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Abstract

Consider a set S of points in the plane in general position, where each point has an
integer label from {0,1,...,n—1}. This naturally induces a labeling of the edges: each
edge (i,7) is assigned the label i + j, modulo n. In the spirit of harmonious graphs, we
propose algorithms for finding (hopefully) large non—crossing harmonic matchings or
paths, i. e. the matchings or paths in which no two edges have the same label. When
the point labels are chosen uniformly at random, and independently of each other, our
matching algorithm with high probability (w.h.p.) delivers a nearly—perfect matching,
a matching of size n/2 — O(nl/ 3Inn). We show that, in sharp contrast, a near-perfect
path is unlikely: w.h.p. the length of the longest path is below 0.96n. Our empirically
best path algorithm seems to consistently build a path of length above 0.78n, and the
likely path length for our second best algorithm is provably above 0.667.

Keywords: Graceful labeling, harmonious labeling, noncrossing, harmonic graph, convex
position, point sets, matching, path
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1 Introduction

We are motivated by the concepts of graceful labelings and harmonious graphs introduced by
Graham and Sloane [5] (see [4] for a comprehensive survey on these problems). Our interest
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is in the problem of existence of large substructures (subsets of edges or subgraphs) such
that all the edges involved have different labels. Typically, an edge label is a function of the
labels of the endvertices, e.g. the absolute value of their difference (graceful labelings), or
their sum modulo some n (harmonious graphs). There is another natural rule for assigning
the edge labels: an edge gets a label equal to the product of its endpoints labels, modulo
n. Curiously, for n prime we have basically the same model as the multiplicative group on
{1,...,n — 1} is isomorphic to the additive group on {0,1,...,n — 2}. For n composite,
some probabilistic-number theoretic issues are likely to arise.

For the point set in the plane it is natural to seek large substructures (paths, matchings)
that meet certain geometric conditions. One popular non—crossing condition requires that
no two edges in the substructure cross each other. For a sample of diverse results in this
area of combinatorial geometry we refer the reader to [1, 2, 6, 7, 8, 9, 16].

To describe the results of this paper, we need some terminology and notations. Following
[3], let S be a set of points in the plane in a convex position. Assume that each point has an
integer label from {0,...,n — 1}. If p, ¢ are distinct points (also called vertices) in S, then
we let (p,q) denote the straight segment (or edge) that has p and ¢ as its endvertices. This
naturally induces a (complete) geometric graph Gs. In general, we let E(K) denote the set
of edges of a graph K. A subset E' of E(Gg) is non—crossing if no two edges in E' intersect
in a point other that a common endvertex. A subgraph H of Gg is non—crossing if E(H) is
non—crossing.

As for the edge labels, we use the sum rule; it assigns to each edge (p, ¢) a number equal to
the sum of labels of p and ¢ modulo n. One such rule assigns to each edge the sum (modulo
n) of the labels of its endpoints. In this geometric setting, the central problem is to find
conditions for existence of large non—crossing subgraphs whose edge labels are all distinct.

While [3] dealt exclusively with the worst—case instances of the labeled set S, our goal is to
study the average (likely) case behavior under assumption that the labels of points in S are
random. More specifically, we assume that each of the n points is labeled with an integer
drawn uniformly at random from {0,1,2,...,n — 1}, independently of all other labels. We
pose the following questions.

Question 1 How many edges are there typically in a maximum size harmonic non—crossing
matching in Gg?

Question 2 How many edges are there typically in a maximum size harmonic non—crossing
path in Gg?

In our opinion, we have found a satisfying answer to Question 1. We propose a greedy match-
ing algorithm (HMATCHING) that w.h.p. delivers a matching of size n/2 — O(n'/?Inn)—a
nearly perfect matching, as the number of unmatched vertices is w.h.p. merely of order
n*?Inn. Thus the maximum matching number is n/2 — O(n'/?Inn) at least. (For the
Erdés-Rényi random graph with n/2 edges, i. e. in the critical stage, the core vertices of
degree more than, or equal to 3 are typically incident to O(n'/3) edges, Luczak et al [10].
Similarity between the numbers in both schemes is hardly more than coincidental though.)
For an arbitrary starting point the probability that the resulting matching is perfect is not



too small, of order Q(n~3In"'n), i. e. the expected number of “lucky” starting points
is Q(n??In"'n). We conjecture that the number itself is likely to be that large as well,
so that w.h.p. there exists a perfect matching! In Section 2 we present HMATCHING, and
in Section 3 we give the experimental results that allowed us to predict the likely behavior
of the algorithm. In Section 4 we provide a rigorous analysis which confirms—within the
logarithmic factors— the conjectured bounds. In Section 5 we briefly discuss the related
problem in which the point labels form a random permutation of (0,1,2,...,n — 1), rather
than being strictly independent of each other.

Somewhat unexpectedly Question 2 is inherently harder to answer fully. In Section 6 we
describe two greedy path algorithms, one rather naive, another quite elaborate. The first
algorithm w.h.p. delivers a path of length asymptotic, in probability, to (1 — e })n ~
0.63n. The computer runs indicate that the second algorithm is considerably more efficient,
consistently delivering a path of length close to 0.76n. The experiments and a caricature
model of this algorithm compel us to conjecture that the algorithm finds a path of length
asymptotic, in probability, to n(1 — e ?)/(1 + e ?) ~ 0.761n. In Section 6.4 we describe
HPATH, a compromise algorithm, whose typical performance puts it between the first two
algorithms. In Section 7 we show that w.h.p. this algorithm finds a path of length 0.66n at
least. These results signal that, in sharp contrast with the matching problem, the longest
path is not likely to contain n—o(n) vertices. And indeed, using a counting (nonalgorithmic)
argument we show (Section 8) that w.h.p. L,, the length of the longest path, falls below
0.96n. We conjecture that L, /n converges, in probability, to a constant between 0.79 and
0.96.

We conclude with the following question.

Quastion 3 How many edges are there typically in a maximum size harmonic non—crossing
tree or forest in Gg?

Going out on a limb, we conjecture that w.h.p. the maximum tree size is n — 1, so that the
maximum tree spans all n vertices.

2 HMATCHING: the algorithm

Naturally, the first step in our quest for a satisfactory answer to Question 1 was to come up
with an algorithm that would yield, in computer simulations, large harmonic non—crossing
matchings.

After several attempts, we settled on a reasonably simple algorithm that consistently ended
up with very large matchings in the computer experiments. We call this algorithm HMATCH-
ING.

Our basic assumption is that the n points that comprise the set S are in convex position,
so that all the points are on the boundary of the convex hull of S. No relevant geometrical
information is lost if we assume that all the points lie on a circle. Therefore, we may denote
the points as py, p1, - - ., Pn_1, according to the cyclic (counter-clockwise) order in which they



appear on the circle. Further each point p; gets a label A[i], and the n labels are drawn
independently from the uniform distribution on {0,1,...,n — 1}. Given the point labels,
each edge (pi, p;j) gets the label A[i, j| := A[i] + A[j] (mod n).

HMATCHING takes as input an array (A[0], A[1], A[2], ..., A[n — 1]) and its output is a
(non—crossing, harmonic) matching on S. At each step we have a current matching, both
non—crossing and harmonic, to which we add a new edge to get a larger matching that meets
the same requirements. Formally, we maintain the current matching M as a collection of
ordered pairs (¢, 7) with ¢ < j, where (¢, j) represents (p;, p;). Clearly the edge set M satisfies
the following conditions:

(a) if (4,7) and (i, j') are different pairs in M, then {i, 7} N {7, j'} =0 (M is a matching);
(b) if (¢,7) and (¢, j') are different pairs in M, then Ai] + A[j] # A[/'] + A[j'] (mod n) (M

is harmonic);

(c) if (z,7) and (¢',5") are different pairs in M, with 7 < 7', then either i < j < ' < j' or
i <1 <j <j (M is non—crossing).

