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Abstract

We show that a graph-like continuum embeds in some surface if and only if it does not contain
one of: a generalized thumbtack; or infinitely many K3,3’s or K5’s that are either pairwise disjoint or
all have just a single point in common.
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1 Introduction

In recent years, a resurgence of interest in fundamental embeddability questions has emerged concerning

embeddings of a Peano continuum P into surfaces. For example, see [7, 9, 10, 11]. For a fixed surface

Σ, this question has recently been answered in the doctoral dissertation of the first author, where the

following result appears. (We recall that a surface is a compact, connected, 2-manifold without boundary.

A Peano continuum is a non-empty, compact, connected, locally connected, metric space. A generalized

thumbtack will be defined later.)

Theorem 1.1 ([1]) Let P be a Peano continuum and Σ a surface. Then P does not embed in Σ if and

only if P contains one of the following:

1. a generalized thumbtack;

2. a finite graph that does not embed in Σ;

3. a surface of genus less than that of Σ; or

4. the disjoint union of Σ and a point.

This result follows on (and its proof uses) the works of Claytor [2, 3], who proved the same result in

the case Σ is the sphere. (See also [7, 8, 10].)

A graph-like continuum is a compact, connected, metric space G with a 0-dimensional subspace V

(the vertex-set) so that G−V consists of components, each of which is open in G, is homeomorphic to R,

and has a closure homeomorphic to either the unit circle S1 or the closed interval [0, 1]. There is a more

general concept of graph-like space which is as defined above, except G need not be either compact or

metric. These concepts were introduced by Thomassen and Vella [12]. We will not be concerned with the

more general spaces, but they arise, for example, in the context of infinite graphic matroids (N. Bowler,

personal communication). When G is compact, 0-dimensional is equivalent to totally disconnected.
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A graph-like continuum is an example of a Peano continuum. The Freudenthal compactification of a

connected, locally finite graph is an example of a graph-like continuum; there are many others that can

be derived from infinite graphs. There are also many that cannot be so derived.

This work is devoted to determining which graph-like continua embed in some surface. We shall

refer to a finite graph G as being contained in a Peano continuum P if there is a subspace of P that is

homeomorphic to the natural graph-like continuum associated with G (each edge is a homeomorph of a

compact interval, with the vertices of G describing the natural identifications of the various endpoints

of these intervals.) Obviously, any graph-like continuum that contains K3,∞ or infinitely many disjoint

K3,3’s cannot embed in any surface.

There is one other example of a graph-like continuum that does not embed in any surface: the

generalized thumbtack. The thumbtack space T consists of the unit disc {(x, y, 0) | x2 + y2 ≤ 1} in

3-dimensional space, together with the unit interval {(0, 0, z) | 0 ≤ z ≤ 1}. It is standard and easy that

no neighbourhood of (0, 0, 0) in T is contained in an open disc and, therefore, does not embed in any

surface; however, T is not a graph-like continuum. We now describe graph-like continua that model its

non-embeddability property.

A web centred at w is a graph-like continuum W that contains pairwise disjoint cycles (that is,

homeomorphs of S1) C1, C2, C3 . . . so that: (i) for each i = 2, 3, . . . , T − Ci has two components Ki,<

and Ki,>, with Ki,< containing C1∪C2∪· · ·∪Ci−1 and Ki,> containing Ci+1, Ci+2, . . . ; and (ii) for each

i = 2, 3, . . . , either | cl(Ki,<)∩cl(Ki,>)| ≥ 3 or there are x<, y< ∈ cl(Ki,<)∩Ci and x>, y> ∈ cl(Ki,>)∩Ci

so that x<, x>, y<, y> are all distinct and occur in this cyclic order in Ci (this is the definition of

overlapping Ci-bridges); and (iii) the Ci converge to w (that is, every neighbourhood of w contains all

but finitely many of the Ci).

A generalized thumbtack is the union of a web W centred at w plus an additional single edge that is

disjoint from W except that w is one end of the edge. Our main theorem is the following.

Theorem 1.2 (Main Theorem) Let G be a graph-like continuum. Then one of the following occurs:

1. G embeds in some surface; or

2. G contains a generalized thumbtack; or

3. G contains infinitely many disjoint K3,3’s or K5’s; or

4. G contains infinitely many K3,3’s or K5’s that have precisely one point in common, to which they

converge.

