least. (For theErd}os-R�enyi random graph with n=2 edges, i. e. in the ritial stage, the ore verties ofdegree more than, or equal to 3 are typially inident to O(n1=3) edges,  Luzak et al [10℄.Similarity between the numbers in both shemes is hardly more than oinidental though.)For an arbitrary starting point the probability that the resulting mathing is perfet is not2



too small, of order 
(n�1=3 ln�1 n), i. e. the expeted number of \luky" starting pointsis 
(n2=3 ln�1 n). We onjeture that the number itself is likely to be that large as well,so that w.h.p. there exists a perfet mathing! In Setion 2 we present HMathing, andin Setion 3 we give the experimental results that allowed us to predit the likely behaviorof the algorithm. In Setion 4 we provide a rigorous analysis whih on�rms|within thelogarithmi fators| the onjetured bounds. In Setion 5 we briey disuss the relatedproblem in whih the point labels form a random permutation of (0; 1; 2; : : : ; n� 1), ratherthan being stritly independent of eah other.Somewhat unexpetedly Question 2 is inherently harder to answer fully. In Setion 6 wedesribe two greedy path algorithms, one rather naive, another quite elaborate. The �rstalgorithm w.h.p. delivers a path of length asymptoti, in probability, to (1 � e�1)n �0:63n. The omputer runs indiate that the seond algorithm is onsiderably more eÆient,onsistently delivering a path of length lose to 0:76n. The experiments and a ariaturemodel of this algorithm ompel us to onjeture that the algorithm �nds a path of lengthasymptoti, in probability, to n(1 � e�2)=(1 + e�2) � 0:761n. In Setion 6.4 we desribeHPath, a ompromise algorithm, whose typial performane puts it between the �rst twoalgorithms. In Setion 7 we show that w.h.p. this algorithm �nds a path of length 0:66n atleast. These results signal that, in sharp ontrast with the mathing problem, the longestpath is not likely to ontain n�o(n) verties. And indeed, using a ounting (nonalgorithmi)argument we show (Setion 8) that w.h.p. Ln, the length of the longest path, falls below0:96n. We onjeture that Ln=n onverges, in probability, to a onstant between 0:79 and0:96.We onlude with the following question.Quastion 3 How many edges are there typially in a maximum size harmoni non{rossingtree or forest in GS?Going out on a limb, we onjeture that w.h.p. the maximum tree size is n� 1, so that themaximum tree spans all n verties.2 HMathing: the algorithmNaturally, the �rst step in our quest for a satisfatory answer to Question 1 was to ome upwith an algorithm that would yield, in omputer simulations, large harmoni non{rossingmathings.After several attempts, we settled on a reasonably simple algorithm that onsistently endedup with very large mathings in the omputer experiments. We all this algorithm HMath-ing.Our basi assumption is that the n points that omprise the set S are in onvex position,so that all the points are on the boundary of the onvex hull of S. No relevant geometrialinformation is lost if we assume that all the points lie on a irle. Therefore, we may denotethe points as p0; p1; : : : ; pn�1, aording to the yli (ounter-lokwise) order in whih they3



appear on the irle. Further eah point pi gets a label A[i℄, and the n labels are drawnindependently from the uniform distribution on f0; 1; : : : ; n � 1g. Given the point labels,eah edge (pi; pj) gets the label A[i; j℄ :� A[i℄ + A[j℄ (mod n).HMathing takes as input an array (A[0℄; A[1℄; A[2℄; : : : ; A[n � 1℄) and its output is a(non{rossing, harmoni) mathing on S. At eah step we have a urrent mathing, bothnon{rossing and harmoni, to whih we add a new edge to get a larger mathing that meetsthe same requirements. Formally, we maintain the urrent mathing M as a olletion ofordered pairs (i; j) with i < j, where (i; j) represents (pi; pj). Clearly the edge setM satis�esthe following onditions:(a) if (i; j) and (i0; j 0) are di�erent pairs inM, then fi; jg \ fi0; j 0g = ; (M is a mathing);(b) if (i; j) and (i0; j 0) are di�erent pairs inM, then A[i℄ +A[j℄ 6� A[i0℄ +A[j 0℄ (mod n) (Mis harmoni);() if (i; j) and (i0; j 0) are di�erent pairs in M, with i < i0, then either i < j < i0 < j 0 ori < i0 < j 0 < j (M is non{rossing).The pseudoode for HMathing is the following.:Input : An array (A[0℄; A[1℄; : : : ; A[n� 1℄), suh that A[i℄ 2 f0; 1; : : : ; n� 1g for every i.Output : The size of a set M of pairs (i; j), with i < j, that satis�es (a), (b), and ()above.Proedure :1 S = ;; M = ;; L = ;; k = 02 while k � n� 13 do4 if S 6= ;5 then if A[maxS℄ + A[k℄ (mod n) =2 L6 then M M[ f(maxS; k)g7 L L [ fA[maxS℄ + A[k℄ (mod n)g8 S  S n fmaxSg9 else S  S [ fkg10 else S  fkg11 k  k + 1 4
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Figure 1: Illustration of HMathing.12 return jLjThe ation of the algorithm is illustrated in Figure 1.In this example, A[0℄ = 7; A[1℄ = 6; A[2℄ = 4; : : : ; A[9℄ = 3. In the �rst step we explore A[0℄and add 0 to S. In the seond step, we explore A[1℄, and hek if A[0℄ +A[1℄ (mod 10) is inL. Sine it is not, the edge (A[0℄; A[1℄) is added to M, and sine A[0℄ + A[1℄ = 7 + 6 �3 (mod 10), L beomes f3g, and S goes bak to ;. In the third step we explore A[2℄, andsine there is no stak, we add 2 to S (so that S beomes f2g, sine it was empty) and moveon to the fourth step, where we explore A[3℄; sine A[2℄ + A[3℄ = 4 + 9 � 3 (mod 10) isalready in L, we must now set S = f2; 3g. In the �fth step we explore A[4℄ = 5. Sine 3 isthe largest integer in S, we hek if A[3℄ + A[4℄ � 4 (mod 10) is in L. Sine it is not, thenwe add (A[3℄; A[4℄) toM, 4 to L, and remove 3 from S. At the end, we obtain the mathingshown, whih happens to be perfet.In words, this algorithm works as follows. By letting k inrease from 0 to n� 1, we explorethe labels A[0℄; A[1℄; : : : ; A[n � 1℄ in the given order. Now at eah step we have a set ofmathing edges (namely the urrent M), whose set of labels is reorded as the set L, plusa stak of unmathed verties (that is, not inident with an edge in M), whose index setis S: the i{th vertex is unmathed i� i 2 S. As we explore the next vertex label A[k℄, weattempt to math it with the vertex i0 in the stak suh that i0 is largest among all vertiesin the stak. Note that this makes sense geometrially: if we manage to add this edge toM (that is, if A[i0℄ + A[k℄ (mod 10) =2 L), then the edge joining eah vertex in the stakto eah unexplored vertex does not ross any edge in M. Loosely speaking, after we add amathing edge, eah vertex in the stak (as well as eah unexplored vertex, of ourse) stillhas a hane to be the endvertex of a mathing edge.We wrote ode for this algorithm, inluding the generation of random labels, and ran itrepeatedly for large values of n (n = 104; 105; 106). Its performane exeeded our bestexpetations. We onsistently found a mathing in question of size at least 0:999(n=2), thusextremely lose to a perfet mathing that ontains bn=2 edges. In the next Setion 35
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Figure 2: For eah value of n = 5000; 10000; 15000; : : : ; 50000, we ran HMathing 106times, eah time on a randomly generated array (A[0℄; A[1℄; A[2℄; : : : ; A[n � 1℄)), and om-puted the average size of the set of verties left unmathed. The results are shown in this�gure, together with the �tting urve n1=3=1:46 proposed by Gnuplot .we present our experimental results. Then in Setion 4 we present a rigorous study whihon�rms our onjetures based on the experimental numeris.3 Performane of HMathing: empirial resultsThere are two natural parameters to measure the performane of HMathing: (i) theexpeted size of the mathing obtained by running HMathing, and (ii) the probabilitythat HMathing delivers a perfet mathing.3.1 The empirial average size of mathingWe wrote a C++ program that generated eah A[i℄; i = 0; 1; : : : ; n � 1, independently atrandom from the uniform distribution on f0; 1; : : : ; n � 1g, and then ran HMathing on(A[0℄; A[1℄; : : : ; A[n� 1℄) and returned the number of edges left unmathed.We then ran this program 106 times for eah of the following values of n: 5000; 10000; 15000;20000; 25000; 30000; 35000; 40000; 45000; and 50000.For eah suh n, we omputed the average of the 106 experiments. Using Gnuplot , weplotted the results and obtained a urve n1=3=1:46 that �tted the data quite well. Both theresults and the �tting urve are presented in Figure 2.6
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Figure 3: For eah value of n = 5000; 10000; : : : ; 50000, we ran HMathing 106 times,eah time on a randomly generated array (A[0℄; A[1℄; A[2℄; : : : ; A[n� 1℄), and omputed theproportion of experiments for whih HMathing delivered a perfet mathing. The resultsare shown in this �gure, together with the �tting urve n1=3 proposed by Gnuplot .In view of the remarkably good �t given by the urve n1=3=1:46, we onjeture that theexpeted number of verties left unmathed is �(n1=3). An equivalent onjeture is that theexpeted size of the mathing is n=2��(n1=3).3.2 Empirial suess probability.Sine on average the resulting mathing turned out to be near perfet, we added a few linesof ode to the program, to determine the empirial frequeny of the problem instanes whenthe mathing was in fat perfet.Again, we ran 106 experiments for eah n = 5000; 10000; : : : ; 50000, and omputed the pro-portion of experiments for whih HMathing yielded a perfet mathing. Using Gnuplot ,we plotted the results and got a �tting urve n�1=3. As it an be heked in Figure 3, thisurve seems to be a very good �t to the data obtained.The data �t the urve n�1=3 so well that we are led to the onjeture: the probability thatHMathing delivers a perfet mathing is of order �(n�1=3). It is tempting to state aneven stronger onjeture: the probability that the resulting mathing is perfet is asymptotito n�1=3. In the next setion we prove a slightly weaker result, namely that this probabilityis between 1n�1=3 ln�1 n and 2n�1=3 lnn. We also show that the likely size of the terminalmathing is between n=2 � 3n1=3 lnn and n=2 � 4n1=3 ln�1 n, whih again is within thelogarithmi fators from the onjetured formula n=2� �(n2=3).7