The pseudocode for HMATCHING is the following.:

Input : An array (A[0], A[1],..., A[n — 1]), such that A[i] € {0,1,...,n — 1} for every i.

Output : The size of a set M of pairs (i,7), with ¢ < j, that satisfies (a), (b), and (c)
above.

Procedure :

—_

S=0; M=0; L=0; k=0

2 whilek<n-1

3 do

4 if S£0

5 then if A[max S|+ A[k] (mod n) ¢ L

6 then M < MU {(max5,k)}

7 L <+ LU {A[max S] + A[k] (mod n)}
8 S« S\ {max S}

9 else S+« SU{k}

10 else S < {k}

11 k+—k+1



Figure 1: Illustration of HMATCHING.

12 return ||

The action of the algorithm is illustrated in Figure 1.

In this example, A[0] = 7, A[1] = 6, A[2] =4,..., A]9] = 3. In the first step we explore A[0]
and add 0 to S. In the second step, we explore A[1], and check if A[0] + A[1] (mod 10) is in
L. Since it is not, the edge (A[0], A[1]) is added to M, and since A[0] + A[l] =7+6 =
3 (mod 10), L becomes {3}, and S goes back to (). In the third step we explore A[2], and
since there is no stack, we add 2 to S (so that S becomes {2}, since it was empty) and move
on to the fourth step, where we explore A[3]; since A[2] + A[3] = 4+ 9 = 3 (mod 10) is
already in L, we must now set S = {2,3}. In the fifth step we explore A[4] = 5. Since 3 is
the largest integer in S, we check if A[3] + A[4] = 4 (mod 10) is in L. Since it is not, then
we add (A[3], A[4]) to M, 4 to L, and remove 3 from S. At the end, we obtain the matching
shown, which happens to be perfect.

In words, this algorithm works as follows. By letting k increase from 0 to n — 1, we explore
the labels A[0], A[1],..., A[n — 1] in the given order. Now at each step we have a set of
matching edges (namely the current M), whose set of labels is recorded as the set L, plus
a stack of unmatched vertices (that is, not incident with an edge in M), whose index set
is S: the i-th vertex is unmatched iff ¢ € S. As we explore the next vertex label A[k], we
attempt to match it with the vertex 7y in the stack such that iy is largest among all vertices
in the stack. Note that this makes sense geometrically: if we manage to add this edge to
M (that is, if Afip] + A[k] (mod 10) ¢ L), then the edge joining each vertex in the stack
to each unexplored vertex does not cross any edge in M. Loosely speaking, after we add a
matching edge, each vertex in the stack (as well as each unexplored vertex, of course) still
has a chance to be the endvertex of a matching edge.

We wrote code for this algorithm, including the generation of random labels, and ran it
repeatedly for large values of n (n = 10% 10°,10°%). Its performance exceeded our best
expectations. We consistently found a matching in question of size at least 0.999(n/2), thus
extremely close to a perfect matching that contains |n/2]| edges. In the next Section 3
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Figure 2: For each value of n = 5000, 10000, 15000, ...,50000, we ran HMATCHING 10°
times, each time on a randomly generated array (A[0], A[1], A[2],..., A[n — 1])), and com-
puted the average size of the set of vertices left unmatched. The results are shown in this
figure, together with the fitting curve n'/3/1.46 proposed by Gnuplot®.

we present our experimental results. Then in Section 4 we present a rigorous study which
confirms our conjectures based on the experimental numerics.

3 Performance of HMATCHING: empirical results

There are two natural parameters to measure the performance of HMATCHING: (i) the
expected size of the matching obtained by running HMATCHING, and (ii) the probability
that HMATCHING delivers a perfect matching.

3.1 The empirical average size of matching

We wrote a C++ program that generated each Ali],i = 0,1,...,n — 1, independently at
random from the uniform distribution on {0,1,...,n — 1}, and then ran HMATCHING on
(A[0], A[1],..., A[n — 1]) and returned the number of edges left unmatched.

We then ran this program 10° times for each of the following values of n: 5000, 10000, 15000,
20000, 25000, 30000, 35000, 40000, 45000, and 50000.

For each such n, we computed the average of the 10° experiments. Using Gnuplot©, we
plotted the results and obtained a curve n'/3/1.46 that fitted the data quite well. Both the
results and the fitting curve are presented in Figure 2.
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Figure 3: For each value of n = 5000, 10000, ...,50000, we ran HMATCHING 10° times,
each time on a randomly generated array (A[0], A[1], A[2],..., A[n — 1]), and computed the
proportion of experiments for which HMATCHING delivered a perfect matching. The results
are shown in this figure, together with the fitting curve n'/3 proposed by Gnuplot®©.

1/3

Empirical probability of perfect matching

In view of the remarkably good fit given by the curve n1/3/1.46, we conjecture that the
expected number of vertices left unmatched is ©(n'/3). An equivalent conjecture is that the
expected size of the matching is n/2 — ©(n'/?).

3.2 Empirical success probability.

Since on average the resulting matching turned out to be near perfect, we added a few lines
of code to the program, to determine the empirical frequency of the problem instances when
the matching was in fact perfect.

Again, we ran 10° experiments for each n = 5000, 10000, ..., 50000, and computed the pro-
portion of experiments for which HMATCHING yielded a perfect matching. Using Gnuplot©,
we plotted the results and got a fitting curve n='/3. As it can be checked in Figure 3, this
curve seems to be a very good fit to the data obtained.

The data fit the curve n~ /3 so well that we are led to the conjecture: the probability that
HMATCHING delivers a perfect matching is of order ©(n~'/3). It is tempting to state an
even stronger conjecture: the probability that the resulting matching is perfect is asymptotic
to n~'/3. In the next section we prove a slightly weaker result, namely that this probability
is between ¢;n Y3 In"'n and con Y3 Inn. We also show that the likely size of the terminal
matching is between n/2 — csn'/3Inn and n/2 — ¢;n'/?In~' n, which again is within the
logarithmic factors from the conjectured formula n/2 — ©(n%3).



Consequently, on average, the number of the starting points for which the algorithm finds
a perfect matching is of an empirical order ©(n??), and of a provable order Q(n?3In"'n).
This suggests the following

Conjecture 1 W.h.p. there is a perfect (non—crossing, harmonic ) matching, and it can be
found by running HMATCHING n times, selecting each of the n points as a starting point.

In our computer experiments, with n up to 10°> and 10° problem instances, we always found
a perfect matching by running the algorithm for sufficiently many starting points.

4 Analysis of HMATCHING

Recall that we are interested in analyzing the performance of HMATCHING when it is ran
on an array (A[0], A[1],..., Aln — 1]) such that each A[i] is an integer chosen uniformly at
random, and independently of the other A[j]’s, from {0,1,...,n — 1}.

