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Jesús Leaños¶ Cynthia Rodŕıguez ‖ Gelasio Salazar ∗∗

Francisco Zaragoza ¶

July 9, 2012

Abstract

Let f(n, k) be the minimum number of edges that must be removed
from some complete geometric graph G on n points, so that there exists
a tree on k vertices that is no longer a planar subgraph of G. In this

paper we show that
(
1
2

)
n2

k−1
− n

2
≤ f(n, k) ≤ 2n(n−2)

k−2
. For the case when

k = n, we show that 2 ≤ f(n, n) ≤ 3. For the case when k = n and G is
a geometric graph on a set of points in convex position, we show that at
least three edges must be removed.

1 Introduction

One of the most notorious problems in extremal graph theory is the Erdős-Sós
Conjecture, which states that every simple graph with average degree greater
than k − 2 contains every tree on k vertices as a subgraph. This conjecture
was recently proved true for all sufficiently large k (unpublished work of Ajtai,
Komlós, Simonovits, and Szemerédi).

In this paper we investigate a variation of this conjecture in the setting of
geometric graphs. Recall that a geometric graph G consists of a set S of points
in the plane (these are the vertices of G), plus a set of straight line segments,
each of which joins two points in S (these are the edges of G). In particular,
any set S of points in the plane in general position naturally induces a complete
geometric graph. For brevity, we often refer to the edges of this graph simply
as edges of S. If S is in convex position then G is a convex geometric graph. A
geometric graph is planar if no two of its edges cross each other. An embedding
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of an abstract graph H into a geometric graph G is an isomorphism from H to
a planar geometric subgraph of G. For r ≥ 0, an r-edge is an edge of G such
that in one of the two open semi-planes defined by the line containing it, there
are exactly r points of G.

In this paper all point sets are in general position and G is a complete
geometric graph on n points. It is well known that for every integer 1 ≤ k ≤ n,
G contains every tree on k vertices as a planar subgraph [3]. Even more, it is
possible to embed any such tree into G, when the image of a given vertex is
prespecified [5].

Let F be a subset of edges of G, which we call forbidden edges. If T is a
tree for which every embedding into G uses an edge of F , then we say that F
forbids T . In this paper we study the question of what is the minimum size of
F so that there is a tree on k vertices that is forbidden by F . Let f(n, k) be the
minimum of this number taken over all complete geometric graphs on n points.
As f(2, 2) = 1, f(3, 3) = 2, f(4, 4) = 2 and f(n, 2) =

(
n
2

)
, we assume through

out the paper that n ≥ 5 and k ≥ 3.
We show the following bounds on f(n, k).

Theorem 1.1. (
1

2

)
n2

k − 1
− n

2
≤ f(n, k) ≤ 2

n(n− 2)

k − 2

Theorem 1.2.
2 ≤ f(n, n) ≤ 3

In the case when G is a convex complete geometric graph, we show that the
minimum number of edges needed to forbid a tree on n vertices is three.

An equivalent formulation of the problem studied in this paper is to ask how
many edges must be removed from G so that it no longer contains some planar
subtree on k vertices. A related problem is to ask how many edges must be
removed from G so that it no longer contains any planar subtree on k vertices.
For the case of k = n, in [6], it is proved that if any n − 2 edges are removed
from G, it still contains a planar spanning subtree. Note that if the n − 1
edges incident to any vertex of G are removed, then G no longer contains a
spanning subtree. In general, for 2 ≤ k ≤ n − 1, in [1], it is proved that if

any set of
⌈
n(n−k+1)

2

⌉
− 1 edges are removed from G, it still contains a planar

subtree on k vertices. In the same paper it is also shown that this bound is

tight—a geometric graph on n vertices and a subset of
⌈
n(n−k+1)

2

⌉
of its edges

are shown, so that when these edges are removed, every planar subtree has at
most k − 1 vertices. In [4] the authors study the similingly unrelated problem
of packing two trees into planar graphs. That is, given two trees on n vertices,
the authors consider the question of when it is possible to find a planar graph
having both of them as spanning trees and in which the trees are edge disjoint.
However, although theirs is a combinatorial question rather than geometric,
their Theorem 2.1 implies our Lemma 2.2. We provide a self contained proof of
Lemma 2.2 for completeness.
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Figure 1: An embedding of a tree using the algorithm.