Consequently, on average, the number of the starting points for whih the algorithm �ndsa perfet mathing is of an empirial order �(n2=3), and of a provable order 
(n2=3 ln�1 n).This suggests the followingConjeture 1 W.h.p. there is a perfet (non{rossing, harmoni ) mathing, and it an befound by running HMathing n times, seleting eah of the n points as a starting point.In our omputer experiments, with n up to 105 and 106 problem instanes, we always founda perfet mathing by running the algorithm for suÆiently many starting points.4 Analysis of HMathingReall that we are interested in analyzing the performane of HMathing when it is ranon an array (A[0℄; A[1℄; : : : ; A[n � 1℄) suh that eah A[i℄ is an integer hosen uniformly atrandom, and independently of the other A[j℄'s, from f0; 1; : : : ; n� 1g.4.1 The mathing algorithm as a Markov Chain.Consider the generi, k-th, step of the mathing algorithm. Before this step the vertiesp1; : : : ; pk�1 have been explored, and some of them have been mathed. LetM be the urrent(non-rossing, harmonious) mathing and S be the urrent set (stak) of all unmathedpoints whose labels have been explored. Then 2jMj + jSj = k � 1. Suppose �rst thatS 6= ;. Assume indutively that there are no triples (pa; pb; p), a < b < , suh that(pa; p) 2 M and pb 2 S. This ondition means that no edge (pa; pb), suh that pa 2 S andb > b� = maxf : p 2 Sg, rosses an edge from M. In partiular, we an and do add toM the edge (pb�; pk) if the label of this edge is not in L, the label set of the edges in M,i. e. if A[b�℄ + A[k℄ (mod n) =2 L. The last ondition restrits the value A[k℄ to a subsetof f0; : : : ; n� 1g of ardinality n� jLj = n� jMj. Sine A[k℄ is uniform on f0; : : : ; n� 1g,and independent on A[0℄; : : : ; A[k � 1℄, the (onditional) probability that (pb�; pk) is addedto M in the k{th iteration step is 1� jLj=n = 1� jMj=n. In this ase M+ f(pb�; pk)g andS n fpb�g are the next mathing set and the next stak respetively. Alternatively, with theprobability jMj=n the mathing set remains the same, but the stak grows to S [ fpkg. IfS = ;, then the mathing set M remains the same, and the next S is fpkg. In all ases thenew mathingM and the new stak S meet the same non-rossing ondition as the previousM and S. Clearly the sequene fMk; Skgk�n, (M0 = ;; S0 = ;), is a Markov hain. Thehain terminates one 2jMkj+ jSkj reahes n, that is, when there are no unexplored pointsleft. Remarkably, the transition probabilities and the termination rule depend only on jMkj.So there is a redution of fMk; Skg to a muh simpler Markov hain fmk; skg on the set ofpairs (m; s), m = jMj, s = jSj, with termination ondition 2mk + sk = n.Here is the formal de�nition of the redued Markov hain.8



Markov Proess 1 (MP1) Eah state is a pair (m; s), where m and s are nonnegativeintegers, and 2m + s < n, where n is a �xed integer given in advane. The initial state is(0; 0). The transition rules are :If s = 0, then the next state is (m; s + 1) = (m; 1):If s > 0, then the next state is (m + 1; s� 1); with probability 1�m=n;(m; s + 1); with probability m=n:4.2 The likely size of the terminal mathing.Aording to our redution, to study the size of the terminal mathing is equivalent tostudying Zn, the terminal value of m in the Markov hain MP1 .Proposition 2 (i) Given a > 0, set � = 2pa(1 + a).Pr(Zn > n=2� �n1=3 lnn) = 1� O(n�a): (1)(ii) Pr(Zn � n=2� n1=3 ln�2 n) = 1�O(ln�1 n): (2)(iii) Let Pn = Pr(Zn = n=2), n even, and Pn = Pr(Zn = (n� 1)=2), n odd. Then, for someonstants �; � > 0, �n�1=3 ln�1=2 n � Pn � �n�1=3 lnn: (3)For the proof we need the following statement.Lemma 1 Let a > 0. With probability 1� O(n�a), there exists k suh thatmk 2 (n=2� (1 + a)n2=3 lnn; n=2� 0:5(1 + a)n2=3 lnn); sk = 0;with �(n2=3 lnn) points remaining to be explored.Proof of Lemma 1. Given m < n=2, let Tm = minfk : mk = mg and set Tm = n, if no suhk exists. Introdue Hm = sTm , the stak size at this moment. By the de�nition of MP1, forj < k and sj > 0, the onditional probability of the transition (mj; sj) ! (mj+1; sj+1) =(mj; sj+1), whih leads to an inrease of the stak by 1, is m=n at most. And the alternativetransition leads to the stak size sj � 1. For sj = 0, we have sj+1 = 1. These observations9