4.1 The matching algorithm as a Markov Chain.

Consider the generic, k-th, step of the matching algorithm. Before this step the vertices
Pi,-- -, Pr_1 have been explored, and some of them have been matched. Let M be the current
(non-crossing, harmonious) matching and S be the current set (stack) of all unmatched
points whose labels have been explored. Then 2|M| + |S| = k — 1. Suppose first that
S # (. Assume inductively that there are no triples (pg,ps,pe), @ < b < ¢, such that
(Pa;pe) € M and p, € S. This condition means that no edge (p,, py), such that p, € S and
b > b* = max{c: p. € S}, crosses an edge from M. In particular, we can and do add to
M the edge (pp-,pr) if the label of this edge is not in L, the label set of the edges in M,
i. e. if A[b*] + A[k] (mod n) ¢ L. The last condition restricts the value A[k] to a subset
of {0,...,n — 1} of cardinality n — |L| = n — |M|. Since A[k] is uniform on {0,...,n — 1},
and independent on A[0],..., A[k — 1], the (conditional) probability that (py-,px) is added
to M in the k—th iteration step is 1 — |L|/n = 1 — |[M|/n. In this case M + {(py-, px)} and
S\ {pp-} are the next matching set and the next stack respectively. Alternatively, with the
probability | M|/n the matching set remains the same, but the stack grows to S U {px}. If
S = (), then the matching set M remains the same, and the next S is {py}. In all cases the
new matching M and the new stack S meet the same non-crossing condition as the previous
M and S. Clearly the sequence { My, S}tr<n, (Mo =0, Sy = 0), is a Markov chain. The
chain terminates once 2| M| + |Sk| reaches n, that is, when there are no unexplored points
left. Remarkably, the transition probabilities and the termination rule depend only on |My].
So there is a reduction of { My, Sk} to a much simpler Markov chain {my, s;} on the set of
pairs (m, s), m = |M|, s = |S|, with termination condition 2my, + s = n.

Here is the formal definition of the reduced Markov chain.



Markov Process 1 (MP,) Each state is a pair (m,s), where m and s are nonnegative
integers, and 2m + s < n, where n is a fixed integer given in advance. The initial state is
(0,0). The transition rules are :

If s =0, then the next state is
(m,s+1)=(m,1).

If s > 0, then the next state is

(m+1,s —1), with probability 1 — m/n,
(m,s+1), with probability m/n.

4.2 The likely size of the terminal matching.

According to our reduction, to study the size of the terminal matching is equivalent to
studying Z,,, the terminal value of m in the Markov chain MP; .

Proposition 2 (i) Given a > 0, set a = 2y/a(l + a).
Pr(Z, >n/2 —an*?Inn) =1 - 0(n™9). (1)
(1)
Pr(Z, <n/2—n'2In"?n) =1 - O(In""n). (2)

(iii) Let P, = Pr(Z, = n/2), n even, and P, = Pr(Z, = (n — 1)/2), n odd. Then, for some
constants a, 3 > 0,
an Y3V n < P, < Bn Y lun. (3)

For the proof we need the following statement.

LEMMA 1 Let a > 0. With probability 1 — O(n~"), there exists k such that
mg € (n/2 — (1+a)n*?Inn, n/2 — 0.5(1 + a)n?*Inn), s, =0,

with ©(n?/®Inn) points remaining to be explored.

Proof of Lemma 1. Given m < n/2, let T,,, = min{k : my, = m} and set T,, = n, if no such
k exists. Introduce H,, = sz, the stack size at this moment. By the definition of MPy, for
j < k and s; > 0, the conditional probability of the transition (m;,s;) = (mji1,5j41) =
(m;, s;+1), which leads to an increase of the stack by 1, is m/n at most. And the alternative
transition leads to the stack size s; — 1. For s; = 0, we have s;;; = 1. These observations



imply that H,, is stochastically dominated by W,,, the maximum of the simple asymmetric
random walk {&;};<, on {0,1,2,...}, defined as follows: & =0,

Pr(§n =& +1§) =p=m/n, (§2=1),
Pr({p =& —1&)=q:=1—m/n, (§>1),
Pr(§1=1[§=0) =1

Furthermore, for each integer w > 0, Pr(W,, > w) < nPr(W,, > w), where W,, is the
maximum of §; for j between 0 and the first moment ¢ > 0 when & = 0. Using the classic
gambler’s ruin formula, we have

q/p—1

PrW,, > w) = W

< (p/9)".

Then, introducing m; = % — [q;n*?Inn] and p; = m;/n, i = 1,2, with a; = a;/2, we have

1/3

Pr(Wp,, > n1/3) < 2n ( 2 )

n — 1me
3

-1/3 -
n2a1—1

n /
< 3n(1 —4dayn In n) v < 3nexp(—4aylnn) = — 0,

provided a; > 1/2.

Now, since 2my, + s = k at each step, we have

m

Applying this to m = mq, mo, we see that

2
Pr {ﬂ(sz < T, < 2my +n'/3 and H, < n1/3)} >1-0(n, a=2a —1.

i=1
Therefore
Pr{(Trn, — Ty = arn®P lnn + O(n'?)) N (H,,, <03} >1-0(n™).
Denote the event in this bound by A. Let
B = AnN{sy becomes zero at some k € [T}, T,,, ]}

We want to show that Pr(A\ B) < n? Vb > 0, for n large enough. Let ¢, € [0,n — 1].
Suppose that my,, < msy, and 0 < s;, < n'/3. These conditions certainly hold if ¢, = T},,,.
Let 7 = T (t1) be the first ¢ > ¢; such that either m; = my, or s; = 0. As before, {s;};7 is

10



dominated by the asymmetric walk {&;}>4,, &, = [n'/?], with p = my/n. Therefore T —t;
is dominated by X, ,1/3, where X, s is the first time the random walk hits 0, if §, = s. Since
(see Proposition 8 in the Appendix)

(4pq)"*

Pr(X,,>r) < ;
e 27 S Ty

it follows that

2/3 (/3]
(1 _ 4lazn 8 1nnJ>
o (X%’WBJ = Ln2/3J> - ( 2asn?/31nn] | 7 < exp(~aln’n).
1— asn nn )

n

Therefore T (t,) — t; < n?/? quite surely (q.s. in short), i.e. with probability 1 — n=?,
for every b > 0, uniformly for all t,. Thus 7(T},,) — Tn, < n*3 q.s. as well. Since
Ty — Ty, is of order n?3Inn > n?/3 on A, we conclude that indeed Pr(A\ B) < n~?, for
every b > 0. So the Markov process {my, si} reaches a state (mg,0), where n/2 —my €
(0.5a;m%*Inn, a;n?31nn), with probability 1 — O(n™%), a = 2a; — 1. &

Proof of Proposition 2 (i) Let T be the first £ such that
mi € (n/2 — (1 +a)n*3logn, n/2 — 0.5(1 4+ a)n**logn), s =0.

By Lemma 1, T" is well defined with probability 1 — O(n~*). Let ¢ be the number of the
remaining unexplored points after 1" steps; clearly

(1+a)n®31nn < £ <2(1+a)n®?Inn.

The additional increase of my during the remaining n — T steps is (¢ — s,,)/2, where s, is
the terminal stack size. So Z,, = m,, is given by
n—0 {—s,

n
Ly = = — —0.5s,.
5 + 5 5 0.5s

Thus we need to show that w.h.p. s, = O(n'?logn). Since my < n/2 for all k, s, is
dominated by &, where {{;} is the simple symmetric random walk with p = ¢ = 1/2, and
& = 0. We need to find a likely upper bound for &. First of all, for each integer x > 0,

& — 1‘ Z PtQu (4)

2t4p=~

here P, = Pr(§y = 0), the probability that the walk returns to 0 after 2¢ steps; Q,,(0) = 6,0,
and Q,(z), x > 0, is the probability that the walk, that starts at 0, reaches x after u steps
without ever returning to 0. We will need the full strength of this formula later, but for now
we are content with its weak corollary, namely

Pr(§, = ) Z Qu(w (5)

©w,t>0
2t4p=L

11



As for Q,,(z), recall that, by the ballot theorem, the total number of ways to reach the point
x from the point 0 by making p (£1)-moves, without returning to 0, is

E(w +Nx>/2>’ e

(1 + ) /2 being the total number of right moves. Therefore, for the (p, ¢)-simple walk,
Qu(w) = E ( ” J ) /2> plraEtgemal,
(the probability of the first move, from 0 to 1, is 1, each of the other p — 1 moves has
probability p.) Using Stirling’s formula and 4pg < 1, we obtain a simple estimate
exp(—a?/2p)
Vi(? =22+ )’

where ¢y is some constant. (We will continue to use ¢’s for various absolute constants.)
Combining (5) and (6), we have

Qu(z) < cox x>0 (6)

(That the last sum is uniformly bounded follows from considering separately p > 2z and
x < p < 2z.) Then

a?n?/31n’n )

1/3 —z?/2¢ —
Pr(§ > an'"Inn) < ¢ Z e = CZeXP( 4(14a)n?3Inn

z>an!/3Inn

as £ < 2(1+a)n*3Inn, and a = 2\/a(1 +a).