A previous version of this paper appeared in the conference proceedings of
EUROCG’12 [2].

2 Spanning Trees

In this section we consider the case when k = n. Let T be a tree on n vertices.
Consider the following algorithm to embed T into G. Choose a vertex v of
T and root T at v. For every vertex of T choose an arbitrary order of its
children. Suppose that the neighbors of v are u1, . . . , um, and let n1, . . . , nm be
the number of nodes in their corresponding subtrees. Choose a convex hull point
p of G and embed v into p. Sort the remaining points of G counter-clockwise by
angle around p. Choose m+1 rays centered at p so that the wedge between two
consecutive rays is convex and between the i-th ray and the (i+ 1)-th ray there
are exactly ni points of G. Let Si be this set of points. For each ui choose a
convex hull vertex of Si visible from p and embed ui into this point. Recursively
embed the subtrees rooted at each ui into Si. Note that this algorithm provides
an embedding of T into G. We will use this embedding frequently throughout
the paper. See Figure 1.

For every integer n ≥ 2 we define a tree Tn as follows: If n = 2, then Tn
consists of only one edge; if n is odd, then Tn is constructed by subdividing once
every edge of a star on n−1

2 vertices; if n is even and greater than 2, then Tn is
constructed by subdividing an edge of Tn−1. These trees are particular cases of
spider trees. See Figure 2.

We prove the lower bound of f(n, n) ≥ 2 of Theorem 1.2.

Theorem 2.1. If G has only one forbidden edge, then any tree on n vertices
can be embedded into G, without using the forbidden edge.

Proof. Let e be the forbidden edge of G. Let T be a tree on n vertices. Choose
a root for T . Sort the children of each node of T , by increasing size of their cor-
responding subtree. Embed T into G with the embedding algorithm, choosing
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Figure 2: T7 and T8.

at all times the rightmost point as the root of the next subtree. Suppose that e
is used in this embedding. Let e := (p, q) so that u is embedded into p and v is
embedded into q (note that u and v are vertices of T ).

Suppose that the subtree rooted at v has at least two nodes. In the algorithm,
we embedded this subtree into a set of at least two points. We chose a convex
hull point (q), of this set visible from p to embed v. In this case we may choose
another convex hull point visible from p to embed v and continue with the
algorithm. Note that (p, q) is no longer used in the final embedding.

Suppose that v is a leaf, and that v has a sibling v′ whose subtree has at
least two nodes. Then we may change the order of the children of u so that e
is no longer used in the embedding, or if it is, then v′ is embedded into q, but
then we proceed as above.

Suppose that v is a leaf, and that all its siblings are leaves. The subtree
rooted at u is a star. We choose a point distinct from p and q in the point set
where this subtree is embedded, and embed u into this point. Afterwards we
join it to the remaining points. This produces an embedding that avoids e.

Assume then, that v is a leaf and that it has no siblings. We distinguish the
following cases:

1. u has no siblings. In this case, the subtree rooted at the parent of u is
a path of length two. It is always possible to embed this subtree without
using e. See Figure 3.

2. u has a sibling u′ whose subtree is not an edge. We may change the
order of the siblings of u, with respect to their parent, so that the subtree
rooted at u′ will be embedded into the point set containing p and q. In
the initial order—increasing by size of their corresponding subtrees—u′ is
after u. We may assume that in the new ordering, the order of the siblings
of u before it, stays the same. Therefore p is the rightmost point of the
set into which the subtree rooted at u′ will be embedded. Embed u′ into
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Figure 3: The embedding of a path of length three. The grandparent of u is
highlighted and the forbidden edge is dashed.

p. Either we find an embedding not using e, or this embedding falls into
one of the cases considered before.