imply that Hm is stohastially dominated by Wm, the maximum of the simple asymmetrirandom walk f�jgj�n on f0; 1; 2; : : :g, de�ned as follows: �0 = 0,Pr(�j+1 = �j + 1 j �j) = p := m=n; (�j � 1);Pr(�j+1 = �j � 1 j �j) = q := 1�m=n; (�j � 1);Pr(�j+1 = 1 j �j = 0) = 1:Furthermore, for eah integer w > 0, Pr(Wm > w) � nPr(Wm > w), where Wm is themaximum of �j for j between 0 and the �rst moment t > 0 when �t = 0. Using the lassigambler's ruin formula, we havePr(Wm > w) = q=p� 1(q=p)w+1 � 1 � (p=q)w:Then, introduing mi = n2 � [ain2=3 lnn℄ and pi = mi=n, i = 1; 2, with a2 = a1=2, we havePr�Wmi > n1=3� � 2n� m2n�m2�n1=3< 3n�1� 4a2n�1=3 lnn�n1=3 < 3n exp(�4a2 lnn) = 3n2a1�1 ! 0;provided a1 > 1=2.Now, sine 2mk + sk = k at eah step, we havem = Tm �Hm2 � Tm �Wm2 :Applying this to m = m1; m2, we see thatPr( 2\i=1�2mi � Tmi � 2mi + n1=3 and Hmi � n1=3�) � 1� O(n�a); a = 2a1 � 1:ThereforePr�(Tm2 � Tm1 = a1n2=3 lnn + O(n1=3)) \ (Hm1 � n1=3)	 � 1� O(n�a):Denote the event in this bound by A. LetB = A \ fsk beomes zero at some k 2 [Tm1 ; Tm2 ℄g:We want to show that Pr(A n B) � n�b; 8 b > 0, for n large enough. Let t1 2 [0; n � 1℄.Suppose that mt1 � m2, and 0 < st1 � n1=3. These onditions ertainly hold if t1 = Tm1 .Let T = T (t1) be the �rst t > t1 suh that either mt = m2, or st = 0. As before, fstgt<T is10



dominated by the asymmetri walk f�jgj�t1, �t1 = bn1=3, with p = m2=n. Therefore T � t1is dominated by Xp;bn1=3, where Xp;s is the �rst time the random walk hits 0, if �0 = s. Sine(see Proposition 8 in the Appendix)Pr(Xp;s � r) � (4pq)�r=2(2p)s ;it follows thatPr�Xm2n ;bn1=3 � bn2=3� � �1� 4ba2n2=3 lnnn2 �bn2=3�1� 2ba2n2=3 lnnn �bn1=3 � exp(�a2 ln2 n):Therefore T (t1) � t1 � n2=3 quite surely (q.s. in short), i.e. with probability 1 � n�b,for every b > 0, uniformly for all t1. Thus T (Tm1) � Tm1 � n2=3 q.s. as well. SineTm2 � Tm1 is of order n2=3 lnn � n2=3 on A, we onlude that indeed Pr(A n B) � n�b, forevery b > 0. So the Markov proess fmk; skg reahes a state (m0; 0), where n=2 � m0 2(0:5a1n2=3 lnn; a1n2=3 lnn), with probability 1� O(n�a), a = 2a1 � 1.Proof of Proposition 2 (i) Let T be the �rst k suh thatmk 2 (n=2� (1 + a)n2=3 logn; n=2� 0:5(1 + a)n2=3 logn); sk = 0:By Lemma 1, T is well de�ned with probability 1 � O(n�a). Let ` be the number of theremaining unexplored points after T steps; learly(1 + a)n2=3 lnn � ` � 2(1 + a)n2=3 lnn:The additional inrease of mk during the remaining n � T steps is (` � sn)=2, where sn isthe terminal stak size. So Zn = mn is given byZn = n� `2 + `� sn2 = n2 � 0:5sn:Thus we need to show that w.h.p. sn = O(n1=3 logn). Sine mk � n=2 for all k, sn isdominated by �`, where f�jg is the simple symmetri random walk with p = q = 1=2, and�0 = 0. We need to �nd a likely upper bound for �`. First of all, for eah integer x � 0,Pr(�` = x) = X2t+�=`PtQ�(x); (4)here Pt = Pr(�2t = 0), the probability that the walk returns to 0 after 2t steps; Q�(0) = Æ�;0,and Q�(x), x > 0, is the probability that the walk, that starts at 0, reahes x after � stepswithout ever returning to 0. We will need the full strength of this formula later, but for nowwe are ontent with its weak orollary, namelyPr(�` = x) � X�;t�02t+�=` Q�(x): (5)11



As for Q�(x), reall that, by the ballot theorem, the total number of ways to reah the pointx from the point 0 by making � (�1)-moves, without returning to 0, isx�� �(� + x)=2�; � � x;(� + x)=2 being the total number of right moves. Therefore, for the (p; q)-simple walk,Q�(x) := x�� �(� + x)=2�p(�+x)=2�1q(��x)=2;(the probability of the �rst move, from 0 to 1, is 1, eah of the other � � 1 moves hasprobability p.) Using Stirling's formula and 4pq � 1, we obtain a simple estimateQ�(x) � 0x exp(�x2=2�)p�(�2 � x2 + �) ; x > 0 (6)where 0 is some onstant. (We will ontinue to use 's for various absolute onstants.)Combining (5) and (6), we havePr(�` = x) � 0xe�x2=2` Xx���` 1p�(�2 � x2 + �) � 1xe�x2=2`:(That the last sum is uniformly bounded follows from onsidering separately � � 2x andx � � � 2x.) ThenPr(�` � �n1=3 lnn) � 1 Xx��n1=3 lnn xe�x2=2` � 2 exp�� �2n2=3 ln2 n4(1 + a)n2=3 lnn� = 2n�a;(7)as ` � 2(1 + a)n2=3 lnn, and � = 2pa(1 + a).Proof of Proposition 2 (ii) As in the proof of part 1,Zn = n2 � 0:5sn;so we need to show that w.h.p. sn � �n := 2n1=3 ln�2 n. Clearly sn stohastially dominates�` for the (p; q)-walk, wherep = mTn = 12 � ǹ and ` = n� 2mT 2 [(1 + a)n2=3 lnn; 2(1 + a)n2=3 lnn℄:Thus Pr(sn � �n) � Pr(�` � �n) = Xx��n Pr(�` = x);with Pr(�` = x) given by (4). This time we need a sharp bound for Pt, whih isPt � ((1� 2p) + (t + 1)�1=2) = � ǹ + t�1=2� ; (8)12



see Proposition 9. For t 2 [`=2; `℄, the �rst summand dominates sine `3=2 � n, and thebound simpli�es to Pt � 2(`=n). Break the sum in (4) into two parts, � � `=2 and � < `=2.Sine x � �n � `, it follows from (6) and (8) that, for x > 0,X2t+�=`��`=2 PtQ�(x) � 0x24X��`=2��3=2�`=n + (`� � + 1)�1=2�35� 00x�(`=n)`�1=2 + `�1� = O�x`1=2=n�;as `3=2 � n. ThereforeX0<x��n X2t+�=`��`=2 PtQ�(x) = O(�2n`1=2n�1) = O(ln�3=2 n): (9)Let � � `=2 now. Sine 2t+� = `, it follows that t � `=4, and so Pt = O(`=n). Then, using(6), we obtain Xt+�=`��`=2 PtQ�(x) � ̂`n�1x Z 1x e�x2=2ypy(y2 � x2) dy! : (10)Substituting y = x=z, we transform the last integral intox�1=2 Z 10 e�xz=2pz(1� z2) dz = r2x (J1 + J2);with J1; J2 orresponding to integration over [0; 1=2℄ and [1=2; 1℄, respetively. Then, substi-tuting w = xz=2,J1 � 2p3 Z 1=20 z�1=2e�xz=2 dz � 2p3x�1=2 Z 10 w�1=2e�w dw = ̂1x�1=2;and J2 � e�x=4 Z 11=2 dzpz(1� z2) = ̂2e�x=4:Therefore the bound (10) beomesX2t+�=`��`=2 PtQ�(x) = O(`n�1x(x�1=2)2) = O(`=n); x > 0:Consequently X0<x��n Xt+�=`��`=2 PtQ�(x) = O(`n�1�n) = O(ln�1 n): (11)13