Proof of Proposition 2 (ii) As in the proof of part 1,

Z, = g — 0.5,

so we need to show that w.h.p. s, > v, := 2n'/3In"?n. Clearly s, stochastically dominates
& for the (p, ¢)-walk, where

1 7
p = e S 5T and (= n—2mp € [(1+a)n?Inn, 2(1+ a)n??Inn].
n n
Thus
Pr(s, <vn) <Pr(&<w) =Y Pr(§ =ux),

T<vp

with Pr(§ = x) given by (4). This time we need a sharp bound for P;, which is

Po<c((l-2p)+(t+1)")=c (g + t‘1/2> : (8)

12



see Proposition 9. For t € [£/2, (], the first summand dominates since ¢*/2 > n, and the
bound simplifies to P; < 2¢(¢/n). Break the sum in (4) into two parts, p > ¢/2 and p < £/2.
Since x < v, < {, it follows from (6) and (8) that, for 2 > 0,

Z PQu(z) < dw {Z p R+ (- p+ 1)1/2)}
2=t p>t)2
p=>e/2

< "w((t/n)™' 2 + 7)) = O(xM? n),

as (32 > n. Therefore

S Y PQu) = 02 ) = O n). (9)

0<z<vy 2t+u=>~
pw>t/2

Let p < £/2 now. Since 2t 4 pu = ¢, it follows that ¢ > £/4, and so P, = O(¢/n). Then, using

(6), we obtain
3 PQuiz) <l *_ e (10)
f u < éln~tx 10
t+p=~ VY

n<t/2
Substituting y = x/z, we transform the last integral into

7$z/2 2
x 12 = (Ji+ L),
T

\/z 1—z2

with Jy, Jy corresponding to integration over [0,1/2] and [1/2, 1], respectively. Then, substi-
tuting w = x2/2,

2 12 1/2 /2 2 i > 1/2 1/2
J < — 27 feT 0 dy < —” w e dw = ¢,
<) <5

and )
dz
I, < efa:/4 e 6713/4
2= 172 \/2(1 — 22) ’

Therefore the bound (10) becomes

> PQu) = Ot~ w22 = O(t/n), x>0,

2t+p=~

p<t/2

Consequently

Z Z PO, (x O(tn 1v,) = O(hf1 n). (11)

0<a<vy t+p=L
p<t/2
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Combining (9) and (11), we obtain

> Y PiQu(x) =0(n ).

0<e<v 2t4+p=~

Finally
D 2+ p=1PQu0) = Pyp = O(f/n) = O(n ' lun).
So

Pr(& <wv,) = Z Z PiQu(xr) = O(n™2lnn) +O0(In""n) = O(ln~"n).

0<z<vy, 2t+u=>~

Since Z,, = n/2 — 0.5s,, and s, dominates &, the statement follows.

Proof of Proposition 2 (iii) First of all, for n even, Z, = n/2 iff s, = 0, and, for n odd,
Z, = (n—1)/2iff 5,1 = 0. Consider, for instance, even n. We know that, conditioned
on the event in Lemma (call it \A), s, is dominated by &(1/2) of the walk ({&;};</) with
p =1/2, and dominates & of the walk with p = p, := 1/2 — ¢/n. Then, using (8),

Pr(su = 0]A) < Pr(&(pn) = 0)l,_, = O((1—2p) +£2) = O(¢/n) = O(n P lnn).
On the other hand, again using (8),

Pr(s, =0 A) = Pr(&(1/2))],_, = 9(571/2) = Q(nfl/?’ln*lﬂn).

Since Pr(A¢) = O(n~ %), picking a > 1/3 we conclude that unconditionally
an Y3 ™2 < Pr(s, = 0) < Bn Y3 1nn,

for some absolute constants «, 5 > 0. The case n odd is similar.

This completes the proof of the proposition. u

5 Random permutation labeling.

The random labeling we have studied very likely assigns the same labels to different points.
(Indeed, the probability that no two points have the same label is n!/n™ < 27".) If we
consider only distinct labels, then it is natural to assume that the labels of n points form
the uniformly random permutation of {0,...,n — 1}. We strongly believe that our results
on matchings and paths continue to hold for this uniform permutation labeling, and the
computer experiments provide an ample evidence supporting this belief. However, a rigorous
proof of such an “invariance” is quite problematic. We model the work of our algorithms
as the processes, in which at every step we explore the label of a point for the first time.
So, for the independent labels, this label is conditionally uniform on {0,...,n — 1}, while
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for the random permutation labeling it is conditionally uniform on the subset of labels not
yet seen. This complication makes it necessary to keep track of the labels encountered so
far, thus invalidating usage of the relatively simple Markov chain {my, sx}. Whether the
corresponding Markov chain can be rigorously analyzed is, in our opinion, a challenging
problem.

Here is a version of the matching problem for which we can prove the asymptotic equivalence
of the two labelings. Let P = {py,p1,...,pn 1} and Q = {qo,q1,--.,¢n_1} be such that the
points of PUQ lie on a circle, in the cyclic order py, p1,. .-, Pn_1,90,¢1,---,qn_1- We consider
parallel matchings between P and (), that is, matchings consisting of the edges (p;, ¢;) only.
Clearly the maximum (harmonic) matching size equals D,,, the total number of distinct
labels ¢(p;,q;) (= (U(p;) + ¢(¢;) (mod n)). Suppose that ¢(p;) = i, 0 < i < n —1, and
that the labels of the points in @) are either independent, uniform on {0,...,n — 1}, or are
the elements of the uniformly random permutation of {0,...,n — 1}. Then, for each of the
labelings, D, /n — 1 —e~! in probability. The proofs are based on evaluation of the two
first order moments of D,,, but the computations for the random permutation case are more
involved.

6 Non—crossing harmonic paths

We now turn to Question 2, which is: how many edges are there typically in a maximum
size harmonic non—crossing path in Gg?

6.1 Roster of algorithms.

Again, there is given a collection S = {py,p1,..., Pn_1} of points in convex position, and
the labels A[i] = {(p;) are independent, uniform on {0,...,n — 1}, while each edge (p;,p;) is
assigned a label ((p;, p;) := (¢(pi) + (p;)) (mod n).

We seek algorithms that take as input an array (A[0], A[1],..., A[n — 1]), and deliver a
provably long path on GGg which is both non-crossing and harmonic.

We studied the following algorithms.

(i) GPATHL. It is relatively simple to study, but the resulting path is disappointingly short
on average.

(ii) GPATH2. Besides being quite natural, this algorithm typically delivers an impressively
long path. In fact, in our experiments it outperformed all other variants of path
algorithms. However we could not analyze its performance rigorously.

(iii) HPATH. Its empirical performance puts it above GPATH1 and below GPATH2. Cru-

cially, HPATH is amenable to a rigorous analysis, which confirms its superiority over
GPATHI.
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6.2 GPaTHLI.

