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is in the problem of existen
e of large substru
tures (subsets of edges or subgraphs) su
hthat all the edges involved have di�erent labels. Typi
ally, an edge label is a fun
tion of thelabels of the endverti
es, e.g. the absolute value of their di�eren
e (gra
eful labelings), ortheir sum modulo some n (harmonious graphs). There is another natural rule for assigningthe edge labels: an edge gets a label equal to the produ
t of its endpoints labels, modulon. Curiously, for n prime we have basi
ally the same model as the multipli
ative group onf1; : : : ; n � 1g is isomorphi
 to the additive group on f0; 1; : : : ; n � 2g. For n 
omposite,some probabilisti
-number theoreti
 issues are likely to arise.For the point set in the plane it is natural to seek large substru
tures (paths, mat
hings)that meet 
ertain geometri
 
onditions. One popular non{
rossing 
ondition requires thatno two edges in the substru
ture 
ross ea
h other. For a sample of diverse results in thisarea of 
ombinatorial geometry we refer the reader to [1, 2, 6, 7, 8, 9, 16℄.To des
ribe the results of this paper, we need some terminology and notations. Following[3℄, let S be a set of points in the plane in a 
onvex position. Assume that ea
h point has aninteger label from f0; : : : ; n� 1g. If p; q are distin
t points (also 
alled verti
es) in S, thenwe let (p; q) denote the straight segment (or edge) that has p and q as its endverti
es. Thisnaturally indu
es a (
omplete) geometri
 graph GS. In general, we let E(K) denote the setof edges of a graph K. A subset E 0 of E(GS) is non{
rossing if no two edges in E 0 interse
tin a point other that a 
ommon endvertex. A subgraph H of GS is non{
rossing if E(H) isnon{
rossing.As for the edge labels, we use the sum rule; it assigns to ea
h edge (p; q) a number equal tothe sum of labels of p and q modulo n. One su
h rule assigns to ea
h edge the sum (modulon) of the labels of its endpoints. In this geometri
 setting, the 
entral problem is to �nd
onditions for existen
e of large non{
rossing subgraphs whose edge labels are all distin
t.While [3℄ dealt ex
lusively with the worst{
ase instan
es of the labeled set S, our goal is tostudy the average (likely) 
ase behavior under assumption that the labels of points in S arerandom. More spe
i�
ally, we assume that ea
h of the n points is labeled with an integerdrawn uniformly at random from f0; 1; 2; : : : ; n � 1g, independently of all other labels. Wepose the following questions.Question 1 How many edges are there typi
ally in a maximum size harmoni
 non{
rossingmat
hing in GS?Question 2 How many edges are there typi
ally in a maximum size harmoni
 non{
rossingpath in GS?In our opinion, we have found a satisfying answer to Question 1. We propose a greedy mat
h-ing algorithm (HMat
hing) that w.h.p. delivers a mat
hing of size n=2 � O(n1=3 lnn)|anearly perfe
t mat
hing, as the number of unmat
hed verti
es is w.h.p. merely of ordern1=3 lnn. Thus the maximum mat
hing number is n=2 � O(n1=3 lnn) at least. (For theErd}os-R�enyi random graph with n=2 edges, i. e. in the 
riti
al stage, the 
ore verti
es ofdegree more than, or equal to 3 are typi
ally in
ident to O(n1=3) edges,  Lu
zak et al [10℄.Similarity between the numbers in both s
hemes is hardly more than 
oin
idental though.)For an arbitrary starting point the probability that the resulting mat
hing is perfe
t is not2



too small, of order 
(n�1=3 ln�1 n), i. e. the expe
ted number of \lu
ky" starting pointsis 
(n2=3 ln�1 n). We 
onje
ture that the number itself is likely to be that large as well,so that w.h.p. there exists a perfe
t mat
hing! In Se
tion 2 we present HMat
hing, andin Se
tion 3 we give the experimental results that allowed us to predi
t the likely behaviorof the algorithm. In Se
tion 4 we provide a rigorous analysis whi
h 
on�rms|within thelogarithmi
 fa
tors| the 
onje
tured bounds. In Se
tion 5 we brie
y dis
uss the relatedproblem in whi
h the point labels form a random permutation of (0; 1; 2; : : : ; n� 1), ratherthan being stri
tly independent of ea
h other.Somewhat unexpe
tedly Question 2 is inherently harder to answer fully. In Se
tion 6 wedes
ribe two greedy path algorithms, one rather naive, another quite elaborate. The �rstalgorithm w.h.p. delivers a path of length asymptoti
, in probability, to (1 � e�1)n �0:63n. The 
omputer runs indi
ate that the se
ond algorithm is 
onsiderably more eÆ
ient,
onsistently delivering a path of length 
lose to 0:76n. The experiments and a 
ari
aturemodel of this algorithm 
ompel us to 
onje
ture that the algorithm �nds a path of lengthasymptoti
, in probability, to n(1 � e�2)=(1 + e�2) � 0:761n. In Se
tion 6.4 we des
ribeHPath, a 
ompromise algorithm, whose typi
al performan
e puts it between the �rst twoalgorithms. In Se
tion 7 we show that w.h.p. this algorithm �nds a path of length 0:66n atleast. These results signal that, in sharp 
ontrast with the mat
hing problem, the longestpath is not likely to 
ontain n�o(n) verti
es. And indeed, using a 
ounting (nonalgorithmi
)argument we show (Se
tion 8) that w.h.p. Ln, the length of the longest path, falls below0:96n. We 
onje
ture that Ln=n 
onverges, in probability, to a 
onstant between 0:79 and0:96.We 
on
lude with the following question.Quastion 3 How many edges are there typi
ally in a maximum size harmoni
 non{
rossingtree or forest in GS?Going out on a limb, we 
onje
ture that w.h.p. the maximum tree size is n� 1, so that themaximum tree spans all n verti
es.2 HMat
hing: the algorithmNaturally, the �rst step in our quest for a satisfa
tory answer to Question 1 was to 
ome upwith an algorithm that would yield, in 
omputer simulations, large harmoni
 non{
rossingmat
hings.After several attempts, we settled on a reasonably simple algorithm that 
onsistently endedup with very large mat
hings in the 
omputer experiments. We 
all this algorithm HMat
h-ing.Our basi
 assumption is that the n points that 
omprise the set S are in 
onvex position,so that all the points are on the boundary of the 
onvex hull of S. No relevant geometri
alinformation is lost if we assume that all the points lie on a 
ir
le. Therefore, we may denotethe points as p0; p1; : : : ; pn�1, a