Combining (9) and (11), we obtainX0<x�� X2t+�=`PtQ�(x) = O(ln�1 n):Finally X 2t + � = `PtQ�(0) = P`=2 = O(`=n) = O(n�1=3 lnn):So Pr(�` � �n) = X0�x��n X2t+�=`PtQ�(x) = O(n�1=3 lnn) + O(ln�1 n) = O(ln�1 n):Sine Zn = n=2� 0:5sn, and sn dominates �`, the statement follows.Proof of Proposition 2 (iii) First of all, for n even, Zn = n=2 i� sn = 0, and, for n odd,Zn = (n � 1)=2 i� sn�1 = 0. Consider, for instane, even n. We know that, onditionedon the event in Lemma (all it A), sn is dominated by �`(1=2) of the walk (f�jgj�`) withp = 1=2, and dominates �` of the walk with p = pn := 1=2� `=n. Then, using (8),Pr(sn = 0 j A) � Pr(�r(pn) = 0)jr=` = O((1� 2pn) + `�1=2) = O(`=n) = O(n�1=3 lnn):On the other hand, again using (8),Pr(sn = 0 j A) � Pr(�r(1=2))jr=` = 
(`�1=2) = 
(n�1=3 ln�1=2 n):Sine Pr(A) = O(n�a), piking a > 1=3 we onlude that unonditionally�n�1=3 ln�1=2 n � Pr(sn = 0) � �n�1=3 lnn;for some absolute onstants �; � > 0. The ase n odd is similar.This ompletes the proof of the proposition.5 Random permutation labeling.The random labeling we have studied very likely assigns the same labels to di�erent points.(Indeed, the probability that no two points have the same label is n!=nn � 2�n.) If weonsider only distint labels, then it is natural to assume that the labels of n points formthe uniformly random permutation of f0; : : : ; n � 1g. We strongly believe that our resultson mathings and paths ontinue to hold for this uniform permutation labeling, and theomputer experiments provide an ample evidene supporting this belief. However, a rigorousproof of suh an \invariane" is quite problemati. We model the work of our algorithmsas the proesses, in whih at every step we explore the label of a point for the �rst time.So, for the independent labels, this label is onditionally uniform on f0; : : : ; n � 1g, while14



for the random permutation labeling it is onditionally uniform on the subset of labels notyet seen. This ompliation makes it neessary to keep trak of the labels enountered sofar, thus invalidating usage of the relatively simple Markov hain fmk; skg. Whether theorresponding Markov hain an be rigorously analyzed is, in our opinion, a hallengingproblem.Here is a version of the mathing problem for whih we an prove the asymptoti equivaleneof the two labelings. Let P = fp0; p1; : : : ; pn�1g and Q = fq0; q1; : : : ; qn�1g be suh that thepoints of P [Q lie on a irle, in the yli order p0; p1; : : : ; pn�1; q0; q1; : : : ; qn�1. We onsiderparallel mathings between P and Q, that is, mathings onsisting of the edges (pi; qi) only.Clearly the maximum (harmoni) mathing size equals Dn, the total number of distintlabels `(pi; qi) (� (`(pi) + `(qi) (mod n)). Suppose that `(pi) = i, 0 � i � n � 1, andthat the labels of the points in Q are either independent, uniform on f0; : : : ; n� 1g, or arethe elements of the uniformly random permutation of f0; : : : ; n� 1g. Then, for eah of thelabelings, Dn=n ! 1 � e�1 in probability. The proofs are based on evaluation of the two�rst order moments of Dn, but the omputations for the random permutation ase are moreinvolved.6 Non{rossing harmoni pathsWe now turn to Question 2, whih is: how many edges are there typially in a maximumsize harmoni non{rossing path in GS?6.1 Roster of algorithms.Again, there is given a olletion S = fp0; p1; : : : ; pn�1g of points in onvex position, andthe labels A[i℄ = `(pi) are independent, uniform on f0; : : : ; n� 1g, while eah edge (pi; pj) isassigned a label `(pi; pj) :� (`(pi) + `(pj)) (mod n).We seek algorithms that take as input an array (A[0℄; A[1℄; : : : ; A[n � 1℄), and deliver aprovably long path on GS whih is both non{rossing and harmoni.We studied the following algorithms.(i) GPath1. It is relatively simple to study, but the resulting path is disappointingly shorton average.(ii) GPath2. Besides being quite natural, this algorithm typially delivers an impressivelylong path. In fat, in our experiments it outperformed all other variants of pathalgorithms. However we ould not analyze its performane rigorously.(iii) HPath. Its empirial performane puts it above GPath1 and below GPath2. Cru-ially, HPath is amenable to a rigorous analysis, whih on�rms its superiority overGPath1. 15



6.2 GPath1.GPath1 works as follows. Start with p0. Reursively, given a urrent path p0 = pi0 ! pi1 !: : : ! pik , enlarge it by adding the �rst vertex from fpi : i > ikg suh that the resultingpath p0 = pi0 ! : : : ! pik ! pik+1 remains harmoni. This is equivalent to the onditionA[i℄ =2 fA1; : : : ; Akg, where A1; : : : ; Ak are determined by the labels of the edges (pij ; pij+1),0 � j � k� 1. The new path remains non{rossing automatially sine ik > ik�1. Continue,until no suh enlargement is possible. Obviously, for eah k, no vertex pi with i > ik hasbeen tested as a andidate for joining the path until it has grown to length k.Reall that A[0℄; : : : ; A[n� 1℄ are independent, eah uniformly distributed on f0; : : : ; n� 1g.Then, given the labels A[j℄, j � ik, the labels A[i℄, i > ik, remain mutually independent,and uniform. So the events A[i℄ =2 fA1; : : : ; Akg; i > ik, are onditionally independent, eahof the onditional probability 1� k=n. It follows then that the length of the terminal pathhas the same distribution as Dn, the number we enountered studying the largest size of theparallel mathing. Thus the likely number of edges in the terminal path is asymptoti, inprobability, to (1� 1=e)n � 0:632n.6.3 GPath2.Unlike GPath1, in eah step of GPath2 there are two possible types of a point to be addedto the urrent path. At the end of the k{th step we have: (i) the urrent (non{rossing,harmoni) pathPk = fpi0 ! pi1 ! : : :! pi`g; ` = `(k) � k; pi0 = p0; pi1 = pn�1;(ii) the set Dk = fpLk ; pLk�1; : : : ; p1 ; p0; pn�1; pn�2; : : : ; pRk+1; pRkg; Lk < Rk;of dead points, never to be used in future for extending a path. In partiular, Pk � Dk. Inaddition, pi`, the newest vertex of the path Pk, is either pLk or pRk . Let Gk := S�Dk denotethe set of game points, that is, the points that still an be added to the path Pk.For instane, at the end of the �rst step of GPath2 the path P1 is fp0 ! pn�1g = fpi0 !pi1g, L1 = 0 and R1 = n � 1, D1 = fp0; pn�1g. In general, Dk may well ontain the pointsother than those from Pk.Clearly any vertex from Gk an be added to Pk without ausing new edge ross any edge ofPk. So our only onern is that a new edge must have a label di�erent from the labels of alledges in the path Pk. Suppose, for instane, that pi` = pRk . First we test pLk+1, the pointthat follows Dk in the ounterlokwise diretion. If it fails the test, (i. e. if the label of(pLk+1; pi`) has been enountered earlier), then we test pRk�1, the point that follows Dk inthe lokwise diretion. We keep testing new points in this alternating fashion until we �nd apoint pi`+1 that an be joined to pi`, to extend the urrent path Pk. If pi`+1 = pLk+t; (t � 1),then all the points PLk+s; (0 < s < t); \die", so thatDk+1 = Dk [ fpLk+s : 0 < s < tg:16