GPATH1 works as follows. Start with py. Recursively, given a current path py = p;, = pi, —
... — pj,, enlarge it by adding the first vertex from {p; : ¢ > 4} such that the resulting
path po = p;y — ... = pi, — Pi,, remains harmonic. This is equivalent to the condition
Alil € {A1, ..., A}, where Ay, ..., Ay are determined by the labels of the edges (p;;,pi,,,),
0 < j <k —1. The new path remains non—crossing automatically since 7 > 7;_;. Continue,
until no such enlargement is possible. Obviously, for each k, no vertex p; with ¢ > ¢ has
been tested as a candidate for joining the path until it has grown to length .

Recall that A[0], ..., A[n — 1] are independent, each uniformly distributed on {0,...,n—1}.
Then, given the labels A[j], j < i, the labels A[i], ¢ > i), remain mutually independent,
and uniform. So the events Ali| & {A,..., Ax}, i > i, are conditionally independent, each
of the conditional probability 1 — k/n. It follows then that the length of the terminal path
has the same distribution as D,,, the number we encountered studying the largest size of the
parallel matching. Thus the likely number of edges in the terminal path is asymptotic, in
probability, to (1 — 1/e)n ~ 0.632n.

6.3 GPATH2.

Unlike GPATHL, in each step of GPATH2 there are two possible types of a point to be added
to the current path. At the end of the k—th step we have: (i) the current (non-—crossing,
harmonic) path

Py ={pi, = pi, = --. = pi,}, =LUk) <k, piy = Po, Diy = Pn—1;
(ii) the set
Dy = {ka,kafl, -«yP15 Poy,Pn—15Pn—2, - - - ,kaH,ka}, Ly < Ry,

of dead points, never to be used in future for extending a path. In particular, P, C Dy. In
addition, p;,, the newest vertex of the path Py, is either py, or pg,. Let Gy := S — Dy, denote
the set of game points, that is, the points that still can be added to the path Pj.

For instance, at the end of the first step of GPATH2 the path Py is {po — pn_1} = {pi, —
pi,}, Ly =0and Ry =n —1, Dy = {po,pn_1}. In general, Dy may well contain the points
other than those from P,.

Clearly any vertex from Gy, can be added to P, without causing new edge cross any edge of
Py. So our only concern is that a new edge must have a label different from the labels of all
edges in the path Pj. Suppose, for instance, that p;, = pg,. First we test py, 1, the point
that follows Dy in the counterclockwise direction. If it fails the test, (i. e. if the label of
(PL,+1,Pi,) has been encountered earlier), then we test pg, 1, the point that follows Dy in
the clockwise direction. We keep testing new points in this alternating fashion until we find a
point p;,,, that can be joined to p;,, to extend the current path Py. If p;,,, = pr, 4, (t > 1),
then all the points Py, 45, (0 < s < t), “die”, so that

Dk+1 =D, U {ka+s 0<s< t}
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If pi,,, = PR, (t > 1), then
Dyy1 = Dy U{pg,—s: 0 <s <t}

If no such point is found, then the process stops. GPATHZ2 is illustrated in Figure 6.3.

Figure 4: Illustration of GPATH2.

Unlike the algorithms we have discussed, Gy, (the set of active (game) vertices) may contain,
in addition to fresh vertices, some vertices whose labels had been tested in the previous steps.
This diversity makes it hard to bound from below the (conditional) probability that a game
vertex passes the test, and can be chosen as the next extension of the current path.

Conjecture 3 The likely number of edges in a path delivered by GPATH2 is asymptotic to

e -1 0761
—n X L. .
ez2+1

Our extensive computer experiments support the estimate 0.761n for the average path length.
The number (e?—1)/(e?+1) comes from the following simple-minded model of the algorithm.
We assume that the label of a vertex being tested is generated anew, uniformly at random
on {0,...,n — 1}, and independently of all other explored labels, including the old label of
the vertex in question if it had been tested before. This assumption erases the difference
between the old and the new vertices in GGy, and the probability that a vertex in Gy can
be added to the current path Py is simply 1 — |Py|/n. Let 7, = |Pg|, and let dj, denote
the total number of dead vertices not in P;. Then {m,dy} is a Markov chain such that:
(71'0, do) = (0, 0), and

(M1, des1) = (mg + 1, dg) with probability 1 — (mx/n)?,
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(Tkt1, dpr1) = (mk, dg + 1) with probability (my/n)?.

The process terminates when 7, + d, = n — 1.
A coupon-collector type of argument shows that the likely length of the terminal path is
asymptotic to cn, where ¢ is the solution of the equation

|
/ sde =1,
0o 1—x

or c = (e —1)/(e* + 1) ~ 0.761. The challenge is to show that whp the work of the actual
algorithm is asymptotically close to this Markov process.

6.4 HPATH: the algorithm

In this section, lowering our sights, we describe an algorithm (HPATH) which on average
performs better than GPATH1, but falls short of the conjectured performance of GPATHZ2.
Unlike GPATHI, in HPATH some of the vertices that had failed the label test are tested
again, and this modification typically leads to fewer wasted vertices.

As in GPATHZ2, at the end of the k-th step we have the current path P, = {p;;, — pi, —
oo =i b, L= L0k) <k, (piy = Po, Piy = Pn—1), and the set Dy D Py of the “dead” vertices.
Dy, is an interval, whose endpoints are in . One of the endpoints is p;,. The set Dy of the
“live” vertices contains an interval Fj, of the “fresh” vertices, i. e. vertices whose labels have
not been tested yet. In general, Dy and F} are separated by two, left and right, intervals
consisting of vertices already tested. Denote these intervals T} and T} and let T}, = TFUTE.
At most one vertex u in T} may still be alive, in which case its label Afu] is different from
the label of p;,, and the path extension p;, — wu is unfeasible. The remaining vertices in T}
are dead.

Case 1. T} consists of dead vertices only. Picking the left endpoint ¢ of Fj, we check
whether the label of the edge (p;,, q) is different from the labels on the edges in P, so that
(pi,» q) can be added to Py. If it can, then we set Py = {p;y = ... = pi, — ¢}, so that
((k+1) = £(k) + 1 and p;,,,, = ¢. Furthermore Dy, := D, UTE, Th, =0, TF | = T,
Fit1 = Fi \ {q}. Ti41 consists of dead vertices only. If (p;,,q) cannot be added to P and
the labels of p;,, ¢ are the same then ¢ is declared dead. If the labels of p;, and ¢ are distinct,
then ¢ is declared alive. In either case, T}, := T)X U {q}, T)F, = T}, Fy11 = Fi \ {¢},
Dgy1 := Dy, Pyyy := Py. Clearly at most one vertex u in Ty, is alive, in which case: (i)
Alu] # Alpi,,.,,]; (ii) the path extension p;,, ,, — u is unfeasible.

Case 2. T} contains exactly one vertex (call it u) still alive. Suppose, say, that u € T}.
Consider the right endpoint v of the fresh interval Fj such that Fj is sandwiched between
and v.

Case 2(a). If the path extension p;, — v is unfeasible, then v is declared dead, and T,CLJrl =
TE, TE | =TEU{v}, Fryr = Fy \ {v}, Dgy1 := Dy, Poy1 := Pp. wis a sole alive vertex in
Tj+1, its label meeting the conditions (i), (ii), (see Case 1).
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Case 2(b). Suppose p;, — v can be used for extending the path P,. We check then whether
the 2-edge extension p;, — v — u is usable as well.

In case “no” we set Py == {piy = ... = pi, > v}, Tf =TE TE =0, Fryy = Fp\ {v},
Dy := D, UT U {v}. Note that T}, still contains u, and the label of u is different from
the label of v = p;,, ., . Otherwise, like p;,, — v, p;,,, — u would have also been a feasible
extension of Py, which contradicts the definition of u, the sole alive vertex in 7j. And, of
course, P, —> U =70v — uisnot a feasible path extension. Thus u is the sole alive vertex
in T, and the conditions (i), (ii) are met again.