ording to the 
y
li
 (
ounter-
lo
kwise) order in whi
h they3



appear on the 
ir
le. Further ea
h point pi gets a label A[i℄, and the n labels are drawnindependently from the uniform distribution on f0; 1; : : : ; n � 1g. Given the point labels,ea
h edge (pi; pj) gets the label A[i; j℄ :� A[i℄ + A[j℄ (mod n).HMat
hing takes as input an array (A[0℄; A[1℄; A[2℄; : : : ; A[n � 1℄) and its output is a(non{
rossing, harmoni
) mat
hing on S. At ea
h step we have a 
urrent mat
hing, bothnon{
rossing and harmoni
, to whi
h we add a new edge to get a larger mat
hing that meetsthe same requirements. Formally, we maintain the 
urrent mat
hing M as a 
olle
tion ofordered pairs (i; j) with i < j, where (i; j) represents (pi; pj). Clearly the edge setM satis�esthe following 
onditions:(a) if (i; j) and (i0; j 0) are di�erent pairs inM, then fi; jg \ fi0; j 0g = ; (M is a mat
hing);(b) if (i; j) and (i0; j 0) are di�erent pairs inM, then A[i℄ +A[j℄ 6� A[i0℄ +A[j 0℄ (mod n) (Mis harmoni
);(
) if (i; j) and (i0; j 0) are di�erent pairs in M, with i < i0, then either i < j < i0 < j 0 ori < i0 < j 0 < j (M is non{
rossing).The pseudo
ode for HMat
hing is the following.:Input : An array (A[0℄; A[1℄; : : : ; A[n� 1℄), su
h that A[i℄ 2 f0; 1; : : : ; n� 1g for every i.Output : The size of a set M of pairs (i; j), with i < j, that satis�es (a), (b), and (
)above.Pro
edure :1 S = ;; M = ;; L = ;; k = 02 while k � n� 13 do4 if S 6= ;5 then if A[maxS℄ + A[k℄ (mod n) =2 L6 then M M[ f(maxS; k)g7 L L [ fA[maxS℄ + A[k℄ (mod n)g8 S  S n fmaxSg9 else S  S [ fkg10 else S  fkg11 k  k + 1 4
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Figure 1: Illustration of HMat
hing.12 return jLjThe a
tion of the algorithm is illustrated in Figure 1.In this example, A[0℄ = 7; A[1℄ = 6; A[2℄ = 4; : : : ; A[9℄ = 3. In the �rst step we explore A[0℄and add 0 to S. In the se
ond step, we explore A[1℄, and 
he
k if A[0℄ +A[1℄ (mod 10) is inL. Sin
e it is not, the edge (A[0℄; A[1℄) is added to M, and sin
e A[0℄ + A[1℄ = 7 + 6 �3 (mod 10), L be
omes f3g, and S goes ba
k to ;. In the third step we explore A[2℄, andsin
e there is no sta
k, we add 2 to S (so that S be
omes f2g, sin
e it was empty) and moveon to the fourth step, where we explore A[3℄; sin
e A[2℄ + A[3℄ = 4 + 9 � 3 (mod 10) isalready in L, we must now set S = f2; 3g. In the �fth step we explore A[4℄ = 5. Sin
e 3 isthe largest integer in S, we 
he
k if A[3℄ + A[4℄ � 4 (mod 10) is in L. Sin
e it is not, thenwe add (A[3℄; A[4℄) toM, 4 to L, and remove 3 from S. At the end, we obtain the mat
hingshown, whi
h happens to be perfe
t.In words, this algorithm works as follows. By letting k in
rease from 0 to n� 1, we explorethe labels A[0℄; A[1℄; : : : ; A[n � 1℄ in the given order. Now at ea
h step we have a set ofmat
hing edges (namely the 
urrent M), whose set of labels is re
orded as the set L, plusa sta
k of unmat
hed verti
es (that is, not in
ident with an edge in M), whose index setis S: the i{th vertex is unmat
hed i� i 2 S. As we explore the next vertex label A[k℄, weattempt to mat
h it with the vertex i0 in the sta
k su
h that i0 is largest among all verti
esin the sta
k. Note that this makes sense geometri
ally: if we manage to add this edge toM (that is, if A[i0℄ + A[k℄ (mod 10) =2 L), then the edge joining ea
h vertex in the sta
kto ea
h unexplored vertex does not 
ross any edge in M. Loosely speaking, after we add amat
hing edge, ea
h vertex in the sta
k (as well as ea
h unexplored vertex, of 
ourse) stillhas a 
han
e to be the endvertex of a mat
hing edge.We wrote 
ode for this algorithm, in
luding the generation of random labels, and ran itrepeatedly for large values of n (n = 104; 105; 106). Its performan
e ex
eeded our bestexpe
tations. We 
onsistently found a mat
hing in question of size at least 0:999(n=2), thusextremely 
lose to a perfe
t mat
hing that 
ontains bn=2
 edges. In the next Se
tion 35
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Figure 2: For ea
h value of n = 5000; 10000; 15000; : : : ; 50000, we ran HMat
hing 106times, ea
h time on a randomly generated array (A[0℄; A[1℄; A[2℄; : : : ; A[n � 1℄)), and 
om-puted the average size of the set of verti
es left unmat
hed. The results are shown in this�gure, together with the �tting 
urve n1=3=1:46 proposed by Gnuplot 

.we present our experimental results. Then in Se
tion 4 we present a rigorous study whi
h
on�rms our 
onje
tures based on the experimental numeri
s.3 Performan
e of HMat
hing: empiri
al resultsThere are two natural parameters to measure the performan
e of HMat
hing: (i) theexpe
ted size of the mat
hing obtained by running HMat
hing, and (ii) the probabilitythat HMat
hing delivers a perfe
t mat
hing.3.1 The empiri
al average size of mat
hingWe wrote a C++ program that generated ea
h A[i℄; i = 0; 1; : : : ; n � 1, independently atrandom from the uniform distribution on f0; 1; : : : ; n � 1g, and then ran HMat
hing on(A[0℄; A[1℄; : : : ; A[n� 1℄) and returned the number of edges left unmat
hed.We then ran this program 106 times for ea
h of the following values of n: 5000; 10000; 15000;20000; 25000; 30000; 35000; 40000; 45000; and 50000.For ea
h su
h n, we 
omputed the average of the 106 experiments. Using Gnuplot 

, weplotted the results and obtained a 
urve n1=3=1:46 that �tted the data quite well. Both theresults and the �tting 
urve are presented in Figure 2.6
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Figure 3: For ea
h value of n = 5000; 10000; : : : ; 50000, we ran HMat
hing 106 times,ea
h time on a randomly generated array (A[0℄; A[1℄; A[2℄; : : : ; A[n� 1℄), and 
omputed theproportion of experiments for whi
h HMat
hing delivered a perfe
t mat
hing. The resultsare shown in this �gure, together with the �tting 
urve n1=3 proposed by Gnuplot 

.In view of the remarkably good �t given by the 
urve n1=3=1:46, we 
onje
ture that theexpe
ted number of verti
es left unmat
hed is �(n1=3). An equivalent 
onje
ture is that theexpe
ted size of the mat
hing is n=2��(n1=3).3.2 Empiri
al su

ess probability.Sin
e on average the resulting mat
hing turned out to be near perfe
t, we added a few linesof 
ode to the program, to determine the empiri
al frequen
y of the problem instan
es whenthe mat
hing was in fa
t perfe
t.Again, we ran 106 experiments for ea
h n = 5000; 10000; : : : ; 50000, and 
omputed the pro-portion of experiments for whi
h HMat
hing yielded a perfe
t mat
hing. Using Gnuplot 

,we plotted the results and got a �tting 
urve n�1=3. As it 
an be 
he
ked in Figure 3, this
urve seems to be a very good �t to the data obtained.The data �t the 
urve n�1=3 so well that we are led to the 
onje
ture: the probability thatHMat
hing delivers a perfe
t mat
hing is of order �(n�1=3). It is tempting to state aneven stronger 
onje
ture: the probability that the resulting mat
hing is perfe
t is asymptoti
to n�1=3. In the next se
tion we prove a slightly weaker result, namely that this probabilityis between 
1n�1=3 ln�1 n and 
2n�1=3 lnn. We also show that the likely size of the terminalmat
hing is between n=2 � 
3n1=3 lnn and n=2 � 
4n1=3 ln�1 n, whi
h again is within thelogarithmi
 fa
tors from the 
onje
tured formula n=2� �(n2=3).7



Consequently, on average, the number of the starting points for whi
h the algorithm �ndsa perfe
t mat
hing is of an empiri
al order �(n2=3), and of a provable order 
(n2=3 ln�1 n).This suggests the followingConje
ture 1 W.h.p. there is a perfe
t (non{
rossing, harmoni
 ) mat
hing, and it 
an befound by running HMat
hing n times, sele
ting ea
h of the n points as a starting point.In our 
omputer experiments, with n up to 105 and 106 problem instan
es, we always founda perfe
t mat
hing by running the algorithm for suÆ
iently many starting points.4 Analysis of HMat
hingRe
all that we are interested in analyzing the performan
e of HMat
hing when it is ranon an array (A[0℄; A[1℄; : : : ; A[n � 1℄) su
h that ea
h A[i℄ is an integer 
hosen uniformly atrandom, and independently of the other A[j℄'s, from f0; 1; : : : ; n� 1g.4.1 The mat
hing algorithm as a Markov Chain.Consider the generi
, k-th, step of the mat
hing algorithm. Before this step the verti
esp1; : : : ; pk�1 have been explored, and some of them have been mat
hed. LetM be the 
urrent(non-
rossing, harmonious) mat
hing and S be the 
urrent set (sta
k) of all unmat
hedpoints whose labels have been explored. Then 2jMj + jSj = k � 1. Suppose �rst thatS 6= ;. Assume indu
tively that there are no triples (pa; pb; p
), a < b < 
, su
h that(pa; p
) 2 M and pb 2 S. This 
ondition means that no edge (pa; pb), su
h that pa 2 S andb > b� = maxf
 : p
 2 Sg, 
rosses an edge from M. In parti
ular, we 
an and do add toM the edge (pb�; pk) if the label of this edge is not in L, the label set of the edges in M,i. e. if A[b�℄ + A[k℄ (mod n) =2 L. The last 
ondition restri
ts the value A[k℄ to a subsetof f0; : : : ; n� 1g of 
ardinality n� jLj = n� jMj. Sin
e A[k℄ is uniform on f0; : : : ; n� 1g,and independent on A[0℄; : : : ; A[k � 1℄, the (
onditional) probability that (pb�; pk) is addedto M in the k{th iteration step is 1� jLj=n = 1� jMj=n. In this 
ase M+ f(pb�; pk)g andS n fpb�g are the next mat
hing set and the next sta
k respe
tively. Alternatively, with theprobability jMj=n the mat
hing set remains the same, but the sta
k grows to S [ fpkg. IfS = ;, then the mat
hing set M remains the same, and the next S is fpkg. In all 
ases thenew mat
hingM and the new sta
k S meet the same non-
rossing 
ondition as the previousM and S. Clearly the sequen
e fMk; Skgk�n, (M0 = ;; S0 = ;), is a Markov 
hain. The
hain terminates on
e 2jMkj+ jSkj rea
hes n, that is, when there are no unexplored pointsleft. Remarkably, the transition probabilities and the termination rule depend only on jMkj.So there is a redu
tion of fMk; Skg to a mu
h simpler Markov 
hain fmk; skg on the set ofpairs (m; s), m = jMj, s = jSj, with termination 
ondition 2mk + sk = n.Here is the formal de�nition of the redu
ed Markov 
hain.8