It follows easily from Theorem 1.1 that if P is a Peano continuum, then either:

(i) there exists a surface in which P embeds; or

(ii) P contains a generalized thumbtack; or

(iii) P contains an infinite sequence G1, G2, . . . , of finite graphs so that, for each surface Σ, some Gi

does not embed in Σ.

We are interested in replacing the last condition with a finite list of obstructions. For graph-like continua,

our main result provides such a list, but we do not know how to obtain a comparable result for Peano

spaces.

In this context, Robertson and Seymour (personal communication) used the Graph Minors Structure

Theorem to prove an interesting theorem. For every integer k > 0, consider the graphs consisting of

either: k disjoint K3,3’s; k disjoint K5’s; k K3,3’s having precisely a vertex in common; k K5’s having

2



precisely a vertex in common; k K3,3’s having precisely an edge in common; and k K5’s having precisely

and edge in common. Their result is that, for every k, there is a Gi from (iii) that has one of the six

graphs listed above as a minor.

Because G is connected, Outcome 3 of Theorem 1.2 improves to either a “star” of K3,3’s or K5’s (that

is, all connected by disjoint arcs to a single point, to which they converge) or a “comb” of K3,3’s or K5’s

(that is, all connected by disjoint arcs to a single arc, again everything converging to a single point). This

is quite analogous to the “Star-Comb Lemma” [4, Lemma 8.2.2].

Our main theorem is reminiscent of Levinson’s Theorem [6], that an infinite, locally finite, vertex

transitive graph is either planar or has infinite genus. See [5, Ch. 6].

In [7], it was observed that a generalized thumbtack does not embed in any surface. Claytor [3]

shows (in different terms) that containing a generalized thumbtack is equivalent to containing one of two

particular generalized thumbtacks (see also [8]).

2 Proof of the main theorem

Let G be a graph-like continuum with vertex set V . An edge is a component of G−V . For any partition

(U,W ) of V into closed sets, the cut δ(U,W ) is the set of all edges having one end in U and one end in

W . The following fact is central (it is proved in greater generality in [13]).

Lemma 2.1 [13, Theorem 12] Any cut in a graph-like continuum is finite.

Because cuts are finite, there are minimal, non-empty cuts; these are bonds. If δ(U,W ) is a bond, then

G− δ(U,W ) has precisely two components, one containing all the vertices in U and the other containing

all the vertices in W . We remark that a bond is a set of edges; often the partition (U,W ) will not be

explicitly required and so we may refer to a bond b, with the understanding that b determines and is

determined by the partition (U,W ) of V .

Webs are obviously closely related to generalized thumbtacks. They are also related to vertices being

incident with faces. The proof of [7, Lemma 3.3] for the sphere extends to any surface.

Lemma 2.2 Let P be a 2-connected Peano continuum embeddable in the surface Σ. If W is a countable

subset of P , then either P has an embedding in Σ so that each point of W is incident with a face of P ,

or P contains a web centred at some point of W .

Our first observation toward proving our main theorem shows that every bond has a side that also

does not embed in any surface.

Proposition 2.3 Let G be a graph-like continuum that does not embed in any surface. If b is a bond in

G, then either G has a generalized thumbtack or one of the two components of G− b does not embed in

any surface.

Proof. Suppose H and J are the two components of B− b, and they embed in the surfaces ΣH and ΣJ ,

respectively. There are only finitely many edges in b, so each of H and J has only finitely many vertices

incident with edges in b. If any of these vertices is the centre of a web in either H or J , then this web

combines with an incident edge from b to make a generalized thumbtack in G.

If none of the vertices in either H or J is the centre of a web in its sub-continuum, then Lemma 2.2

shows that H and J have embeddings in ΣH and ΣJ , respectively, so that each vertex incident with an

edge of b is incident with a face of the appropriate embedding. Now we may add, for each edge e of b, a

cylinder joining ΣH and ΣJ , attaching at each end in a face incident with the appropriate end of e. The
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edge e may then be added to the embedding. Since b is finite, the result is an embedding of G in some

surface.

Another basic fact about graph-like continua is due to Thomassen and Vella.

Lemma 2.4 [12, Proof of Theorem 2.1] A graph-like continuum has only countably many edges.

We subdivide each loop of G; obviously, the resulting graph-like continuum embeds in a surface if and

only if G does. Thus we may assume G has not loops.