In case “yes” we set Py = {piy = piy = ... = pi, = v — u}, so U(k+1) = (k) + 2,
and pi, ., = u. Weset T := 0, Fryy = Fp \ {v}, Dpyr == Dy UTFU{v} UA and
TE, ==TE\ [pi,, u]. Here T4y consists of dead vertices only.

The process stops when F', the set of fresh vertices, becomes empty.

7 Analysis of HPATH

The main result in this section is a lower bound for the expected number of edges in the
path delivered by HPATH.

Theorem 4 Let

3 <(‘/5+2)(‘/5_ 1)> ~ 0.598.

a:—ln2+ﬁln 52 (Vat 1)

Then the expected number of edges in a path obtained by the action of HPATH s at least

ea—l
(1 - )n ~ 0.665n.

Thus w.h.p. HPATH outperforms GPATHL.

Proof. We break the analysis into two parts. First we obtain a probabilistic upper bound
for the number of vertices it takes to build a path of length n/2. Second, we use a balls-
into-boxes argument to bound from below the expected number of edges added to the path
during the remaining steps.

Lemma 5 Let n, denote the random number of vertices tested by the algorithm till the
current path length reaches n/2. Then, for each ¢ > 0

lim P (77—” < +6)a> ~1. (12)

n—00 n
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Proof. (I) After the k-th step, we have the current path P = P, the set of dead vertices
D = Dy D Py, and the set T = T}, of other vertices, already tested, that separates D from
F = Fj, the set of fresh vertices. A vertex u € T is singled out as an only vertex in 7, still
alive, if it is present. To complete the description of the current state we need to list the
labels A[7] of vertices i from P and the label of a still alive vertex u € T', if it exists; in that
case Alu] # Alpend), where pe,q being the endvertex of P, and u cannot be used to extend P.
Let S be the resulting state description. It can be seen that the sequence {Sy} is a Markov
chain. As in the case of the matching algorithm, it is possible to determine a much simpler
Markov chain dominated by {Sx}. Let ¢ be the length of the current path P. Let o € {0,1}
be an indicator of the event {1" contains an alive vertex u}. Denote by ¢, o’ the parameter
of the next state &', we have:

P[(l',o") = (L+1,0)|S] = 1—1{/n, (13)
P[(l',o") = (l,o+1)|S] > (L—1)/n, (14)
P[(l',0") = (¢,0)]S] < 1/n, (15)

if o =0, and
P[(l',0") = (L,0) | S] = {/n (16)
P[(l',o") = (L+2,0—-1)| 8] > 1—-2/n (17)
P[(l',o") = (L+1,0)|S] < {/n, (18)

ifo=1.

Let us prove (13)—(18). Suppose o = 0. The relation (13) follows from the observation that
a fresh vertex v can be added to P iff its label is not equal to one of / “excluded” values,
determined by the edge labels of the path P and and A[pena], i. e. iff Ajv] ¢ Ex(P, Pena),
|Ex(P, pena)| = ¢. Then the sum of two other conditional probabilities is ¢/n, and the third
probability is at most 1/n, the probability that the fresh vertex has the same label as A[penq]
(and could not be added to the path).

Suppose now that 0 = 1. Then (16) holds, analogously to (13), and thus the sum of two
other probabilities is 1 — ¢/n. So we need to prove (17) only. If a fresh vertex v € F' cannot
be added to P then A[v] € Ex(P, pena). Likewise the label of (v,u) coincides with the label
of one ¢ edges of P if Alv] € Ex(P,u). Since each of the Ex sets is of cardinality ¢, there are
at least n — 2¢ values for A[v] for which the labels of (penq,v) and (v, u) are different from
the labels of ¢ edges P. Since A[pena] # Afu], for those n — 2¢ values of A[v] the labels of
(v,u) and (Penq, v) are mutually distinct as well, and we have a two-edge extension of P. So
(17) follows.

Obviously, the key inequality (17) can be helpful only as long as ¢ < n/2. The inequalities
(13)-(18) lead us to consider a Markov chain (7, o0y), where op € {0,1}, such that, for
1<k<n/2

Pl(n',0") = (7 + 1,0)| (m, = 1—7/n,

Pl(r',0") = (r,o0 + 1)| (m,0)] = (7 —1)/n,

Pl(r',0") = (m,0)| (m,0)] = 1/n,

o)l
o)l
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if o =0, and

P((r',0') = (m,0)| (7,0)] = n/n,
Pl(n', 0"y = (7 + 2,0 — 1)| (7, 0)
P[(r",0") = (r + 1,0)| (m,0)] =

ifo=1.

To define the chain completely, set 71 = 1, and o7 = 0. The chain terminates once 7, > n/2.
We want to show that ¢, stochastically dominates 7, that is

P[ék > t] > P[ﬂ'k > t], (19)
if (¢1,01) = (71, 01).

To this end, let us introduce the lexicographical order > on the pairs (¢, 0):
(L,0) = (0,6) iff ¢ >0 or (=10 and o > ).
It is straightforward that for every state S, and any pair (¢*,0%)

Pl(l',0") = (¢,0")| S] = P[(«',0') = (¢",07)] (7, 0)]. (20)
if (m,0) = (¢(S),0(S)). Using this inequality and induction, one can show easily that for
each k and all ((7,07), j <k,

Pl(ty,05) = (€,00), Vi <K > Plin;,0) = (€07), Vj < K]
Setting o = 0, we get
Plt; > €, % < k| > Plm; > €, ¥j < k),

and (19) follows.

(II) Let K = min{k : ¢ > n/2}, and K = min{k : m, > n/2}. Since {, 7, never decrease,
by (19), B

P(K>k) < P(K>k), V&
To study the limiting behavior of I?, introduce K, = min{k; T = n/2}, fgr m = é o, =0
and K; = min{k : 7, = n/2}, form =, 0 = 1,ie. K = K, and K, ), = K541 =

K*, =K*

w2 = K50 =0 (For simplicity we assume that n is even.)

Introduce the Laplace transforms

Fy(u) = B(e"5/™),  Fr(u) = E(e*Ki/m),  u>0.

Using the Markov property of (my, o), for £ < n/2,
¢ 1 1
o[- ) e (£ V) ] o
non n
14 4 ¢ .
FZ =" |:EF + (1 - 25) Fg+2 + EFZ+1:| . (22)
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We want to show the existence of a smooth function h(z), such that Fy(u), Fj(u) ~ e/,

This would imply that I?g/’ﬂ, I~(Z*/n converge, in probability, to h(¢/n). To this end, introduce
also two smooth functions a(x), b(z) and define

fo=erlhram) g — pulhtbin) o p— p(0/n),  a=a(l/n), b=0>b(l/n).