Markov Pro
ess 1 (MP1) Ea
h state is a pair (m; s), where m and s are nonnegativeintegers, and 2m + s < n, where n is a �xed integer given in advan
e. The initial state is(0; 0). The transition rules are :If s = 0, then the next state is (m; s + 1) = (m; 1):If s > 0, then the next state is (m + 1; s� 1); with probability 1�m=n;(m; s + 1); with probability m=n:4.2 The likely size of the terminal mat
hing.A

ording to our redu
tion, to study the size of the terminal mat
hing is equivalent tostudying Zn, the terminal value of m in the Markov 
hain MP1 .Proposition 2 (i) Given a > 0, set � = 2pa(1 + a).Pr(Zn > n=2� �n1=3 lnn) = 1� O(n�a): (1)(ii) Pr(Zn � n=2� n1=3 ln�2 n) = 1�O(ln�1 n): (2)(iii) Let Pn = Pr(Zn = n=2), n even, and Pn = Pr(Zn = (n� 1)=2), n odd. Then, for some
onstants �; � > 0, �n�1=3 ln�1=2 n � Pn � �n�1=3 lnn: (3)For the proof we need the following statement.Lemma 1 Let a > 0. With probability 1� O(n�a), there exists k su
h thatmk 2 (n=2� (1 + a)n2=3 lnn; n=2� 0:5(1 + a)n2=3 lnn); sk = 0;with �(n2=3 lnn) points remaining to be explored.Proof of Lemma 1. Given m < n=2, let Tm = minfk : mk = mg and set Tm = n, if no su
hk exists. Introdu
e Hm = sTm , the sta
k size at this moment. By the de�nition of MP1, forj < k and sj > 0, the 
onditional probability of the transition (mj; sj) ! (mj+1; sj+1) =(mj; sj+1), whi
h leads to an in
rease of the sta
k by 1, is m=n at most. And the alternativetransition leads to the sta
k size sj � 1. For sj = 0, we have sj+1 = 1. These observations9



imply that Hm is sto
hasti
ally dominated by Wm, the maximum of the simple asymmetri
random walk f�jgj�n on f0; 1; 2; : : :g, de�ned as follows: �0 = 0,Pr(�j+1 = �j + 1 j �j) = p := m=n; (�j � 1);Pr(�j+1 = �j � 1 j �j) = q := 1�m=n; (�j � 1);Pr(�j+1 = 1 j �j = 0) = 1:Furthermore, for ea
h integer w > 0, Pr(Wm > w) � nPr(Wm > w), where Wm is themaximum of �j for j between 0 and the �rst moment t > 0 when �t = 0. Using the 
lassi
gambler's ruin formula, we havePr(Wm > w) = q=p� 1(q=p)w+1 � 1 � (p=q)w:Then, introdu
ing mi = n2 � [ain2=3 lnn℄ and pi = mi=n, i = 1; 2, with a2 = a1=2, we havePr�Wmi > n1=3� � 2n� m2n�m2�n1=3< 3n�1� 4a2n�1=3 lnn�n1=3 < 3n exp(�4a2 lnn) = 3n2a1�1 ! 0;provided a1 > 1=2.Now, sin
e 2mk + sk = k at ea
h step, we havem = Tm �Hm2 � Tm �Wm2 :Applying this to m = m1; m2, we see thatPr( 2\i=1�2mi � Tmi � 2mi + n1=3 and Hmi � n1=3�) � 1� O(n�a); a = 2a1 � 1:ThereforePr�(Tm2 � Tm1 = a1n2=3 lnn + O(n1=3)) \ (Hm1 � n1=3)	 � 1� O(n�a):Denote the event in this bound by A. LetB = A \ fsk be
omes zero at some k 2 [Tm1 ; Tm2 ℄g:We want to show that Pr(A n B) � n�b; 8 b > 0, for n large enough. Let t1 2 [0; n � 1℄.Suppose that mt1 � m2, and 0 < st1 � n1=3. These 
onditions 
ertainly hold if t1 = Tm1 .Let T = T (t1) be the �rst t > t1 su
h that either mt = m2, or st = 0. As before, fstgt<T is10



dominated by the asymmetri
 walk f�jgj�t1, �t1 = bn1=3
, with p = m2=n. Therefore T � t1is dominated by Xp;bn1=3
, where Xp;s is the �rst time the random walk hits 0, if �0 = s. Sin
e(see Proposition 8 in the Appendix)Pr(Xp;s � r) � (4pq)�r=2(2p)s ;it follows thatPr�Xm2n ;bn1=3
 � bn2=3
� � �1� 4ba2n2=3 lnn
n2 �bn2=3
�1� 2ba2n2=3 lnn
n �bn1=3
 � exp(�a2 ln2 n):Therefore T (t1) � t1 � n2=3 quite surely (q.s. in short), i.e. with probability 1 � n�b,for every b > 0, uniformly for all t1. Thus T (Tm1) � Tm1 � n2=3 q.s. as well. Sin
eTm2 � Tm1 is of order n2=3 lnn � n2=3 on A, we 
on
lude that indeed Pr(A n B) � n�b, forevery b > 0. So the Markov pro
ess fmk; skg rea
hes a state (m0; 0), where n=2 � m0 2(0:5a1n2=3 lnn; a1n2=3 lnn), with probability 1� O(n�a), a = 2a1 � 1.Proof of Proposition 2 (i) Let T be the �rst k su
h thatmk 2 (n=2� (1 + a)n2=3 logn; n=2� 0:5(1 + a)n2=3 logn); sk = 0:By Lemma 1, T is well de�ned with probability 1 � O(n�a). Let ` be the number of theremaining unexplored points after T steps; 
learly(1 + a)n2=3 lnn � ` � 2(1 + a)n2=3 lnn:The additional in
rease of mk during the remaining n � T steps is (` � sn)=2, where sn isthe terminal sta
k size. So Zn = mn is given byZn = n� `2 + `� sn2 = n2 � 0:5sn:Thus we need to show that w.h.p. sn = O(n1=3 logn). Sin
e mk � n=2 for all k, sn isdominated by �`, where f�jg is the simple symmetri
 random walk with p = q = 1=2, and�0 = 0. We need to �nd a likely upper bound for �`. First of all, for ea
h integer x � 0,Pr(�` = x) = X2t+�=`PtQ�(x); (4)here Pt = Pr(�2t = 0), the probability that the walk returns to 0 after 2t steps; Q�(0) = Æ�;0,and Q�(x), x > 0, is the probability that the walk, that starts at 0, rea
hes x after � stepswithout ever returning to 0. We will need the full strength of this formula later, but for nowwe are 
ontent with its weak 
orollary, namelyPr(�` = x) � X�;t�02t+�=` Q�(x): (5)11



As for Q�(x), re
all that, by the ballot theorem, the total number of ways to rea
h the pointx from the point 0 by making � (�1)-moves, without returning to 0, isx�� �(� + x)=2�; � � x;(� + x)=2 being the total number of right moves. Therefore, for the (p; q)-simple walk,Q�(x) := x�� �(� + x)=2�p(�+x)=2�1q(��x)=2;(the probability of the �rst move, from 0 to 1, is 1, ea
h of the other � � 1 moves hasprobability p.) Using Stirling's formula and 4pq � 1, we obtain a simple estimateQ�(x) � 
0x exp(�x2=2�)p�(�2 � x2 + �) ; x > 0 (6)where 
0 is some 
onstant. (We will 
ontinue to use 
's for various absolute 
onstants.)Combining (5) and (6), we havePr(�` = x) � 
0xe�x2=2` Xx���` 1p�(�2 � x2 + �) � 
1xe�x2=2`:(That the last sum is uniformly bounded follows from 
onsidering separately � � 2x andx � � � 2x.) ThenPr(�` � �n1=3 lnn) � 
1 Xx��n1=3 lnn xe�x2=2` � 
2 exp�� �2n2=3 ln2 n4(1 + a)n2=3 lnn� = 
2n�a;(7)as ` � 2(1 + a)n2=3 lnn, and � = 2pa(1 + a).Proof of Proposition 2 (ii) As in the proof of part 1,Zn = n2 � 0:5sn;so we need to show that w.h.p. sn � �n := 2n1=3 ln�2 n. Clearly sn sto
hasti
ally dominates�` for the (p; q)-walk, wherep = mTn = 12 � ǹ and ` = n� 2mT 2 [(1 + a)n2=3 lnn; 2(1 + a)n2=3 lnn℄:Thus Pr(sn � �n) � Pr(�` � �n) = Xx��n Pr(�` = x);with Pr(�` = x) given by (4). This time we need a sharp bound for Pt, whi
h isPt � 
((1� 2p) + (t + 1)�1=2) = 
� ǹ + t�1=2� ; (8)12