If pi`+1 = pRk�t; (t � 1), thenDk+1 = Dk [ fpRk�s : 0 < s < tg:If no suh point is found, then the proess stops. GPath2 is illustrated in Figure 6.3.PSfrag replaements p0 pn�1 pn�2
pRk�1pRkpRk+1pRk+2pRk+3

p1p2pLk�1pLkpLk+1pLk+2pLk+3
Figure 4: Illustration of GPath2.Unlike the algorithms we have disussed, Gk (the set of ative (game) verties) may ontain,in addition to fresh verties, some verties whose labels had been tested in the previous steps.This diversity makes it hard to bound from below the (onditional) probability that a gamevertex passes the test, and an be hosen as the next extension of the urrent path.Conjeture 3 The likely number of edges in a path delivered by GPath2 is asymptoti toe2 � 1e2 + 1n � 0:761n:Our extensive omputer experiments support the estimate 0:761n for the average path length.The number (e2�1)=(e2+1) omes from the following simple-minded model of the algorithm.We assume that the label of a vertex being tested is generated anew, uniformly at randomon f0; : : : ; n� 1g, and independently of all other explored labels, inluding the old label ofthe vertex in question if it had been tested before. This assumption erases the di�erenebetween the old and the new verties in Gk, and the probability that a vertex in Gk anbe added to the urrent path Pk is simply 1 � jPkj=n. Let �k = jPkj, and let dk denotethe total number of dead verties not in Pk. Then f�k; dkg is a Markov hain suh that:(�0; d0) = (0; 0), and(�k+1; dk+1) = (�k + 1; dk) with probability 1� (�k=n)2,17



(�k+1; dk+1) = (�k; dk + 1) with probability (�k=n)2.The proess terminates when �k + dk = n� 1.A oupon-olletor type of argument shows that the likely length of the terminal path isasymptoti to n, where  is the solution of the equationZ 0 11� x2dx = 1;or  = (e2 � 1)=(e2 + 1) � 0:761. The hallenge is to show that whp the work of the atualalgorithm is asymptotially lose to this Markov proess.6.4 HPath: the algorithmIn this setion, lowering our sights, we desribe an algorithm (HPath) whih on averageperforms better than GPath1, but falls short of the onjetured performane of GPath2.Unlike GPath1, in HPath some of the verties that had failed the label test are testedagain, and this modi�ation typially leads to fewer wasted verties.As in GPath2, at the end of the k-th step we have the urrent path Pk = fpi0 ! pi1 !: : :! pi`g, ` = `(k) � k, (pi0 = p0; pi1 = pn�1), and the set Dk � Pk of the \dead" verties.Dk is an interval, whose endpoints are in Pk. One of the endpoints is pi`. The set Dk of the\live" verties ontains an interval Fk of the \fresh" verties, i. e. verties whose labels havenot been tested yet. In general, Dk and Fk are separated by two, left and right, intervalsonsisting of verties already tested. Denote these intervals TLk and TRk and let Tk = TLk [TRk .At most one vertex u in Tk may still be alive, in whih ase its label A[u℄ is di�erent fromthe label of pi`, and the path extension pi` ! u is unfeasible. The remaining verties in Tkare dead.Case 1. Tk onsists of dead verties only. Piking the left endpoint q of Fk, we hekwhether the label of the edge (pi`; q) is di�erent from the labels on the edges in Pk, so that(pi`; q) an be added to Pk. If it an, then we set Pk+1 = fpi0 ! : : : ! pi` ! qg, so that`(k + 1) = `(k) + 1 and pi`(k+1) = q. Furthermore Dk+1 := Dk [ TLk , TLk+1 := ;, TRk+1 := TRk ,Fk+1 := Fk n fqg. Tk+1 onsists of dead verties only. If (pik ; q) annot be added to Pk andthe labels of pi`, q are the same then q is delared dead. If the labels of pi` and q are distint,then q is delared alive. In either ase, TLk+1 := TLk [ fqg, TRk+1 := TRk , Fk+1 := Fk n fqg,Dk+1 := Dk, Pk+1 := Pk. Clearly at most one vertex u in Tk+1 is alive, in whih ase: (i)A[u℄ 6= A[pi`(k+1)℄; (ii) the path extension pi`(k+1) ! u is unfeasible.Case 2. Tk ontains exatly one vertex (all it u) still alive. Suppose, say, that u 2 TLk .Consider the right endpoint v of the fresh interval Fk suh that Fk is sandwihed between uand v.Case 2(a). If the path extension pi` ! v is unfeasible, then v is delared dead, and TLk+1 :=TLk , TRk+1 := TRk [ fvg, Fk+1 := Fk n fvg, Dk+1 := Dk, Pk+1 := Pk. u is a sole alive vertex inTk+1, its label meeting the onditions (i), (ii), (see Case 1).18



Case 2(b). Suppose pi` ! v an be used for extending the path Pk. We hek then whetherthe 2-edge extension pi` ! v ! u is usable as well.In ase \no" we set Pk+1 := fpi0 ! : : :! pi` ! vg, TLk+1 := TLk , TRk+1 := ;, Fk+1 := Fk nfvg,Dk+1 := Dk [ TRk [ fvg. Note that Tk+1 still ontains u, and the label of u is di�erent fromthe label of v = pi`(k+1). Otherwise, like pi`(k) ! v, pi`(k) ! u would have also been a feasibleextension of Pk, whih ontradits the de�nition of u, the sole alive vertex in Tk. And, ofourse, pi`(k+1) ! u = v ! u is not a feasible path extension. Thus u is the sole alive vertexin Tk+1, and the onditions (i), (ii) are met again.In ase \yes" we set Pk+1 := fpi0 ! pi1 ! : : : ! pi` ! v ! ug, so `(k + 1) = `(k) + 2,and pi`(k+1) = u. We set TRk+1 := ;, Fk+1 := Fk n fvg, Dk+1 := Dk [ TRk [ fvg [ A andTLk+1 := TLk n [pi` ; u℄. Here Tk+1 onsists of dead verties only.The proess stops when F , the set of fresh verties, beomes empty.7 Analysis of HPathThe main result in this setion is a lower bound for the expeted number of edges in thepath delivered by HPath.Theorem 4 Let � = � ln 2 + 32p5 ln (p5 + 2)(p5� 1)(p5� 2)(p5 + 1)! � 0:598:Then the expeted number of edges in a path obtained by the ation of HPath is at least�1� e��12 �n � 0:665n:Thus w.h.p. HPath outperforms GPath1.Proof. We break the analysis into two parts. First we obtain a probabilisti upper boundfor the number of verties it takes to build a path of length n=2. Seond, we use a balls-into-boxes argument to bound from below the expeted number of edges added to the pathduring the remaining steps.Lemma 5 Let �n denote the random number of verties tested by the algorithm till theurrent path length reahes n=2. Then, for eah " > 0limn!1P ��nn � (1 + ")�� = 1: (12)
19