Lemma 2.5 Let u and v be any two vertices of G. Then there is a bond b of G so that u and v are in

different components of G− b. In particular, every edge of G is in a bond.

Proof. Because V is 0-dimensional, there is a partition of V into closed sets Cu and Cv containing u

and v, respectively. Let K be the component of G− δ(Cu, Cv) containing u and let L be the component

of G− δ(V ∩K,V \K) containing v. Then δ(V ∩ L, V \ L) is the desired bond.

We start by enumerating the edges as e1, e2, . . . and letting b1 be a bond containing e1. Let H1 and

G1 be the components of G− b1, labelled so that G1 does not embed in any surface. Note that e1 is not

in G1.

For i > 1, let j be least so that ej ∈ Gi−1. The inductive assumption is that Gi−1 does not embed

in any surface and that none of e1, e2, . . . , ei−1 is in Gi−1; therefore, j ≥ i. Let bi be a bond in Gi−1

containing ej . Let Hi and Gi be the components of Gi−1− bi, labelled so that Gi does not embed in any

surface. Evidently, none of e1, e2, . . . , ei is in Gi and Gi does not embed in any surface.

The sequence G1, G2, G3, . . . consists of closed, connected subsets of G and G1 ⊇ G2 ⊇ · · · . Therefore,⋂
i≥1Gi is a closed, connected subset of G. Since

⋂
i≥1Gi has no edge, it is just a single vertex x.

We need one more observation before we start getting the conclusions.

Claim 1 Let i ∈ {1, 2, . . . } and let b be any bond in Gi. If L is the component of Gi − b containing x,

then there is a j > i so that Gj ⊆ L.

Proof. Since b is finite, there is a j > i so that no edge of b is in Gj . Since x ∈ Gj and Gj is connected,

Gj ⊆ L.

There is one easy case in which the result holds.

Claim 2 If, for infinitely many i, Gi \ x contains either K3,3 or K5, then G contains infinitely many

pairwise disjoint K3,3’s or K5’s.

Proof. For every i, Gi \ x contains either a K3,3 or K5; let Ji be any one of these. Since Ji and x are

both closed in Gi and Gi is normal, there is a bond bi in Gi so that Ji and x are in different components

of Gi − bi. By Claim 1, there is a j > i so that Gj is separated by bi from Ji. This implies that there is

an infinite set of pairwise disjoint K3,3’s or K5’s in G.

In view of Claim 2, we may assume that there are only finitely many i for which Gi \x contains either

K3,3 or K5. In this case, the non-planarity of Gi implies Gi contains either a generalized thumbtack or a

subspace Ji that is either a K3,3 or a K5. We are done if any Gi contains a generalized thumbtack, so we

may assume the latter. The asumption implies that, for some i0, if i ≥ i0, then x ∈ Ji. Again, without

loss of generality, we may further assume G = Gi0 , so that no Gi \ x contains a K3,3 or K5.
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For each i, let Ji be a copy of either K3,3 or K5 in Gi. Infinitely often, Ji will be the same one of K3,3

and K5. Let I be an infinite set so that, for all i ∈ I, the Ji are pairwise homeomorphic. Furthermore,

we may assume that the status of x in Ji either as vertex or in the interior of an edge is the same for all

i ∈ I.

We know that, for each i ∈ I, x ∈ Ji. There are two ways x can appear in Ji: either as a vertex or in

the interior of an edge. Let Vi = V (Ji) ∪ {x} (so, for example, if Ji is K3,3 and x is in the interior of an

edge, then |Vi| = 7). There are 2, 3, or 4 open arcs in Ji− Vi having x in their closures. Let this number

be ki and arbitrarily label the arcs incident with x as 1, 2, . . . , ki.

Let Bi denote the set of components of Ji−Vi that are incident with x and set Li = Ji−({x}∪
⋃

e∈Bi
e).

Then Li is a closed subspace of Gi that is disjoint from x and, therefore, it is separated from x by a finite

bond. Claim 1 implies there is an infinite sequence i0 < i1 < i2 < · · · so that, for each j > 0, Lij−1
is

disjoint from Gij . In particular, the Lij are pairwise disjoint. To reduce the notation, we will use the

index j in place of ij , so Lij becomes Lj , Jij becomes Jj , etc.