see Proposition 9. For t 2 [`=2; `℄, the �rst summand dominates sin
e `3=2 � n, and thebound simpli�es to Pt � 2
(`=n). Break the sum in (4) into two parts, � � `=2 and � < `=2.Sin
e x � �n � `, it follows from (6) and (8) that, for x > 0,X2t+�=`��`=2 PtQ�(x) � 
0x24X��`=2��3=2�`=n + (`� � + 1)�1=2�35� 
00x�(`=n)`�1=2 + `�1� = O�x`1=2=n�;as `3=2 � n. ThereforeX0<x��n X2t+�=`��`=2 PtQ�(x) = O(�2n`1=2n�1) = O(ln�3=2 n): (9)Let � � `=2 now. Sin
e 2t+� = `, it follows that t � `=4, and so Pt = O(`=n). Then, using(6), we obtain Xt+�=`��`=2 PtQ�(x) � 
̂`n�1x Z 1x e�x2=2ypy(y2 � x2) dy! : (10)Substituting y = x=z, we transform the last integral intox�1=2 Z 10 e�xz=2pz(1� z2) dz = r2x (J1 + J2);with J1; J2 
orresponding to integration over [0; 1=2℄ and [1=2; 1℄, respe
tively. Then, substi-tuting w = xz=2,J1 � 2p3 Z 1=20 z�1=2e�xz=2 dz � 2p3x�1=2 Z 10 w�1=2e�w dw = 
̂1x�1=2;and J2 � e�x=4 Z 11=2 dzpz(1� z2) = 
̂2e�x=4:Therefore the bound (10) be
omesX2t+�=`��`=2 PtQ�(x) = O(`n�1x(x�1=2)2) = O(`=n); x > 0:Consequently X0<x��n Xt+�=`��`=2 PtQ�(x) = O(`n�1�n) = O(ln�1 n): (11)13



Combining (9) and (11), we obtainX0<x�� X2t+�=`PtQ�(x) = O(ln�1 n):Finally X 2t + � = `PtQ�(0) = P`=2 = O(`=n) = O(n�1=3 lnn):So Pr(�` � �n) = X0�x��n X2t+�=`PtQ�(x) = O(n�1=3 lnn) + O(ln�1 n) = O(ln�1 n):Sin
e Zn = n=2� 0:5sn, and sn dominates �`, the statement follows.Proof of Proposition 2 (iii) First of all, for n even, Zn = n=2 i� sn = 0, and, for n odd,Zn = (n � 1)=2 i� sn�1 = 0. Consider, for instan
e, even n. We know that, 
onditionedon the event in Lemma (
all it A), sn is dominated by �`(1=2) of the walk (f�jgj�`) withp = 1=2, and dominates �` of the walk with p = pn := 1=2� `=n. Then, using (8),Pr(sn = 0 j A) � Pr(�r(pn) = 0)jr=` = O((1� 2pn) + `�1=2) = O(`=n) = O(n�1=3 lnn):On the other hand, again using (8),Pr(sn = 0 j A) � Pr(�r(1=2))jr=` = 
(`�1=2) = 
(n�1=3 ln�1=2 n):Sin
e Pr(A
) = O(n�a), pi
king a > 1=3 we 
on
lude that un
onditionally�n�1=3 ln�1=2 n � Pr(sn = 0) � �n�1=3 lnn;for some absolute 
onstants �; � > 0. The 
ase n odd is similar.This 
ompletes the proof of the proposition.5 Random permutation labeling.The random labeling we have studied very likely assigns the same labels to di�erent points.(Indeed, the probability that no two points have the same label is n!=nn � 2�n.) If we
onsider only distin
t labels, then it is natural to assume that the labels of n points formthe uniformly random permutation of f0; : : : ; n � 1g. We strongly believe that our resultson mat
hings and paths 
ontinue to hold for this uniform permutation labeling, and the
omputer experiments provide an ample eviden
e supporting this belief. However, a rigorousproof of su
h an \invarian
e" is quite problemati
. We model the work of our algorithmsas the pro
esses, in whi
h at every step we explore the label of a point for the �rst time.So, for the independent labels, this label is 
onditionally uniform on f0; : : : ; n � 1g, while14



for the random permutation labeling it is 
onditionally uniform on the subset of labels notyet seen. This 
ompli
ation makes it ne
essary to keep tra
k of the labels en
ountered sofar, thus invalidating usage of the relatively simple Markov 
hain fmk; skg. Whether the
orresponding Markov 
hain 
an be rigorously analyzed is, in our opinion, a 
hallengingproblem.Here is a version of the mat
hing problem for whi
h we 
an prove the asymptoti
 equivalen
eof the two labelings. Let P = fp0; p1; : : : ; pn�1g and Q = fq0; q1; : : : ; qn�1g be su
h that thepoints of P [Q lie on a 
ir
le, in the 
y
li
 order p0; p1; : : : ; pn�1; q0; q1; : : : ; qn�1. We 
onsiderparallel mat
hings between P and Q, that is, mat
hings 
onsisting of the edges (pi; qi) only.Clearly the maximum (harmoni
) mat
hing size equals Dn, the total number of distin
tlabels `(pi; qi) (� (`(pi) + `(qi) (mod n)). Suppose that `(pi) = i, 0 � i � n � 1, andthat the labels of the points in Q are either independent, uniform on f0; : : : ; n� 1g, or arethe elements of the uniformly random permutation of f0; : : : ; n� 1g. Then, for ea
h of thelabelings, Dn=n ! 1 � e�1 in probability. The proofs are based on evaluation of the two�rst order moments of Dn, but the 
omputations for the random permutation 
ase are moreinvolved.6 Non{
rossing harmoni
 pathsWe now turn to Question 2, whi
h is: how many edges are there typi
ally in a maximumsize harmoni
 non{
rossing path in GS?6.1 Roster of algorithms.Again, there is given a 
olle
tion S = fp0; p1; : : : ; pn�1g of points in 
onvex position, andthe labels A[i℄ = `(pi) are independent, uniform on f0; : : : ; n� 1g, while ea
h edge (pi; pj) isassigned a label `(pi; pj) :� (`(pi) + `(pj)) (mod n).We seek algorithms that take as input an array (A[0℄; A[1℄; : : : ; A[n � 1℄), and deliver aprovably long path on GS whi
h is both non{
rossing and harmoni
.We studied the following algorithms.(i) GPath1. It is relatively simple to study, but the resulting path is disappointingly shorton average.(ii) GPath2. Besides being quite natural, this algorithm typi
ally delivers an impressivelylong path. In fa
t, in our experiments it outperformed all other variants of pathalgorithms. However we 
ould not analyze its performan
e rigorously.(iii) HPath. Its empiri
al performan
e puts it above GPath1 and below GPath2. Cru-
ially, HPath is amenable to a rigorous analysis, whi
h 
on�rms its superiority overGPath1. 15



6.2 GPath1.GPath1 works as follows. Start with p0. Re
ursively, given a 
urrent path p0 = pi0 ! pi1 !: : : ! pik , enlarge it by adding the �rst vertex from fpi : i > ikg su
h that the resultingpath p0 = pi0 ! : : : ! pik ! pik+1 remains harmoni
. This is equivalent to the 
onditionA[i℄ =2 fA1; : : : ; Akg, where A1; : : : ; Ak are determined by the labels of the edges (pij ; pij+1),0 � j � k� 1. The new path remains non{
rossing automati
ally sin
e ik > ik�1. Continue,until no su
h enlargement is possible. Obviously, for ea
h k, no vertex pi with i > ik hasbeen tested as a 
andidate for joining the path until it has grown to length k.Re
all that A[0℄; : : : ; A[n� 1℄ are independent, ea
h uniformly distributed on f0; : : : ; n� 1g.Then, given the labels A[j℄, j � ik, the labels A[i℄, i > ik, remain mutually independent,and uniform. So the events A[i℄ =2 fA1; : : : ; Akg; i > ik, are 
onditionally independent, ea
hof the 
onditional probability 1� k=n. It follows then that the length of the terminal pathhas the same distribution as Dn, the number we en
ountered studying the largest size of theparallel mat
hing. Thus the likely number of edges in the terminal path is asymptoti
, inprobability, to (1� 1=e)n � 0:632n.6.3 GPath2.Unlike GPath1, in ea
h step of GPath2 there are two possible types of a point to be addedto the 
urrent path. At the end of the k{th step we have: (i) the 
urrent (non{
rossing,harmoni
) pathPk = fpi0 ! pi1 ! : : :! pi`g; ` = `(k) � k; pi0 = p0; pi1 = pn�1;(ii) the set Dk = fpLk ; pLk�1; : : : ; p1 ; p0; pn�1; pn�2; : : : ; pRk+1; pRkg; Lk < Rk;of dead points, never to be used in future for extending a path. In parti
ular, Pk � Dk. Inaddition, pi`, the newest vertex of the path Pk, is either pLk or pRk . Let Gk := S�Dk denotethe set of game points, that is, the points that still 
an be added to the path Pk.For instan
e, at the end of the �rst step of GPath2 the path P1 is fp0 ! pn�1g = fpi0 !pi1g, L1 = 0 and R1 = n � 1, D1 = fp0; pn�1g. In general, Dk may well 
ontain the pointsother than those from Pk.Clearly any vertex from Gk 
an be added to Pk without 
ausing new edge 
ross any edge ofPk. So our only 
on
ern is that a new edge must have a label di�erent from the labels of alledges in the path Pk. Suppose, for instan
e, that pi` = pRk . First we test pLk+1, the pointthat follows Dk in the 
ounter
lo
kwise dire
tion. If it fails the test, (i. e. if the label of(pLk+1; pi`) has been en
ountered earlier), then we test pRk�1, the point that follows Dk inthe 
lo
kwise dire
tion. We keep testing new points in this alternating fashion until we �nd apoint pi`+1 that 
an be joined to pi`, to extend the 
urrent path Pk. If pi`+1 = pLk+t; (t � 1),then all the points PLk+s; (0 < s < t); \die", so thatDk+1 = Dk [ fpLk+s : 0 < s < tg:16