3. u has at least one sibling, all whose corresponding subtrees are
edges

Suppose that u has no grandparent; then T is equal to Tn and n is odd.
Let w be the parent of u. Embed w into p. Let p1, . . . , pn−1 be the points
of G different from p sorted counter-clockwise by angle around p; choose
p1 so that the angle between two consecutive points is less than π. Let
u1, . . . , u(n−1)/2 be the neighbors of w. Embed each ui into p2i−1 and its
child into p2i. If q equals p2j−1 for some j then embed uj into p2j and its
child into p2j−1. This embedding avoids e.

Suppose that w is the grandparent of u and let p′ be the point into which
w is embedded. Let S be the point set into which the subtree rooted at
the parent of u is embedded. Note that S has an odd number of points.
We replace the embedding as follows. Sort S counter-clockwise by angle
around p′. Call a point even if it has an even number of points before it
in this ordering. Call a point odd if it has an odd number of points before
it in this ordering. If e is incident to an odd point, then we embed the
parent of u into this point. The remaining subtree rooted at u can be
embedded without using e. If the endpoints of e are both even, between
them there is an odd point. We embed the parent of u into this point.
The remaining vertices can be embedded without using e (see Figure 4).

The upper bound of f(n, n) ≤ 3 of Theorem 1.2 follows directly from
Lemma 3.1. Now we prove in Lemma 2.2 and Theorem 2.3, that if G is a
convex geometric graph, at least three edges are needed to forbid some tree on
n vertices.
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Figure 4: The two sub-cases, when u has a grandparent w, and all the subtrees
of its children are edges. Odd points are painted in black and even points in
white. The forbidden edges are dashed.

Lemma 2.2. Let T be a tree on n vertices. If G is a convex geometric graph,
then T can be embedded into G using less than n

2 convex hull edges of G.

Proof. If T is a star, then any embedding of T into G uses only two convex hull
edges. If T is a path then it can be embedded into G using at most two convex
hull edges. Therefore, we may assume that T is neither a star nor a path.

Since T is not a path, it has a vertex of degree at least three. Choose this
vertex as the root. Since T is not a star, the root has a child whose subtree has
at least two nodes. Sort the children of T so that this node is first. Embed T
into G with the embedding algorithm.

Let u and v be vertices of T , so that u is the parent of v. Suppose that the
subtree rooted at v has at least two nodes. Then in the embedding algorithm
we have at least two choices to embed v once the ordering of the children of u
has been chosen. At least one of which is such that (u, v) is not embedded into
a convex hull edge. Therefore, we may assume that the embedding is such that
all the convex hull edges used are incident to a leaf.

Since the first child of the root is not a leaf, there is at most one convex hull
edge incident to the root in the embedding. Note that any vertex of T , other
than the root, is incident to at most one convex hull edge in the embedding.
If n/2 or more convex hull edges are used, then there are at least n/2 non-leaf
vertices, each adjacent to a leaf. These vertices must be all the vertices in T and
there are only n/2 such pairs (n must also be even). Therefore every non-leaf
vertex has at most one child which is a leaf. In particular the root has at most
one child which is a leaf. Since the root was chosen of degree at least three it
has a child which is not a leaf nor the first child; we place this vertex last in
the ordering of the children of the root. The leaf adjacent to the root can no
longer be a convex hull edge and the embedding uses less than n/2 convex hull
edges.

Theorem 2.3. If G is a convex geometric graph and has at most two forbidden
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edges, then any tree on n vertices can be embedded into G, without using a
forbidden edge.

Proof. Let f0 be an embedding given by Lemma 2.2, of T into G. For 0 ≤ i ≤ n,
let fi be the embedding produced by rotating f0, i places to the right. Assume
that in each of these rotations at least one forbidden edge is used, as otherwise
we are done. Let e1, . . . , em be the edges of T that are mapped to a forbidden
edge in some rotation. Assume that the two forbidden edges are an l-edge and
an r-edge respectively.