Proof. (I) After the k-th step, we have the urrent path P = Pk, the set of dead vertiesD = Dk � Pk, and the set T = Tk of other verties, already tested, that separates D fromF = Fk, the set of fresh verties. A vertex u 2 T is singled out as an only vertex in T , stillalive, if it is present. To omplete the desription of the urrent state we need to list thelabels A[i℄ of verties i from P and the label of a still alive vertex u 2 T , if it exists; in thatase A[u℄ 6= A[pend℄, where pend being the endvertex of P , and u annot be used to extend P .Let S be the resulting state desription. It an be seen that the sequene fSkg is a Markovhain. As in the ase of the mathing algorithm, it is possible to determine a muh simplerMarkov hain dominated by fSkg. Let ` be the length of the urrent path P . Let � 2 f0; 1gbe an indiator of the event fT ontains an alive vertex ug. Denote by `0; �0 the parameterof the next state S 0, we have:P [(`0; �0) = (` + 1; �) j S℄ = 1� `=n; (13)P [(`0; �0) = (`; � + 1) j S℄ � (`� 1)=n; (14)P [(`0; �0) = (`; �) j S℄ � 1=n; (15)if � = 0, and P [(`0; �0) = (`; �) j S℄ = `=n (16)P [(`0; �0) = (` + 2; � � 1) j S℄ � 1� 2`=n (17)P [(`0; �0) = (` + 1; �) j S℄ � `=n; (18)if � = 1.Let us prove (13){(18). Suppose � = 0. The relation (13) follows from the observation thata fresh vertex v an be added to P i� its label is not equal to one of ` \exluded" values,determined by the edge labels of the path P and and A[pend℄, i. e. i� A[v℄ =2 Ex(P; pend),jEx(P; pend)j = `. Then the sum of two other onditional probabilities is `=n, and the thirdprobability is at most 1=n, the probability that the fresh vertex has the same label as A[pend℄(and ould not be added to the path).Suppose now that � = 1. Then (16) holds, analogously to (13), and thus the sum of twoother probabilities is 1� `=n. So we need to prove (17) only. If a fresh vertex v 2 F annotbe added to P then A[v℄ 2 Ex(P; pend). Likewise the label of (v; u) oinides with the labelof one ` edges of P if A[v℄ 2 Ex(P; u). Sine eah of the Ex sets is of ardinality `, there areat least n � 2` values for A[v℄ for whih the labels of (pend; v) and (v; u) are di�erent fromthe labels of ` edges P . Sine A[pend℄ 6= A[u℄; for those n � 2` values of A[v℄ the labels of(v; u) and (pend; v) are mutually distint as well, and we have a two-edge extension of P . So(17) follows.Obviously, the key inequality (17) an be helpful only as long as ` � n=2. The inequalities(13)-(18) lead us to onsider a Markov hain (�k; �k), where �k 2 f0; 1g, suh that, for1 � k � n=2, P [(�0; �0) = (� + 1; �)j (�; �)℄ = 1� �=n;P [(�0; �0) = (�; � + 1)j (�; �)℄ = (� � 1)=n;P [(�0; �0) = (�; �)j (�; �)℄ = 1=n;20



if � = 0, and P [(�0; �0) = (�; �)j (�; �)℄ = �=n;P [(�0; �0) = (� + 2; � � 1)j (�; �)℄ = 1� 2�=n;P [(�0; �0) = (� + 1; �)j (�; �)℄ = �=n;if � = 1.To de�ne the hain ompletely, set �1 = 1, and �1 = 0. The hain terminates one �k � n=2.We want to show that `k stohastially dominates �k, that isP [`k > t℄ � P [�k > t℄; (19)if (`1; �1) = (�1; �1):To this end, let us introdue the lexiographial order � on the pairs (`; �):(`; �) � (^̀; �̂) i� ` > ^̀ or (` = ^̀ and � � �̂):It is straightforward that for every state S, and any pair (`�; ��)P [(`0; �0) � (`�; ��)j S℄ � P [(�0; �0) � (`�; ��)j (�; �)℄: (20)if (�; �) = (`(S); �(S)): Using this inequality and indution, one an show easily that foreah k and all (`�j ; ��j ); j � k,P [(`j; �j) � (`�j ; ��j ); 8j � k℄ � P [(�j; �j) � (`�j ; ��j ); 8j � k℄:Setting ��j = 0, we get P [`j � `�j ; 8j � k℄ � P [�j � `�j ; 8j � k℄;and (19) follows.(II) Let K = minfk : `k � n=2g, and eK = minfk : �k � n=2g. Sine `k; �k never derease,by (19), P (K � k) � P ( eK � k); 8k:To study the limiting behavior of eK, introdue eK` = minfk : �k = n=2g, for �1 = `; �1 = 0and eK �̀ = minfk : �k = n=2g, for �1 = `; �1 = 1, i.e. eK = eK1 and eKn=2 = eKn=2+1 =eK�n=2 = eK�n=2+1 = 0. (For simpliity we assume that n is even.)Introdue the Laplae transformsF`(u) = E�eu eK`=n�; F �̀(u) = E�eu eK �̀=n�; u > 0:Using the Markov property of (�k; �k), for ` < n=2,F` =eu=n ��1� ǹ�F`+1 + � ǹ � 1n�F �̀ + 1nF`� ; (21)F �̀ =eu=n � ǹF �̀ + �1� 2 ǹ�F`+2 + ǹF �̀+1� : (22)21



We want to show the existene of a smooth funtion h(x), suh that F`(u); F �̀(u) � euh(`=n):This would imply that eK`=n; eK �̀=n onverge, in probability, to h(`=n). To this end, introduealso two smooth funtions a(x); b(x) and de�nef` = eu(h+a=n); f �̀ = eu(h+b=n); h = h(`=n); a = a(`=n); b = b(`=n):Our task is to determine h; a; b so that f`; f �̀ almost satisfy the equations (21){(22) for F`and F �̀. Plugging the expressions for f`; f �̀ into these equations, and using the smoothnessof h(x), a(x) and b(x), we omputef` � eu=n ��1� ǹ� f`+1 + � ǹ � 1n� f �̀ + 1nf`�=f`�1� eu=n ��1� ǹ� euh0=n+O(n�2) + � ǹ � 1n� eu(b�a)=n + 1n��=f`�1� eu=n �1 + �1� ǹ� uh0n + ǹ u(b� a)n + O �n�2���=� f`un �1 + �1� ǹ� h0 + ǹ + O(n�1)� ; (23)where (x) = a(x)� b(x), and the bounded oeÆient impliit in O(n�1) depends on u andmax jh00(x)j, max ja0(x)j. Likewisef �̀ � eu=n � ǹf` + �1� 2 ǹ� f`+2 + ǹf �̀�=� f �̀un �1 + �2� 3 ǹ� h0 + �1� 2 ǹ�  + O(n�1)� : (24)Interestingly, the square brakets expressions in the bottom lines of (23){(24) depend on aand b only through the di�erene  = a� b. Let us hoose (x) suh that1� x(x)1� x = 1 + (1� 2x)(x)2� 3x =) (x) = 1� 2x1� x� x2 :Then (23){(24) are very nearly satis�ed ifh0(x) + 1� x(x)1� x = 0 =) h0(x) + 1� x1� x� x2 = 0:Sine we want 1 = E [eu eKn=2=n℄ � euh(1=2), we impose the ondition h(1=2) = 0. The solutionis h(x) = �12 ln[4(1� x� x2)℄ + 32p5 ln (p5� 2x� 1)(p5 + 2)(p5 + 2x + 1)(p5� 2) :In partiular, h(0) = � ln 2 + 32p5 ln (p5� 1)(p5 + 2)(p5 + 1)(p5� 2) :22