If pi`+1 = pRk�t; (t � 1), thenDk+1 = Dk [ fpRk�s : 0 < s < tg:If no su
h point is found, then the pro
ess stops. GPath2 is illustrated in Figure 6.3.PSfrag repla
ements p0 pn�1 pn�2
pRk�1pRkpRk+1pRk+2pRk+3

p1p2pLk�1pLkpLk+1pLk+2pLk+3
Figure 4: Illustration of GPath2.Unlike the algorithms we have dis
ussed, Gk (the set of a
tive (game) verti
es) may 
ontain,in addition to fresh verti
es, some verti
es whose labels had been tested in the previous steps.This diversity makes it hard to bound from below the (
onditional) probability that a gamevertex passes the test, and 
an be 
hosen as the next extension of the 
urrent path.Conje
ture 3 The likely number of edges in a path delivered by GPath2 is asymptoti
 toe2 � 1e2 + 1n � 0:761n:Our extensive 
omputer experiments support the estimate 0:761n for the average path length.The number (e2�1)=(e2+1) 
omes from the following simple-minded model of the algorithm.We assume that the label of a vertex being tested is generated anew, uniformly at randomon f0; : : : ; n� 1g, and independently of all other explored labels, in
luding the old label ofthe vertex in question if it had been tested before. This assumption erases the di�eren
ebetween the old and the new verti
es in Gk, and the probability that a vertex in Gk 
anbe added to the 
urrent path Pk is simply 1 � jPkj=n. Let �k = jPkj, and let dk denotethe total number of dead verti
es not in Pk. Then f�k; dkg is a Markov 
hain su
h that:(�0; d0) = (0; 0), and(�k+1; dk+1) = (�k + 1; dk) with probability 1� (�k=n)2,17



(�k+1; dk+1) = (�k; dk + 1) with probability (�k=n)2.The pro
ess terminates when �k + dk = n� 1.A 
oupon-
olle
tor type of argument shows that the likely length of the terminal path isasymptoti
 to 
n, where 
 is the solution of the equationZ 
0 11� x2dx = 1;or 
 = (e2 � 1)=(e2 + 1) � 0:761. The 
hallenge is to show that whp the work of the a
tualalgorithm is asymptoti
ally 
lose to this Markov pro
ess.6.4 HPath: the algorithmIn this se
tion, lowering our sights, we des
ribe an algorithm (HPath) whi
h on averageperforms better than GPath1, but falls short of the 
onje
tured performan
e of GPath2.Unlike GPath1, in HPath some of the verti
es that had failed the label test are testedagain, and this modi�
ation typi
ally leads to fewer wasted verti
es.As in GPath2, at the end of the k-th step we have the 
urrent path Pk = fpi0 ! pi1 !: : :! pi`g, ` = `(k) � k, (pi0 = p0; pi1 = pn�1), and the set Dk � Pk of the \dead" verti
es.Dk is an interval, whose endpoints are in Pk. One of the endpoints is pi`. The set D
k of the\live" verti
es 
ontains an interval Fk of the \fresh" verti
es, i. e. verti
es whose labels havenot been tested yet. In general, Dk and Fk are separated by two, left and right, intervals
onsisting of verti
es already tested. Denote these intervals TLk and TRk and let Tk = TLk [TRk .At most one vertex u in Tk may still be alive, in whi
h 
ase its label A[u℄ is di�erent fromthe label of pi`, and the path extension pi` ! u is unfeasible. The remaining verti
es in Tkare dead.Case 1. Tk 
onsists of dead verti
es only. Pi
king the left endpoint q of Fk, we 
he
kwhether the label of the edge (pi`; q) is di�erent from the labels on the edges in Pk, so that(pi`; q) 
an be added to Pk. If it 
an, then we set Pk+1 = fpi0 ! : : : ! pi` ! qg, so that`(k + 1) = `(k) + 1 and pi`(k+1) = q. Furthermore Dk+1 := Dk [ TLk , TLk+1 := ;, TRk+1 := TRk ,Fk+1 := Fk n fqg. Tk+1 
onsists of dead verti
es only. If (pik ; q) 
annot be added to Pk andthe labels of pi`, q are the same then q is de
lared dead. If the labels of pi` and q are distin
t,then q is de
lared alive. In either 
ase, TLk+1 := TLk [ fqg, TRk+1 := TRk , Fk+1 := Fk n fqg,Dk+1 := Dk, Pk+1 := Pk. Clearly at most one vertex u in Tk+1 is alive, in whi
h 
ase: (i)A[u℄ 6= A[pi`(k+1)℄; (ii) the path extension pi`(k+1) ! u is unfeasible.Case 2. Tk 
ontains exa
tly one vertex (
all it u) still alive. Suppose, say, that u 2 TLk .Consider the right endpoint v of the fresh interval Fk su
h that Fk is sandwi
hed between uand v.Case 2(a). If the path extension pi` ! v is unfeasible, then v is de
lared dead, and TLk+1 :=TLk , TRk+1 := TRk [ fvg, Fk+1 := Fk n fvg, Dk+1 := Dk, Pk+1 := Pk. u is a sole alive vertex inTk+1, its label meeting the 
onditions (i), (ii), (see Case 1).18



Case 2(b). Suppose pi` ! v 
an be used for extending the path Pk. We 
he
k then whetherthe 2-edge extension pi` ! v ! u is usable as well.In 
ase \no" we set Pk+1 := fpi0 ! : : :! pi` ! vg, TLk+1 := TLk , TRk+1 := ;, Fk+1 := Fk nfvg,Dk+1 := Dk [ TRk [ fvg. Note that Tk+1 still 
ontains u, and the label of u is di�erent fromthe label of v = pi`(k+1). Otherwise, like pi`(k) ! v, pi`(k) ! u would have also been a feasibleextension of Pk, whi
h 
ontradi
ts the de�nition of u, the sole alive vertex in Tk. And, of
ourse, pi`(k+1) ! u = v ! u is not a feasible path extension. Thus u is the sole alive vertexin Tk+1, and the 
onditions (i), (ii) are met again.In 
ase \yes" we set Pk+1 := fpi0 ! pi1 ! : : : ! pi` ! v ! ug, so `(k + 1) = `(k) + 2,and pi`(k+1) = u. We set TRk+1 := ;, Fk+1 := Fk n fvg, Dk+1 := Dk [ TRk [ fvg [ A andTLk+1 := TLk n [pi` ; u℄. Here Tk+1 
onsists of dead verti
es only.The pro
ess stops when F , the set of fresh verti
es, be
omes empty.7 Analysis of HPathThe main result in this se
tion is a lower bound for the expe
ted number of edges in thepath delivered by HPath.Theorem 4 Let � = � ln 2 + 32p5 ln (p5 + 2)(p5� 1)(p5� 2)(p5 + 1)! � 0:598:Then the expe
ted number of edges in a path obtained by the a
tion of HPath is at least�1� e��12 �n � 0:665n:Thus w.h.p. HPath outperforms GPath1.Proof. We break the analysis into two parts. First we obtain a probabilisti
 upper boundfor the number of verti
es it takes to build a path of length n=2. Se
ond, we use a balls-into-boxes argument to bound from below the expe
ted number of edges added to the pathduring the remaining steps.Lemma 5 Let �n denote the random number of verti
es tested by the algorithm till the
urrent path length rea
hes n=2. Then, for ea
h " > 0limn!1P ��nn � (1 + ")�� = 1: (12)
19