For each j < j′, Jj and Jj′ have x in common. The intersection can only be at x and in the edges

in Bj . For each i = 1, 2, . . . , kj , let yi,j,j′ be the first intersection with Jj′ of the edge i incident with x

in Jj as we travel from Lj to x. There are several possibilities for yi,j,j′ : it is in Lj′ ; it is in the edge

i′ ∈ {1, 2, . . . , kj′}; or it is at x. Crucially, there is, in total, a bounded number of possibilities for all the

intersections yi,j,j′ .

By Ramsey’s Theorem, there is an infinite set A of indices so that, for any j, j′, j′′ ∈ A, the intersections

are all the same. For example, if yi,j,j′ is in the edge i′ from Bj′ , then yi,j,j′′ and yi,j′,j′′ are also in the

edge i′, but this edge i′ is in Bj′′ . Note that all the kj are the same value, which we set to be k.

Let n be the number of yi,j,j′ that are not x.

In what follows, we will refer to the sequence (Ji)i≥0 that has all the Ji the same one of K3,3 and K5,

all contain x in the same way, and, for i < j, the way (Ji − x) intersects (Jj − x), is always the same (in

the above sense) as an infinite genus sequence with parameters k and n.

Claim 3 For any infinite genus sequence with parameters k and n, n < k.

Proof. Otherwise, consider the finite graph N consisting of Lj , the segments of each i ∈ {1, 2, . . . , k}
from Lj to yi,j,j′ , Lj′ , and the segments of each i′ ∈ {1, 2, . . . , k} from Lj′ to any yi,j,j′ they contain.

Contracting N ∩ Jj′ to a vertex yields a homeomorph of Jj . Since any graph that contracts to either

K3,3 or K5 contains a subdivision of either K3,3 or K5, we have the contradiction that Gj − x contains

either K3,3 or K5.

Claim 4 If there is an infinite genus sequence with parameters k and n = k− 1, then there is an infinite

genus sequence with parameters k = 2 and n = 0.

Proof. Proceed as in the proof of Claim 3 to get N , but this time N includes the edge i for which

yi,j,j′ = x, plus an edge from Lj′ to x that does not meet any other Lj′′ with j′′ > j′. Contracting N ∩Jj′
again yields a homeomorph of Jj , so N ∩ Jj′ contains a subspace M homeomorphic to either K3,3 or K5

that has x in the interior of some edge. This can be repeated infinitely often to get a sequence that has

the desired properties.

Claim 5 If an infinite genus sequence has parameters k = 4 and n = 2, then there is an infinite genus

sequence with parameters k = 3 and n = 1.

Proof. The hypothesis implies each Lj is a K4, there are two yi,j,j+1 in Jj+1 \ x, and two yi,j,j+1 are

equal to x. Let aj , bj , cj , dj be the four vertices of Lj , labelled so that aj and bj are connected directly

to x, without going through Jj+1 − x. Delete the edges ajbj and cjdj , and use Lj+1 and x as vertices to
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find a K3,3 in N ∪ Jj+1. In this K3,3, k = 3 and n = 1, so this is easily repeated to produce a sequence

with this property.

Claim 6 There is an infinite genus sequence with n ≤ 1.

Proof. In view of Claim 2, we have assumed k ≥ 1. Since x is not an isolated vertex, k ≥ 2. Choose

the sequence to minimize k and, given the minimal k, minimize n. If k = 4, then Claim 3 implies n ≤ 3,

while Claim 4 implies (given that the minimum k is 4) n < 3. Claim 5 and the minimality of k implies

n 6= 2, so in this case n ≤ 1.

Similarly and more simply, if k = 3, then Claims 3 and 4 imply n ≤ 1. Likewise, If k = 2, then Claim

3 implies n ≤ 1.

Claim 7 There is an infinite genus sequence with parameters k and n = 0.

Proof. Claim 6 shows there is a sequence Jj with n ≤ 1. We assume that n = 1. In this case, there

is a yi,j,j+1 in Jj+1 \ x. In Jj+1 \ x there is an arc A from yi,j,j+1 to a point of Lj+1 that is connected

directly to x without going through Lj+2. Let J ′j be the resulting homeomorph of Jj . This construction

may be repeated infinitely often, yielding a sequence with the same k, but having n = 0.

Let Ji be an infinite genus sequence with parameters k and n = 0. Obviously, any two Ji’s have only

x in common, completing the proof of Theorem 1.2.
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