Our task is to determine h, a,b so that f, f; almost satisfy the equations (21)—(22) for Fy
and F;. Plugging the expressions for f;, f; into these equations, and using the smoothness
of h(x), a(x) and b(x), we compute

fo—e/" [(1—£> fz+1+(£——> fo+—= fe]
4, {1 o [(1 _ f) QU 140 2) <f _ l) pulb-a)/n | l] }
n n n n

:fg{l—e“/” {1+ (1—9 %MJré@JFO(”Q)]}

u

=~ fi- [1 + < g) N+ 5c+ O(nl)] : (23)

where ¢(z) = a(z) — b(x), and the bounded coefficient implicit in O(n~') depends on u and
max |h"(x)|, max |a'(x)|. Likewise

fZ B eu/n |:£f£ + (1 — 2£> fl+2 + ﬁf;‘|
n n n

- fg% {1 + <2 — 32) n o+ (1 — 2%) c+ O(nl)] : (24)

Interestingly, the square brackets expressions in the bottom lines of (23)-(24) depend on a
and b only through the difference ¢ = a — b. Let us choose ¢(z) such that

I —azc(z) 14 (1—2x)c(z) . 1-22
e am o W=

l—x—a?
Then (23)-(24) are very nearly satisfied if

1 — zc(x) 1—x
(x)+1—:r—x2

B (z) +

l1—u
Since we want 1 = E[e“knﬂ/”] ~ e"M1/2) " we impose the condition h(1/2) = 0. The solution

; 3 ln(\/5—2:r—1)(\/5+2)
25 (V542 +1)(v5—2)

h(z) = —% Inf[4(1 —z — 2%)] +

In particular,

(V5 -1D(V5+2)

3
h(O):—ln2+2\/51n(\/5+1)(\/5_2).
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Pick € € (0,1), and set hy(x) = (1xe)h(x), so that ho(1/2) = 0 again. Consider the +-case.
Let a(z) = ¢(x)+ M, b(z) = M, M > 0 to be specified shortly. Then a(z)—b(z) = ¢(z), and
since h'(x) < 0 for x € [0,0.6], say, the square brackets expressions on the right hand side
of (23) and (24), times —1, are positive and bounded away from zero. So the corresponding
fe, [ satisty the recurrence inequalities obtained from (21)—(22) by replacing = with <. In
addition, for ¢ € {n/2,n/2 + 1},

fo=rexp [u (hy(¢/n) +n~ (c(¢/n) + M))] = exp(un™ (M — a)),

where a = max, <6 (2|0 (z)| + | (2)|), as h(1/2) = ¢(1/2) = 0. So, choosing M > a, we
ensure that f, > 1. Likewise f; > 1 for those ¢. Therefore

fe > Fy, fZ2F6*7 EE{n/Z,n/Z—I—l}

Using this as the basis of the backward induction, and the recurrence equations (inequalities
respectively) for F,, F; (for fy, f; respectively) for the inductive step, we obtain that, for
all ¢ <n/2,

Fy(u) <exp [u(hy(¢/n) +n~ " (c(C/n) + M))],  F;(u) <exp[u(hy(/n)+n""M)].

In exactly the same way we obtain the lower bounds with A_ in place of b, and ¢(x)—M, —M
in place of ¢(z) + M, M. In particular, using these bounds for ¢ = 1, we see that n*11~(1 =
n 'K converges in probability, and in terms of Laplace transform, to o = h(0). Therefore,
using the stochastic dominance of K over K, we obtain that for each § > 0, K < (1+9d)na
with probability approaching 1 as n — oo. Roughly, w.h.p. the number of steps (vertices)
it takes for HPATH to build a path of length n/2 is an, at most. This proves Lemma 5.

Once such a path is determined, we switch to the algorithm in which the fresh vertices are
tested in the fixed direction, clockwise or counterclockwise. For this phase the number of
additional edges that will be added to the path equals, in distribution, to the total number of
boxes labeled n/2+1,...,n which are occupied by at least one ball in the uniformly random
allocation of n — K balls among the boxes 1,2,...,n/2,n/2 + 1,...,n. The conditional
expected number of such boxes is

o3

[1 _ (1 _ l>n_K] = D[~ exp(~1+ K/n+O(n )]

n

In probability, B
lim lnf(]_ . 671+K/n+0(n ) >1— 6714»047

whence the expected length of the terminal path scaled by 7 is, in the limit, 1 — e '™, The
theorem is proved completely.

Notes. (1) The combination of Laplace transforms and the approximation technique via the
differential equations had been used by second author in [P1] (an urn model), [P2] (spreading
rumor process), and [P3] (random graph process).
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(2) There is a natural extension of HPATH algorithm in which more than one vertex can be
kept alive. Numerical computations for the corresponding Markov chain indicate that the
expected length of the terminal path is at least

05911
<1 i ) n ~ 0.6678n,

a surprisingly small improvement. The original algorithm and this last modification work
better in practice; to establish this fact rigorously one would need to find a better alternative
to the lower bound 1 — 2¢/n for the key transition probability.

(3) For n prime there is a modified algorithm that on average outperforms GPATHL. In this
algorithm after the k-th step we have a path P, = {p;; = p;y = ... = p,}, £ = ((k), a
set Dy O Py of dead vertices, and an interval [ug, vi]| = F), = D§ of fresh vertices. If either
Pi, — U — Vi OF D;, — U — Uy, can be added to Py, we do so, thereby getting Py, of length
U(k+1) = l(k)+ 2. If a two-edge extension is not possible, we go for one-edge extension,
Pi, — Uk, Or p;, — vy, if any is feasible, obtaining Py, of length ¢(k+1) = ¢(k)+1. Otherwise
Pyy1 = P;. Whatever the outcome is, Dy = Dy U {ug, v }. It is clear that Py = Py (i.e.
((k +1) = £(k)) with the (conditional) probability (¢/n)%. Primality of n can be used to
show that ¢(k + 1) = (k) + 2 with probability

(1_g> (1_€+1>+L(n—£n—21)2/4J7 25)

n n

at least. Then ((k + 1) = {(k) + 1 with probability

- <£>2_ (1_£> | (1_€+1> _Ln=t—1py)

at most. With these bounds at hand, we construct the corresponding Markov chain {¢(k)}
which is dominated by the second phase of GPATH1. It turns out the expected terminal
path length is asymptotic to 0.672n, larger by 0.007n than the bound in Theorem 4. Here
is the explanation for (25). First of all, p;, — ux — vy is added to the current path with
probability (1—¢/n)(1—(¢{+1)/n), regardless of whether n is prime. It remains to show that,
for n prime, p;, — w; cannot be added to the path, but p;, — v, — u; can with probability
[(n— ¢ —1)2/4]/n?, at least, if £ > n/2. The latter bound follows from a theorem, due to
Pollard [14]:

Theorem 6 Let p be a prime number, and let A and B nonempty subsets of Z/pZ. Let
r=|B] <|A| =s.

Fort=1,...,r, let Ny denote the number of congruence classes in Z/pZ that have at least
t representations in the form a + b, where a € A and b € B. Then

Ny + Ny + ...+ N, > min{tp, t(r+s—1t)}. (26)
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Let
C = {(A[Uk],A[Uk]) Dy, 7L> Uk, Di, — UV — uk}

Then, clearly

P(p’tg 7L> U, Pi, — U —» Uk) = |C’|/n2 (27)
Let

A={Alvg]: pi, = v} and B :={Alu]: pi, /7 up, Alug] # Alpi, ]}

Denote L(P) the set of labels appearing on the edges of P. Note that |[A| =n—¢ < /{, (-1 <
|B| < £ and |L(P)| = ¢. A pair of labels (a,0) € A x Bisin C, iff a +b (mod n) is not in
L(P). Indeed, a € A implies p;, — vg, b € B implies p;, /4 uy, and Afug] # A[p;,] implies
that the label of p;, — vy, is different from a + b (mod n) (which is the label of v, — uy).

Setting ¢ = |(n — ¢ — 1)/2], Theorem 6 can be applied for the sets A and B, as t <
min{|A|, |B|}, therefore by (26),

Ni+Na+ ...+ N, > min{tn, t(JA| + |B| — )} > t(n — 1 — t). (28)

The left hand side of (28) counts the sums a + b (mod n) of the pairs of (a,b) € A x B,
with the restriction that a particular sum is counted at most ¢ times. Recall that a pair
of (a,b) € Ax Bisin C, if a+b (modn) ¢ L(P). A particular ¢ € L(P) can occur
as a sum at most ¢ times, hence the number of sums which are not in £(P) is at least
Ny + Ny+ ...+ Ny —t-|L(P)| which is by (28) at least t(n — ¢ — 1 — ). Using (27), and
substituting the value of T" we obtain

P(pi, 7> ug, pi, = vk —ug) = |C|/n* >tln—0—1—1t)/n?
_ Ln—g—lJ.[n—g—lw.i _ [(n—¢—1) /4J (29)

n? n?