Suppose that l 6= r. Then, each edge of T can be embedded into a forbidden
edge at most once in all of the n rotations. Thus m ≥ n. This is a contradiction,
since T has n− 1 edges.

Suppose that l = r. Then, each of the ei is mapped twice to a forbidden
edge. Thus m ≥ n/2. By Lemma 2.2, f0 uses less than n/2 convex hull edges.
Therefore, l and r must be greater than 0. But a set of n/2 or more r-edges,
with r > 0, must contain a pair of edges that cross. And we are done, since f0
is an embedding.

3 Bounds on f(n, k)

In this section we prove Theorem 1. First we show the upper bound.

Lemma 3.1. If G is a convex geometric graph, then forbidding three consecutive
convex hull edges of G forbids the embedding of Tn.

Proof. Recall that Tn comes from subdividing a star, let v be the non leaf vertex
of this star. Let (p1, p2), (p2, p3), (p3, p4) be the forbidden edges, in clockwise
order around the convex hull of G. Note that in any embedding of Tn into G, an
edge incident to a leaf of Tn, must be embedded into a convex hull edge. Thus,
the leaves of Tn nor its neighbors can be embedded into p2 or p3, without using
a forbidden edge. Thus, v must be embedded into p2 or p3. Without loss of
generality assume that v is embedded into p2. But then, the embedding must
use (p2, p3) or (p3, p4)

Lemma 3.2. If G is a convex geometric graph, then forbidding any three pairs
of consecutive convex hull edges of G forbids the embedding of Tn.

Proof. Let p1, p2 and p3 be the vertices in the middle of the three pairs of
consecutive forbidden edges of G. Note that a leaf of Tn, nor its neighbor can
be embedded into p1, p2 or p3, without using a forbidden edge. But at most
two points do not fall into this category.

Lemma 3.3. f(n, k) ≤ 2n(n−2)
k−2

Proof. Let G be a complete convex geometric graph. We forbid every r-edge

of G for r = 0, . . . ,
⌈
2n−2
k−2 − 2

⌉
. Note that, in total we are forbidding at most

n
(⌈

2n−2
k−2 − 2

⌉
+ 1
)
≤ 2n(n−2)

k−2 edges. As every subset of points of G is in
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convex position, it suffices to show that every induced subgraph H of G on k
vertices is in one of the two configurations of Lemma 3.1 and 3.2.

Assume then, that H does not contain three consecutive forbidden edges
in its convex hull nor three pairs of consecutive forbidden edges in its convex
hull. H has at most two (non-adjacent) pairs of consecutive forbidden edges
in its convex hull. Therefore every forbidden edge of H in its convex hull—
with the exception of at most two—must be preceded by an `-edge (of G), with

` >
⌈
2n−2
k−2 − 2

⌉
. H contains at least k−2

2 of these edges. The points separated

by these edges amount to more than k−2
2

⌈
2n−2
k−2 − 2

⌉
≥ n− k points of G. This

is a contradiction, since together with the k points of H this is strictly more
than n.

Now, we show the lower bound of Theorem 1.1.

Lemma 3.4. f(n, k) ≥
(
1
2

)
n2

k−1 −
n
2

Proof. Let F be a set of edges whose removal from G forbids some k-tree. Let
H := G \ F . Note that H contains no complete Kk as a subgraph, otherwise
any k-tree can be embedded in this subgraph [3]. By Turán’s Theorem [7], H

cannot contain more than
(

k−2
k−1

)
n2

2 edges. Thus F must have size at least(
1
2

)
n2

k−1 −
n
2 .
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and F. Zaragoza. The Erdős-Sós conjecture for geometric graphs. In Proc. 28th
European Worskhops in Computational Geometry, EUROCG ’11, Asissi, Italy,
2011.

[3] P. Bose, M. McAllister, and J. Snoeyink. Optimal algorithms to embed trees in a
point set. J. Graph Algorithms Appl., 1(2):15 pp. (electronic), 1997.
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