Proof. (I) After the k-th step, we have the 
urrent path P = Pk, the set of dead verti
esD = Dk � Pk, and the set T = Tk of other verti
es, already tested, that separates D fromF = Fk, the set of fresh verti
es. A vertex u 2 T is singled out as an only vertex in T , stillalive, if it is present. To 
omplete the des
ription of the 
urrent state we need to list thelabels A[i℄ of verti
es i from P and the label of a still alive vertex u 2 T , if it exists; in that
ase A[u℄ 6= A[pend℄, where pend being the endvertex of P , and u 
annot be used to extend P .Let S be the resulting state des
ription. It 
an be seen that the sequen
e fSkg is a Markov
hain. As in the 
ase of the mat
hing algorithm, it is possible to determine a mu
h simplerMarkov 
hain dominated by fSkg. Let ` be the length of the 
urrent path P . Let � 2 f0; 1gbe an indi
ator of the event fT 
ontains an alive vertex ug. Denote by `0; �0 the parameterof the next state S 0, we have:P [(`0; �0) = (` + 1; �) j S℄ = 1� `=n; (13)P [(`0; �0) = (`; � + 1) j S℄ � (`� 1)=n; (14)P [(`0; �0) = (`; �) j S℄ � 1=n; (15)if � = 0, and P [(`0; �0) = (`; �) j S℄ = `=n (16)P [(`0; �0) = (` + 2; � � 1) j S℄ � 1� 2`=n (17)P [(`0; �0) = (` + 1; �) j S℄ � `=n; (18)if � = 1.Let us prove (13){(18). Suppose � = 0. The relation (13) follows from the observation thata fresh vertex v 
an be added to P i� its label is not equal to one of ` \ex
luded" values,determined by the edge labels of the path P and and A[pend℄, i. e. i� A[v℄ =2 Ex(P; pend),jEx(P; pend)j = `. Then the sum of two other 
onditional probabilities is `=n, and the thirdprobability is at most 1=n, the probability that the fresh vertex has the same label as A[pend℄(and 
ould not be added to the path).Suppose now that � = 1. Then (16) holds, analogously to (13), and thus the sum of twoother probabilities is 1� `=n. So we need to prove (17) only. If a fresh vertex v 2 F 
annotbe added to P then A[v℄ 2 Ex(P; pend). Likewise the label of (v; u) 
oin
ides with the labelof one ` edges of P if A[v℄ 2 Ex(P; u). Sin
e ea
h of the Ex sets is of 
ardinality `, there areat least n � 2` values for A[v℄ for whi
h the labels of (pend; v) and (v; u) are di�erent fromthe labels of ` edges P . Sin
e A[pend℄ 6= A[u℄; for those n � 2` values of A[v℄ the labels of(v; u) and (pend; v) are mutually distin
t as well, and we have a two-edge extension of P . So(17) follows.Obviously, the key inequality (17) 
an be helpful only as long as ` � n=2. The inequalities(13)-(18) lead us to 
onsider a Markov 
hain (�k; �k), where �k 2 f0; 1g, su
h that, for1 � k � n=2, P [(�0; �0) = (� + 1; �)j (�; �)℄ = 1� �=n;P [(�0; �0) = (�; � + 1)j (�; �)℄ = (� � 1)=n;P [(�0; �0) = (�; �)j (�; �)℄ = 1=n;20



if � = 0, and P [(�0; �0) = (�; �)j (�; �)℄ = �=n;P [(�0; �0) = (� + 2; � � 1)j (�; �)℄ = 1� 2�=n;P [(�0; �0) = (� + 1; �)j (�; �)℄ = �=n;if � = 1.To de�ne the 
hain 
ompletely, set �1 = 1, and �1 = 0. The 
hain terminates on
e �k � n=2.We want to show that `k sto
hasti
ally dominates �k, that isP [`k > t℄ � P [�k > t℄; (19)if (`1; �1) = (�1; �1):To this end, let us introdu
e the lexi
ographi
al order � on the pairs (`; �):(`; �) � (^̀; �̂) i� ` > ^̀ or (` = ^̀ and � � �̂):It is straightforward that for every state S, and any pair (`�; ��)P [(`0; �0) � (`�; ��)j S℄ � P [(�0; �0) � (`�; ��)j (�; �)℄: (20)if (�; �) = (`(S); �(S)): Using this inequality and indu
tion, one 
an show easily that forea
h k and all (`�j ; ��j ); j � k,P [(`j; �j) � (`�j ; ��j ); 8j � k℄ � P [(�j; �j) � (`�j ; ��j ); 8j � k℄:Setting ��j = 0, we get P [`j � `�j ; 8j � k℄ � P [�j � `�j ; 8j � k℄;and (19) follows.(II) Let K = minfk : `k � n=2g, and eK = minfk : �k � n=2g. Sin
e `k; �k never de
rease,by (19), P (K � k) � P ( eK � k); 8k:To study the limiting behavior of eK, introdu
e eK` = minfk : �k = n=2g, for �1 = `; �1 = 0and eK �̀ = minfk : �k = n=2g, for �1 = `; �1 = 1, i.e. eK = eK1 and eKn=2 = eKn=2+1 =eK�n=2 = eK�n=2+1 = 0. (For simpli
ity we assume that n is even.)Introdu
e the Lapla
e transformsF`(u) = E�eu eK`=n�; F �̀(u) = E�eu eK �̀=n�; u > 0:Using the Markov property of (�k; �k), for ` < n=2,F` =eu=n ��1� ǹ�F`+1 + � ǹ � 1n�F �̀ + 1nF`� ; (21)F �̀ =eu=n � ǹF �̀ + �1� 2 ǹ�F`+2 + ǹF �̀+1� : (22)21



We want to show the existen
e of a smooth fun
tion h(x), su
h that F`(u); F �̀(u) � euh(`=n):This would imply that eK`=n; eK �̀=n 
onverge, in probability, to h(`=n). To this end, introdu
ealso two smooth fun
tions a(x); b(x) and de�nef` = eu(h+a=n); f �̀ = eu(h+b=n); h = h(`=n); a = a(`=n); b = b(`=n):Our task is to determine h; a; b so that f`; f �̀ almost satisfy the equations (21){(22) for F`and F �̀. Plugging the expressions for f`; f �̀ into these equations, and using the smoothnessof h(x), a(x) and b(x), we 
omputef` � eu=n ��1� ǹ� f`+1 + � ǹ � 1n� f �̀ + 1nf`�=f`�1� eu=n ��1� ǹ� euh0=n+O(n�2) + � ǹ � 1n� eu(b�a)=n + 1n��=f`�1� eu=n �1 + �1� ǹ� uh0n + ǹ u(b� a)n + O �n�2���=� f`un �1 + �1� ǹ� h0 + ǹ
 + O(n�1)� ; (23)where 
(x) = a(x)� b(x), and the bounded 
oeÆ
ient impli
it in O(n�1) depends on u andmax jh00(x)j, max ja0(x)j. Likewisef �̀ � eu=n � ǹf` + �1� 2 ǹ� f`+2 + ǹf �̀�=� f �̀un �1 + �2� 3 ǹ� h0 + �1� 2 ǹ� 
 + O(n�1)� : (24)Interestingly, the square bra
kets expressions in the bottom lines of (23){(24) depend on aand b only through the di�eren
e 
 = a� b. Let us 
hoose 
(x) su
h that1� x
(x)1� x = 1 + (1� 2x)
(x)2� 3x =) 
(x) = 1� 2x1� x� x2 :Then (23){(24) are very nearly satis�ed ifh0(x) + 1� x
(x)1� x = 0 =) h0(x) + 1� x1� x� x2 = 0:Sin
e we want 1 = E [eu eKn=2=n℄ � euh(1=2), we impose the 
ondition h(1=2) = 0. The solutionis h(x) = �12 ln[4(1� x� x2)℄ + 32p5 ln (p5� 2x� 1)(p5 + 2)(p5 + 2x + 1)(p5� 2) :In parti
ular, h(0) = � ln 2 + 32p5 ln (p5� 1)(p5 + 2)(p5 + 1)(p5� 2) :22



Pi
k " 2 (0; 1), and set h�(x) = (1�")h(x), so that h�(1=2) = 0 again. Consider the +-
ase.Let a(x) = 
(x)+M , b(x) = M , M > 0 to be spe
i�ed shortly. Then a(x)�b(x) = 
(x), andsin
e h0(x) < 0 for x 2 [0; 0:6℄, say, the square bra
kets expressions on the right hand sideof (23) and (24), times �1, are positive and bounded away from zero. So the 
orrespondingf`, f �̀ satisfy the re
urren
e inequalities obtained from (21){(22) by repla
ing = with �. Inaddition, for ` 2 fn=2; n=2 + 1g,f` = exp �u �h+(`=n) + n�1(
(`=n) + M)�� = exp(un�1(M � a));where a = maxx�0:6�2jh0(x)j + j
0(x)j�, as h(1=2) = 
(1=2) = 0. So, 
hoosing M � a, weensure that f` � 1. Likewise f �̀ > 1 for those `. Thereforef` � F`; f �̀ � F �̀; ` 2 fn=2; n=2 + 1g:Using this as the basis of the ba
kward indu
tion, and the re
urren
e equations (inequalitiesrespe
tively) for F`; F �̀ (for f`; f �̀ respe
tively) for the indu
tive step, we obtain that, forall ` � n=2,F`(u) � exp �u�h+(`=n) + n�1(
(`=n) + M)�� ; F �̀(u) � exp �u�h+(`=n) + n�1M�� :In exa
tly the same way we obtain the lower bounds with h� in pla
e of h+, and 
(x)�M; �Min pla
e of 
(x) + M; M . In parti
ular, using these bounds for ` = 1, we see that n�1 eK1 =n�1 eK 
onverges in probability, and in terms of Lapla
e transform, to � = h(0). Therefore,using the sto
hasti
 dominan
e of eK over K, we obtain that for ea
h Æ > 0, K � (1 + Æ)n�with probability approa
hing 1 as n ! 1. Roughly, w.h.p. the number of steps (verti
es)it takes for HPath to build a path of length n=2 is �n, at most. This proves Lemma 5.On
e su
h a path is determined, we swit
h to the algorithm in whi
h the fresh verti
es aretested in the �xed dire
tion, 
lo
kwise or 
ounter
lo
kwise. For this phase the number ofadditional edges that will be added to the path equals, in distribution, to the total number ofboxes labeled n=2+1; : : : ; n whi
h are o