Pik " 2 (0; 1), and set h�(x) = (1�")h(x), so that h�(1=2) = 0 again. Consider the +-ase.Let a(x) = (x)+M , b(x) = M , M > 0 to be spei�ed shortly. Then a(x)�b(x) = (x), andsine h0(x) < 0 for x 2 [0; 0:6℄, say, the square brakets expressions on the right hand sideof (23) and (24), times �1, are positive and bounded away from zero. So the orrespondingf`, f �̀ satisfy the reurrene inequalities obtained from (21){(22) by replaing = with �. Inaddition, for ` 2 fn=2; n=2 + 1g,f` = exp �u �h+(`=n) + n�1((`=n) + M)�� = exp(un�1(M � a));where a = maxx�0:6�2jh0(x)j + j0(x)j�, as h(1=2) = (1=2) = 0. So, hoosing M � a, weensure that f` � 1. Likewise f �̀ > 1 for those `. Thereforef` � F`; f �̀ � F �̀; ` 2 fn=2; n=2 + 1g:Using this as the basis of the bakward indution, and the reurrene equations (inequalitiesrespetively) for F`; F �̀ (for f`; f �̀ respetively) for the indutive step, we obtain that, forall ` � n=2,F`(u) � exp �u�h+(`=n) + n�1((`=n) + M)�� ; F �̀(u) � exp �u�h+(`=n) + n�1M�� :In exatly the same way we obtain the lower bounds with h� in plae of h+, and (x)�M; �Min plae of (x) + M; M . In partiular, using these bounds for ` = 1, we see that n�1 eK1 =n�1 eK onverges in probability, and in terms of Laplae transform, to � = h(0). Therefore,using the stohasti dominane of eK over K, we obtain that for eah Æ > 0, K � (1 + Æ)n�with probability approahing 1 as n ! 1. Roughly, w.h.p. the number of steps (verties)it takes for HPath to build a path of length n=2 is �n, at most. This proves Lemma 5.One suh a path is determined, we swith to the algorithm in whih the fresh verties aretested in the �xed diretion, lokwise or ounterlokwise. For this phase the number ofadditional edges that will be added to the path equals, in distribution, to the total number ofboxes labeled n=2+1; : : : ; n whih are oupied by at least one ball in the uniformly randomalloation of n � K balls among the boxes 1; 2; : : : ; n=2; n=2 + 1; : : : ; n. The onditionalexpeted number of suh boxes isn2 "1� �1� 1n�n�K# = n2 [1� exp(�1 + K=n + O(n�1)℄:In probability, lim inf(1� e�1+K=n+O(n�1) � 1� e�1+�;whene the expeted length of the terminal path saled by n is, in the limit, 1� e�1+�. Thetheorem is proved ompletely.Notes. (1) The ombination of Laplae transforms and the approximation tehnique via thedi�erential equations had been used by seond author in [P1℄ (an urn model), [P2℄ (spreadingrumor proess), and [P3℄ (random graph proess).23



(2) There is a natural extension of HPath algorithm in whih more than one vertex an bekept alive. Numerial omputations for the orresponding Markov hain indiate that theexpeted length of the terminal path is at least�1� e0:591�12 �n � 0:6678n;a surprisingly small improvement. The original algorithm and this last modi�ation workbetter in pratie; to establish this fat rigorously one would need to �nd a better alternativeto the lower bound 1� 2`=n for the key transition probability.(3) For n prime there is a modi�ed algorithm that on average outperforms GPath1. In thisalgorithm after the k-th step we have a path Pk = fpi0 ! pi1 ! : : : ! pi`g, ` = `(k), aset Dk � Pk of dead verties, and an interval [uk; vk℄ = Fk = Dk of fresh verties. If eitherpi` ! uk ! vk or pi` ! vk ! uk an be added to Pk, we do so, thereby getting Pk+1 of length`(k + 1) = `(k) + 2. If a two-edge extension is not possible, we go for one-edge extension,pi` ! uk or pi` ! vk, if any is feasible, obtaining Pk+1 of length `(k+1) = `(k)+1. OtherwisePk+1 = Pk. Whatever the outome is, Dk+1 = Dk [ fuk; vkg. It is lear that Pk+1 = Pk (i.e.`(k + 1) = `(k)) with the (onditional) probability (`=n)2. Primality of n an be used toshow that `(k + 1) = `(k) + 2 with probability�1� ǹ��1� ` + 1n � + b(n� `� 1)2=4n2 ; (25)at least. Then `(k + 1) = `(k) + 1 with probability1� � ǹ�2 � �1� ǹ� � �1� ` + 1n �� b(n� `� 1)2=4n2at most. With these bounds at hand, we onstrut the orresponding Markov hain f`(k)gwhih is dominated by the seond phase of GPath1. It turns out the expeted terminalpath length is asymptoti to 0:672n, larger by 0:007n than the bound in Theorem 4. Hereis the explanation for (25). First of all, pi` ! uk ! vk is added to the urrent path withprobability (1�`=n)(1�(`+1)=n), regardless of whether n is prime. It remains to show that,for n prime, pi` ! uk annot be added to the path, but pi` ! vk ! uk an with probabilityb(n � ` � 1)2=4=n2, at least, if ` � n=2. The latter bound follows from a theorem, due toPollard [14℄:Theorem 6 Let p be a prime number, and let A and B nonempty subsets of Z=pZ. Letr = jBj � jAj = s:For t = 1; : : : ; r, let Nt denote the number of ongruene lasses in Z=pZ that have at leastt representations in the form a + b, where a 2 A and b 2 B. ThenN1 + N2 + : : : + Nt � minftp; t(r + s� t)g: (26)24



Let C := f(A[vk℄; A[uk℄) : pi` 6! uk; pi` ! vk ! ukg:Then, learly P (pi` 6! uk; pi` ! vk ! uk) = jCj=n2: (27)Let A := fA[vk℄ : pi` ! vkg and B := fA[uk℄ : pi` 6! uk; A[uk℄ 6= A[pi` ℄g:Denote L(P ) the set of labels appearing on the edges of P . Note that jAj = n�` � `; `�1 �jBj � ` and jL(P )j = `. A pair of labels (a; b) 2 A� B is in C, i� a + b (mod n) is not inL(P ). Indeed, a 2 A implies pi` ! vk, b 2 B implies pi` 6! uk, and A[uk℄ 6= A[pi`℄ impliesthat the label of pi` ! vk is di�erent from a + b (mod n) (whih is the label of vk ! uk).Setting t = b(n � ` � 1)=2, Theorem 6 an be applied for the sets A and B, as t �minfjAj; jBjg, therefore by (26),N1 + N2 + : : : + Nt � minftn; t(jAj+ jBj � t)g � t(n� 1� t): (28)The left hand side of (28) ounts the sums a + b (mod n) of the pairs of (a; b) 2 A � B,with the restrition that a partiular sum is ounted at most t times. Reall that a pairof (a; b) 2 A � B is in C, if a + b (mod n) 62 L(P ). A partiular  2 L(P ) an ouras a sum at most t times, hene the number of sums whih are not in L(P ) is at leastN1 + N2 + : : : + Nt � t � jL(P )j whih is by (28) at least t(n � ` � 1 � t). Using (27), andsubstituting the value of T we obtainP (pi` 6! uk; pi` ! vk ! uk) = jCj=n2 � t(n� `� 1� t)=n2= bn� `� 12  � dn� `� 12 e � 1n2 = b(n� `� 1)2=4n2 : (29)If we replae GPath1 with this algorithm for the seond phase, when the length of the pathexeeded n=2, then we ould a little bit improve the average performane to give a path oflength 0:672n. As the analysis works only for prime n, and the improvement is marginal, weomit the details.8 Upper bounds for harmoni pathsThe paths produed by our algorithms ontain a sizeable fration of all verties, about 2=3 forGPath1, for instane. That this fration is below 1, as opposed to the mathing algorithm,makes it natural to ask how likely is it that the longest (non-rossing, harmonious) path haslength asymptoti to n? Our next, and last, result shows that hanes of this happening areexponentially small.Proposition 7 The probability that the length of the longest path is less than 0:9604n is1� O(qn), for some 0 < q < 1. 25