If we replace GPATH1 with this algorithm for the second phase, when the length of the path
exceeded n/2, then we could a little bit improve the average performance to give a path of
length 0.672n. As the analysis works only for prime n, and the improvement is marginal, we
omit the details.

8 Upper bounds for harmonic paths

The paths produced by our algorithms contain a sizeable fraction of all vertices, about 2/3 for
GPATH1, for instance. That this fraction is below 1, as opposed to the matching algorithm,
makes it natural to ask how likely is it that the longest (non-crossing, harmonious) path has
length asymptotic to n? Our next, and last, result shows that chances of this happening are
exponentially small.

Proposition 7 The probability that the length of the longest path is less than 0.9604n is
1 —0(q™), for some 0 < ¢ < 1.
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Proof. Let us first compute f(n,m), the total number of non-crossing paths with m vertices,
m < n. The number of ways to select m vertices is (:1) Picking a starting vertex (in m
ways), we have two choices, left or right neighbor, for the second vertex, and recursively two
choices for the j-th vertex, given the first j — 1 vertices, 2 < 7 < m. Therefore there are
m2™ 2 directed paths, whence m2™ 3 undirected paths on given m vertices. Therefore

f(n,m) = (Z) m2m=3,

The probability that such a path is harmonious is

n-n-(n—1)-...-(n—m+2) _ () m_1

nm nm—1 ’

so E(n, m), the expected number of non-crossing, harmonious paths with m vertices is given

by
E(n, m) = m2™™3 <n> L)m? :
m) n"m
Notice that
E(n,m+1) 2n—m)(n—m+1) 1
= < -,
E(n,m) mn 2

if m > 2n/3, say. Therefore, picking k > 2n/3,

Z E(n,m) < 2E(n, k).

m>k

Furthermore,

2k=3kn  [(n\* k! n" 20 E\"
E Lk — o< 2k 3 v — 3 _nJ(k/n) 30
(n, k) n—k—i—l(k) nk = N [k’“(n—k)”’“] <ne> e - 30)

where
J(z)=-2-(1-In2)+ (1 —2) In(l —2)"".

Now J(1) = =1 +1n2 <0, and J(z) is decreasing on [1/2,1). The computation shows that
J(xp) = 0 for zy = 0.96037. ... Therefore

E(n, [0.9064n]) < n3en’ (09600 < g

for some 0 < ¢ < 1, which completes the proof. 1

Notes. (1) Let us see what a similar computation delivers for the perfect (non-crossing,
harmonious) matchings, in the case of n even of course. It is well-known (Stanley [15], Exer.
6.19 (n)) that the total number of non-crossing matchings is the Catalan number

C(n)2) = ﬁ (7[/7’2) N c%.
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Any such matching is harmonious with probability

(n)n/Z » g n/2
nn/2 e ’

and so the expected number of such matchings is asymptotic to cgn_3/2(8/e)”/2, thus ap-
proaching infinity exponentially fast. Whether the likely number of perfect matchings is also
(exponentially) large is an interesting open problem.

(2) In fact, the Catalan number C'(n—1) equals the number of some particular (“alternating”)
non-crossing trees with n vertices on the circle, see [15], (Exer. 6.19 (p,q)), for the exact
formulation and the references. So there are at least cn /24" non-crossing trees. And, using
the depth-first traversing of any such tree, we see that it is harmonious with probability

(17)n1
nn—l )

Therefore the expected number of harmonious, non-crossing trees is ¢(4/¢e)", at least. Could
it be that w.h.p. there are exponentially many such trees?

9 Appendix

Proposition 8 Define the random variable X, as the time it takes for the (p,1—p)-random
walk to reach the zero state from the state t. Then, for all r > 0,

1
(2p)H(4p(1 —p))~"/*

Proof. Tt is well known that the generating function for X, is

1—+/1—4p(1 — p)22
2pz

PT(Xp,t Z 7") S

Elz"] = szl < (p(=p)H2 (31)

By the Markov property,

where ngfl) are independent copies of X, ;. Therefore
B(=%) = EY(sm),

and, for all » > 0,

Ef(z%01)

PI'(Xp,t 2 ’I") S
o

, Yz e[l (4p(l—p)?.

Setting z = (4p(1 — p)) '/, we obtain then
1 1
(2p)!((4p(1 — p))~L/2)ter = (2p)H((4p(1 = p)) =172

as claimed. n
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Proposition 9 For each even t > 0, let R,(t) denote the probability of being at 0 at the
time step t in the (p,q)-random walk on {0, 1,2, ...} with the repellent O state. Then
Rl/g(t) ~ Clt71/2, and
R,(t) < 3(1—2p)+ (xt) V2, if p<1/2.

Let the random variable Y, be the time it takes for the (p, ¢)-random walk to return to the
0 state. As above, let X, ; be the time it takes for the walk to reach the zero state from the

state 1. Then
1—+/1—-4 2
E[zY] = ;E[zXm] = =V Pz (32)

?

2p
using (31).
Now, since
., 1
> ZR,(r) = Ent
r>0
we have )
t) = [2]————.
R(t) = 17—y (3)
Then .
Ryj(t) = [ ——,
1/2( ) [ ]m
so that

ma (1) o)

Let us now move on to the estimation of R,(t) for p < 1/2. Using (32) and (33), an
elementary manipulation yields

1-2 2
== +[] :

Bl ==, 1—dpgz? + (1 —2p) (39

In order to estimate the second summand in the right hand side of (34), define

2p

) = e ()

Now ¢(z) is analytic in the complex plane with a cut {z = u+iv : v =0, u € [ug,0)},

up = (4pq) ™', where

V1—u/ug = e\ Jufug — 1,
with — and + corresponding, respectively, to the upper shore and to the lower shore of the
cut. Let C be a (positively oriented) closed contour formed by C;(R) = {z = Re? : 0 €
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(0,27)}, and Co(R) = {z =u: u € [R,up]} , C3(R) = {# = u: u € [uy, R]}, representing
the directed lower and upper shores of the cut. Then, by Cauchy’s formula,

L[ g(2)! 1 9(2) 1 9(2)!
[Zt]g(Z) = %f JERS] dz = % % FdZ‘F% St dz

C(R) C2(R)UCs (R) C1(R)

Let R — oo. Then the last integral tends to zero, and the first integral converges to that
over Cy(00) U C3(00). Thus

1

t 30
1 g(z) = 2ri /0 uttt(e ”’/2\/u/u0 1+1-—2p) (35)
1
+ —
27”/00 uttl e”’/?\/u/uo 1+1-—2p)
SRy VR
T Juy uTH((ufug — 1) + (1 - 2p)?)
B 1 /oo (y o 1)1/2
Twd )iy -1+ (1 -2p)7)
) (y 1)1/2 )
< dy (since ug > 1
| e ez
1+(1—2p)? —1)1/2 00 —1)i/2
:/ - (vy—1) 2dij/ - (y—1) _dy.
1 y iy — 1) + (1= 2p)?) 1a—zp Y ((y — 1) + (1= 2p)?)
Now
1+(1—2p)? (y — 1)1/? , 1+(1-2p)? 1/2
dy < l—p/ y—1)""dy <1-2p, (36
A rerex e R i AR %0
and

0 (y 1)1/2 /oo dy
dy < | —5——7 W=¢"
/Hmp)z -+ VS, e V=

= / e (e — 1)V du < / e~y du = (mt) 72, (37)
0 0

Using (35), (36), and (37), we obtain

2g(2) < 1 —2p + (wt) ™'/

Therefore, by (34) we have

R(t) < —L 11— 9p+ (rt) V2 < 3(1— 2p) + (wt) V2,
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since ¢ > 1/2. u
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