upied by at least one ball in the uniformly randomallo
ation of n � K balls among the boxes 1; 2; : : : ; n=2; n=2 + 1; : : : ; n. The 
onditionalexpe
ted number of su
h boxes isn2 "1� �1� 1n�n�K# = n2 [1� exp(�1 + K=n + O(n�1)℄:In probability, lim inf(1� e�1+K=n+O(n�1) � 1� e�1+�;when
e the expe
ted length of the terminal path s
aled by n is, in the limit, 1� e�1+�. Thetheorem is proved 
ompletely.Notes. (1) The 
ombination of Lapla
e transforms and the approximation te
hnique via thedi�erential equations had been used by se
ond author in [P1℄ (an urn model), [P2℄ (spreadingrumor pro
ess), and [P3℄ (random graph pro
ess).23



(2) There is a natural extension of HPath algorithm in whi
h more than one vertex 
an bekept alive. Numeri
al 
omputations for the 
orresponding Markov 
hain indi
ate that theexpe
ted length of the terminal path is at least�1� e0:591�12 �n � 0:6678n;a surprisingly small improvement. The original algorithm and this last modi�
ation workbetter in pra
ti
e; to establish this fa
t rigorously one would need to �nd a better alternativeto the lower bound 1� 2`=n for the key transition probability.(3) For n prime there is a modi�ed algorithm that on average outperforms GPath1. In thisalgorithm after the k-th step we have a path Pk = fpi0 ! pi1 ! : : : ! pi`g, ` = `(k), aset Dk � Pk of dead verti
es, and an interval [uk; vk℄ = Fk = D
k of fresh verti
es. If eitherpi` ! uk ! vk or pi` ! vk ! uk 
an be added to Pk, we do so, thereby getting Pk+1 of length`(k + 1) = `(k) + 2. If a two-edge extension is not possible, we go for one-edge extension,pi` ! uk or pi` ! vk, if any is feasible, obtaining Pk+1 of length `(k+1) = `(k)+1. OtherwisePk+1 = Pk. Whatever the out
ome is, Dk+1 = Dk [ fuk; vkg. It is 
lear that Pk+1 = Pk (i.e.`(k + 1) = `(k)) with the (
onditional) probability (`=n)2. Primality of n 
an be used toshow that `(k + 1) = `(k) + 2 with probability�1� ǹ��1� ` + 1n � + b(n� `� 1)2=4
n2 ; (25)at least. Then `(k + 1) = `(k) + 1 with probability1� � ǹ�2 � �1� ǹ� � �1� ` + 1n �� b(n� `� 1)2=4
n2at most. With these bounds at hand, we 
onstru
t the 
orresponding Markov 
hain f`(k)gwhi
h is dominated by the se
ond phase of GPath1. It turns out the expe
ted terminalpath length is asymptoti
 to 0:672n, larger by 0:007n than the bound in Theorem 4. Hereis the explanation for (25). First of all, pi` ! uk ! vk is added to the 
urrent path withprobability (1�`=n)(1�(`+1)=n), regardless of whether n is prime. It remains to show that,for n prime, pi` ! uk 
annot be added to the path, but pi` ! vk ! uk 
an with probabilityb(n � ` � 1)2=4
=n2, at least, if ` � n=2. The latter bound follows from a theorem, due toPollard [14℄:Theorem 6 Let p be a prime number, and let A and B nonempty subsets of Z=pZ. Letr = jBj � jAj = s:For t = 1; : : : ; r, let Nt denote the number of 
ongruen
e 
lasses in Z=pZ that have at leastt representations in the form a + b, where a 2 A and b 2 B. ThenN1 + N2 + : : : + Nt � minftp; t(r + s� t)g: (26)24



Let C := f(A[vk℄; A[uk℄) : pi` 6! uk; pi` ! vk ! ukg:Then, 
learly P (pi` 6! uk; pi` ! vk ! uk) = jCj=n2: (27)Let A := fA[vk℄ : pi` ! vkg and B := fA[uk℄ : pi` 6! uk; A[uk℄ 6= A[pi` ℄g:Denote L(P ) the set of labels appearing on the edges of P . Note that jAj = n�` � `; `�1 �jBj � ` and jL(P )j = `. A pair of labels (a; b) 2 A� B is in C, i� a + b (mod n) is not inL(P ). Indeed, a 2 A implies pi` ! vk, b 2 B implies pi` 6! uk, and A[uk℄ 6= A[pi`℄ impliesthat the label of pi` ! vk is di�erent from a + b (mod n) (whi
h is the label of vk ! uk).Setting t = b(n � ` � 1)=2
, Theorem 6 
an be applied for the sets A and B, as t �minfjAj; jBjg, therefore by (26),N1 + N2 + : : : + Nt � minftn; t(jAj+ jBj � t)g � t(n� 1� t): (28)The left hand side of (28) 
ounts the sums a + b (mod n) of the pairs of (a; b) 2 A � B,with the restri
tion that a parti
ular sum is 
ounted at most t times. Re
all that a pairof (a; b) 2 A � B is in C, if a + b (mod n) 62 L(P ). A parti
ular 
 2 L(P ) 
an o

uras a sum at most t times, hen
e the number of sums whi
h are not in L(P ) is at leastN1 + N2 + : : : + Nt � t � jL(P )j whi
h is by (28) at least t(n � ` � 1 � t). Using (27), andsubstituting the value of T we obtainP (pi` 6! uk; pi` ! vk ! uk) = jCj=n2 � t(n� `� 1� t)=n2= bn� `� 12 
 � dn� `� 12 e � 1n2 = b(n� `� 1)2=4
n2 : (29)If we repla
e GPath1 with this algorithm for the se
ond phase, when the length of the pathex
eeded n=2, then we 
ould a little bit improve the average performan
e to give a path oflength 0:672n. As the analysis works only for prime n, and the improvement is marginal, weomit the details.8 Upper bounds for harmoni
 pathsThe paths produ
ed by our algorithms 
ontain a sizeable fra
tion of all verti
es, about 2=3 forGPath1, for instan
e. That this fra
tion is below 1, as opposed to the mat
hing algorithm,makes it natural to ask how likely is it that the longest (non-
rossing, harmonious) path haslength asymptoti
 to n? Our next, and last, result shows that 
han
es of this happening areexponentially small.Proposition 7 The probability that the length of the longest path is less than 0:9604n is1� O(qn), for some 0 < q < 1. 25



Proof. Let us �rst 
ompute f(n;m), the total number of non-
rossing paths with m verti
es,m � n. The number of ways to sele
t m verti
es is �nm�. Pi
king a starting vertex (in mways), we have two 
hoi
es, left or right neighbor, for the se
ond vertex, and re
ursively two
hoi
es for the j-th vertex, given the �rst j � 1 verti
es, 2 � j � m. Therefore there arem2m�2 dire
ted paths, when
e m2m�3 undire
ted paths on given m verti
es. Thereforef(n;m) = �nm�m2m�3:The probability that su
h a path is harmonious isn � n � (n� 1) � : : : � (n�m + 2)nm = (n)m�1nm�1 ;so E (n;m), the expe
ted number of non-
rossing, harmonious paths with m verti
es is givenby E (n;m) = m2m�3�nm�(n)m�1nm�1 :Noti
e that E (n;m + 1)E (n;m) = 2(n�m)(n�m + 1)mn < 12 ;if m � 2n=3, say. Therefore, pi
king k � 2n=3,Xm�k E (n;m) � 2E (n; k):Furthermore,E (n; k) = 2k�3knn� k + 1�nk�2 k!nk � 2kn3 � nnkk(n� k)n�k �2� kne�k = n3enJ(k=n); (30)where J(x) = �x � (1� ln 2) + (1� x) � ln(1� x)�1:Now J(1) = �1 + ln 2 < 0, and J(x) is de
reasing on [1=2; 1). The 
omputation shows thatJ(x0) = 0 for x0 = 0:96037 : : : . ThereforeE (n; [0:9064n℄) � n3enJ(0:9604) � qn;for some 0 < q < 1, whi
h 
ompletes the proof.Notes. (1) Let us see what a similar 
omputation delivers for the perfe
t (non-
rossing,harmonious) mat
hings, in the 
ase of n even of 
ourse. It is well-known (Stanley [15℄, Exer.6.19 (n)) that the total number of non-
rossing mat
hings is the Catalan numberC(n=2) = 1n=2 + 1� nn=2� � 
 2nn3=2 :26