Proof. Let us �rst ompute f(n;m), the total number of non-rossing paths with m verties,m � n. The number of ways to selet m verties is �nm�. Piking a starting vertex (in mways), we have two hoies, left or right neighbor, for the seond vertex, and reursively twohoies for the j-th vertex, given the �rst j � 1 verties, 2 � j � m. Therefore there arem2m�2 direted paths, whene m2m�3 undireted paths on given m verties. Thereforef(n;m) = �nm�m2m�3:The probability that suh a path is harmonious isn � n � (n� 1) � : : : � (n�m + 2)nm = (n)m�1nm�1 ;so E (n;m), the expeted number of non-rossing, harmonious paths with m verties is givenby E (n;m) = m2m�3�nm�(n)m�1nm�1 :Notie that E (n;m + 1)E (n;m) = 2(n�m)(n�m + 1)mn < 12 ;if m � 2n=3, say. Therefore, piking k � 2n=3,Xm�k E (n;m) � 2E (n; k):Furthermore,E (n; k) = 2k�3knn� k + 1�nk�2 k!nk � 2kn3 � nnkk(n� k)n�k �2� kne�k = n3enJ(k=n); (30)where J(x) = �x � (1� ln 2) + (1� x) � ln(1� x)�1:Now J(1) = �1 + ln 2 < 0, and J(x) is dereasing on [1=2; 1). The omputation shows thatJ(x0) = 0 for x0 = 0:96037 : : : . ThereforeE (n; [0:9064n℄) � n3enJ(0:9604) � qn;for some 0 < q < 1, whih ompletes the proof.Notes. (1) Let us see what a similar omputation delivers for the perfet (non-rossing,harmonious) mathings, in the ase of n even of ourse. It is well-known (Stanley [15℄, Exer.6.19 (n)) that the total number of non-rossing mathings is the Catalan numberC(n=2) = 1n=2 + 1� nn=2� �  2nn3=2 :26



Any suh mathing is harmonious with probability(n)n=2nn=2 � 1�2e�n=2 ;and so the expeted number of suh mathings is asymptoti to 2n�3=2(8=e)n=2, thus ap-proahing in�nity exponentially fast. Whether the likely number of perfet mathings is also(exponentially) large is an interesting open problem.(2) In fat, the Catalan number C(n�1) equals the number of some partiular (\alternating")non-rossing trees with n verties on the irle, see [15℄, (Exer. 6.19 (p;q)), for the exatformulation and the referenes. So there are at least n�3=24n non-rossing trees. And, usingthe depth-�rst traversing of any suh tree, we see that it is harmonious with probability(n)n�1nn�1 :Therefore the expeted number of harmonious, non-rossing trees is (4=e)n, at least. Couldit be that w.h.p. there are exponentially many suh trees?9 AppendixProposition 8 De�ne the random variable Xp;t as the time it takes for the (p; 1�p){randomwalk to reah the zero state from the state t. Then, for all r > 0,Pr(Xp;t � r) � 1(2p)t(4p(1� p))�r=2 :Proof. It is well known that the generating funtion for Xp;1 isE[zXp;1 ℄ = 1�p1� 4p(1� p)z22pz ; jzj � (4p(1� p))�1=2: (31)By the Markov property, Xp;t D! � tXj=1 X(j)p;1where X(j)p;1 are independent opies of Xp;1. ThereforeE(zXp;t) = Et(zXp;1);and, for all r > 0, Pr(Xp;t � r) � Et(zXp;1)zr ; 8z 2 [1; (4p(1� p))�1=2℄:Setting z = (4p(1� p))�1=2, we obtain thenPr(Xp;t � r) � 1(2p)t((4p(1� p))�1=2)t+r � 1(2p)t((4p(1� p))�1=2)r ;as laimed. 27



Proposition 9 For eah even t � 0, let Rp(t) denote the probability of being at 0 at thetime step t in the (p; q){random walk on f0; 1; 2; : : :g with the repellent 0 state. ThenR1=2(t) � 1t�1=2; andRp(t) < 3(1� 2p) + (�t)�1=2; if p < 1=2:Let the random variable Yp be the time it takes for the (p; q){random walk to return to the0 state. As above, let Xp;1 be the time it takes for the walk to reah the zero state from thestate 1. Then E[zYp ℄ = zE[zXp;1 ℄ = 1�p1� 4pqz22p ; (32)using (31).Now, sine Xr�0 zrRp(r) = 11� E[zYp ℄ ;we have Rp(t) = [zt℄ 11� E[zYp ℄ : (33)Then R1=2(t) = [zt℄ 1p1� z2 ;so that R1=2(t) =(�1)t=2��1=2t=2 � = 4�t=2� tt=2� � 1t�1=2;Let us now move on to the estimation of Rp(t) for p < 1=2. Using (32) and (33), anelementary manipulation yieldsRp(t) = 1� 2pq + [zt℄ 2pp1� 4pqz2 + (1� 2p) : (34)In order to estimate the seond summand in the right hand side of (34), de�neg(z) := 2pp1� 4pqz + (1� 2p) :Now g(z) is analyti in the omplex plane with a ut fz = u + iv : v = 0; u 2 [u0;1)g,u0 = (4pq)�1, where p1� u=u0 = e�i�=2pu=u0 � 1;with � and + orresponding, respetively, to the upper shore and to the lower shore of theut. Let C be a (positively oriented) losed ontour formed by C1(R) = fz = Rei� : � 228



(0; 2�)g, and C2(R) = fz = u : u 2 [R; u0℄g , C3(R) = fz = u : u 2 [u0; R℄g, representingthe direted lower and upper shores of the ut. Then, by Cauhy's formula,[zt℄g(z) = 12�i IC(R) g(z)!zt+1 dz = 12�i IC2(R)[C3(R) g(z)zt+1 dz + 12�i IC1(R) g(z)!zt+1 dz:Let R ! 1. Then the last integral tends to zero, and the �rst integral onverges to thatover C2(1) [ C3(1). Thus[zt℄g(z) = 12�i Z 1u0 duut+1(e�i�=2pu=u0 � 1 + 1� 2p) (35)+ 12�i Z u01 duut+1(ei�=2pu=u0 � 1 + 1� 2p)= 1� Z 1u0 (u=u0 � 1)1=2ut+1((u=u0 � 1) + (1� 2p)2) du= 1�ut0 Z 11 (y � 1)1=2yt+1((y � 1) + (1� 2p)2) dy� Z 11 (y � 1)1=2yt+1((y � 1) + (1� 2p)2) dy (sine u0 � 1)= Z 1+(1�2p)21 (y � 1)1=2yt+1((y � 1) + (1� 2p)2) dy + Z 11+(1�2p)2 (y � 1)1=2yt+1((y � 1) + (1� 2p)2) dy:NowZ 1+(1�2p)21 (y � 1)1=2yt+1((y � 1) + (1� 2p)2) dy � (1� p)�2 Z 1+(1�2p)21 (y � 1)1=2 dy � 1� 2p; (36)and Z 11+(1�2p)2 (y � 1)1=2yt+1((y � 1) + (1� 2p)2) dy � Z 11 dyyt+1(y � 1)1=2 (y = eu)= Z 10 e�ut(eu � 1)�1=2 du � Z 10 e�utu�1=2 du = (�t)�1=2: (37)Using (35), (36), and (37), we obtain[zt℄g(z) � 1� 2p + (�t)�1=2Therefore, by (34) we haveRp(t) � 1� 2pq + 1� 2p + (�t)�1=2 < 3(1� 2p) + (�t)�1=2;29
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