Any su
h mat
hing is harmonious with probability(n)n=2nn=2 � 
1�2e�n=2 ;and so the expe
ted number of su
h mat
hings is asymptoti
 to 
2n�3=2(8=e)n=2, thus ap-proa
hing in�nity exponentially fast. Whether the likely number of perfe
t mat
hings is also(exponentially) large is an interesting open problem.(2) In fa
t, the Catalan number C(n�1) equals the number of some parti
ular (\alternating")non-
rossing trees with n verti
es on the 
ir
le, see [15℄, (Exer. 6.19 (p;q)), for the exa
tformulation and the referen
es. So there are at least 
n�3=24n non-
rossing trees. And, usingthe depth-�rst traversing of any su
h tree, we see that it is harmonious with probability(n)n�1nn�1 :Therefore the expe
ted number of harmonious, non-
rossing trees is 
(4=e)n, at least. Couldit be that w.h.p. there are exponentially many su
h trees?9 AppendixProposition 8 De�ne the random variable Xp;t as the time it takes for the (p; 1�p){randomwalk to rea
h the zero state from the state t. Then, for all r > 0,Pr(Xp;t � r) � 1(2p)t(4p(1� p))�r=2 :Proof. It is well known that the generating fun
tion for Xp;1 isE[zXp;1 ℄ = 1�p1� 4p(1� p)z22pz ; jzj � (4p(1� p))�1=2: (31)By the Markov property, Xp;t D! � tXj=1 X(j)p;1where X(j)p;1 are independent 
opies of Xp;1. ThereforeE(zXp;t) = Et(zXp;1);and, for all r > 0, Pr(Xp;t � r) � Et(zXp;1)zr ; 8z 2 [1; (4p(1� p))�1=2℄:Setting z = (4p(1� p))�1=2, we obtain thenPr(Xp;t � r) � 1(2p)t((4p(1� p))�1=2)t+r � 1(2p)t((4p(1� p))�1=2)r ;as 
laimed. 27



Proposition 9 For ea
h even t � 0, let Rp(t) denote the probability of being at 0 at thetime step t in the (p; q){random walk on f0; 1; 2; : : :g with the repellent 0 state. ThenR1=2(t) � 
1t�1=2; andRp(t) < 3(1� 2p) + (�t)�1=2; if p < 1=2:Let the random variable Yp be the time it takes for the (p; q){random walk to return to the0 state. As above, let Xp;1 be the time it takes for the walk to rea
h the zero state from thestate 1. Then E[zYp ℄ = zE[zXp;1 ℄ = 1�p1� 4pqz22p ; (32)using (31).Now, sin
e Xr�0 zrRp(r) = 11� E[zYp ℄ ;we have Rp(t) = [zt℄ 11� E[zYp ℄ : (33)Then R1=2(t) = [zt℄ 1p1� z2 ;so that R1=2(t) =(�1)t=2��1=2t=2 � = 4�t=2� tt=2� � 
1t�1=2;Let us now move on to the estimation of Rp(t) for p < 1=2. Using (32) and (33), anelementary manipulation yieldsRp(t) = 1� 2pq + [zt℄ 2pp1� 4pqz2 + (1� 2p) : (34)In order to estimate the se
ond summand in the right hand side of (34), de�neg(z) := 2pp1� 4pqz + (1� 2p) :Now g(z) is analyti
 in the 
omplex plane with a 
ut fz = u + iv : v = 0; u 2 [u0;1)g,u0 = (4pq)�1, where p1� u=u0 = e�i�=2pu=u0 � 1;with � and + 
orresponding, respe
tively, to the upper shore and to the lower shore of the
ut. Let C be a (positively oriented) 
losed 
ontour formed by C1(R) = fz = Rei� : � 228



(0; 2�)g, and C2(R) = fz = u : u 2 [R; u0℄g , C3(R) = fz = u : u 2 [u0; R℄g, representingthe dire
ted lower and upper shores of the 
ut. Then, by Cau
hy's formula,[zt℄g(z) = 12�i IC(R) g(z)!zt+1 dz = 12�i IC2(R)[C3(R) g(z)zt+1 dz + 12�i IC1(R) g(z)!zt+1 dz:Let R ! 1. Then the last integral tends to zero, and the �rst integral 
onverges to thatover C2(1) [ C3(1). Thus[zt℄g(z) = 12�i Z 1u0 duut+1(e�i�=2pu=u0 � 1 + 1� 2p) (35)+ 12�i Z u01 duut+1(ei�=2pu=u0 � 1 + 1� 2p)= 1� Z 1u0 (u=u0 � 1)1=2ut+1((u=u0 � 1) + (1� 2p)2) du= 1�ut0 Z 11 (y � 1)1=2yt+1((y � 1) + (1� 2p)2) dy� Z 11 (y � 1)1=2yt+1((y � 1) + (1� 2p)2) dy (sin
e u0 � 1)= Z 1+(1�2p)21 (y � 1)1=2yt+1((y � 1) + (1� 2p)2) dy + Z 11+(1�2p)2 (y � 1)1=2yt+1((y � 1) + (1� 2p)2) dy:NowZ 1+(1�2p)21 (y � 1)1=2yt+1((y � 1) + (1� 2p)2) dy � (1� p)�2 Z 1+(1�2p)21 (y � 1)1=2 dy � 1� 2p; (36)and Z 11+(1�2p)2 (y � 1)1=2yt+1((y � 1) + (1� 2p)2) dy � Z 11 dyyt+1(y � 1)1=2 (y = eu)= Z 10 e�ut(eu � 1)�1=2 du � Z 10 e�utu�1=2 du = (�t)�1=2: (37)Using (35), (36), and (37), we obtain[zt℄g(z) � 1� 2p + (�t)�1=2Therefore, by (34) we haveRp(t) � 1� 2pq + 1� 2p + (�t)�1=2 < 3(1� 2p) + (�t)�1=2;29
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e q > 1=2.A
knowledgements: We would like to thank Gyula K�arolyi for drawing our attention toPollard's result.Referen
es[1℄ M. Abellanas, J. Gar
��a, G. Hern�andez, M. Noy, and P. Ramos, Bipartiteembeddings of trees in the plane, in: Graph Drawing (S. North, ed.), Le
ture Notes inComputer S
ien
e 1190, Springer{Verlag, Berlin, 1997, 1{10. Also in: Dis
rete AppliedMath. 93 (1999) 141{148.[2℄ N. Alon, S. Rajagopalan, S. Suri, Long non-
rossing 
on�gurations in the plane.Fund. Inform. 22 (1995) 385{394.[3℄ G. Araujo, J. Balogh, R. Fabila, G. Salazar, J. Urrutia, Harmoni
 subgraphsin labeled geometri
 graphs, submitted.[4℄ J.A. Gallian, A dynami
 survey of graph labeling. Ele
tron. J. Combin. 5 (1998).[5℄ R. L. Graham and N. J. A. Sloane, On additive bases and harmonious graphs,SIAM J. Alg. Dis
rete Meth., 1 (1980).[6℄ C. Hernando, F. Hurtado, M. Noy, Graphs of non-
rossing perfe
t mat
hings.Graphs Combin. 18 (2002) 517{532.[7℄ A. Kaneko and M. Kano, Dis
rete Geometry on red and blue points in the plane | asurvey, Dis
rete and Computational Geometry (B. Aronov et al., eds.), Springer{Verlag,Berlin, 2004, 551{570.[8℄ A. Kaneko, M. Kano, and K. Yoshimoto, Alternating Hamiltonian 
y
les withminimum number of 
rossings in the plane, Internat. J. Comput. Geom. Appl. 10 (2000),73{78.[9℄ J. K�yn
l, G. T�oth, and J. Pa
h, Long alternating paths in bi
olored point sets.Preprint (2004).[10℄ T.  Lu
zak, B. Pittel, and J. C. Wierman, The stru
ture of a random graph atthe point of the phase transition, Trans. Amer. Math. So
. 341 (1994), 721{748.[11℄ B. Pittel, An urn model for 
annibal behavior, J. Appl. Prob. 24 (1987) 522{526.[12℄ B. Pittel, On a Daley-Kendall model of random rumors, J. Appl. Prob. 27 (1990)14{27.[13℄ B. Pittel, On tree 
ensus and the giant 
omponent in sparse random graphs, Ran-dom Stru
tures and Algorithms 1 (1990) 311{342.30



[14℄ J. M. Pollard, A generalization of a theorem of Cau
hy and Davenport, J. LondonMath. So
. 8 (1974) 460{462.[15℄ R. P. Stanley, Enumerative Combinatori
s, 2, Cambridge Studies in Advan
ed Math-emati
s 62 (1999).[16℄ S. Tokunaga, Interse
tion number of two 
onne
ted geometri
 graphs, Inform. Pro-
ess. Lett. 59 (1996) 331{333.

31


