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Abstract

The Harary-Hill Conjecture states that the number of crossings in any drawing of the com-
plete graph Kn in the plane is at least Z(n) := 1
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. In this paper, we
settle the Harary-Hill conjecture for shellable drawings. We say that a drawing D of Kn is
s-shellable if there exist a subset S = {v1, v2, . . . , vs} of the vertices and a region R of D with
the following property: For all 1 ≤ i < j ≤ s, if Dij is the drawing obtained from D by removing
v1, v2, . . . vi−1, vj+1, . . . , vs, then vi and vj are on the boundary of the region of Dij that contains
R. For s ≥ n/2, we prove that the number of crossings of any s-shellable drawing of Kn is at
least the long-conjectured value Z(n). Furthermore, we prove that all cylindrical, x-bounded,
monotone, and 2-page drawings of Kn are s-shellable for some s ≥ n/2 and thus they all have
at least Z(n) crossings. The techniques developed provide a unified proof of the Harary-Hill
conjecture for these classes of drawings.

Abstract

In this paper, we prove the Harary-Hill conjecture for shellable drawings of the complete
graph. For a drawing D of Kn and i < j, let Dij be the drawing obtained from D by re-
moving v1, v2, . . . vi−1, vj+1, . . . , vs. We say that D is s-shellable if there exist a subset S =
{v1, v2, . . . , vs} of the vertices and a region R of D with the following property: For all 1 ≤ i <
j ≤ s, vi and vj are on the boundary of the region of Dij that contains R. We prove that if
s ≥ n/2 the number of crossings of any s-shellable drawing of Kn is at least the long-conjectured
value of the crossing number of Kn, namely Z (n) := 1
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. We also prove
that every cylindrical drawing of Kn is s-shellable for some s ≥ n/2. From these results it
follows that the cylindrical crossing number of Kn is Z(n), thus settling the Harary-Hill con-
jecture for cylindrical drawings of Kn. Moreover, the techniques developed provide an unified
proof verifying the Harary-Hill conjecture for 2-page, monotone, and x-bounded drawings.

1 Introduction

In the late 1950s, the British artist Anthony Hill got interested in producing drawings of the com-
plete graph Kn with the least possible number of edge crossings. His general technique, explained

1



in a paper he wrote jointly with Harary [7], is best described by drawing Kn on a cylinder as
follows. Draw a cycle with ⌈n/2⌉ vertices on the rim of the top lid, and a cycle with the remaining
⌊n/2⌋ vertices on the rim of the bottom lid. Then draw the remaining edges joining vertices on the
same lid using the straight line joining them across the lid. Finally, for any two vertices on distinct
lids, draw the edge joining them along the geodesic that connects them on the side of the cylinder.
(See Figure 1, left, for a planar representation of such a drawing.) It is an elementary exercise
to show that such a drawing of Kn has exactly Z (n) := 1
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crossings. The
Harary-Hill constructions are a particular instance of cylindrical drawings (see formal definition in
Section 3).

At about the same time as the Harary-Hill paper was published, Blažek and Koman got inde-
pendently interested in drawing Kn with as few crossings as possible [5]. In their construction (see
Figure 1, right), they start by drawing a cycle as a regular n-gon, and then drawing all diagonals
with positive slope (as straight line segments) and all other edges outside the cycle. The Blažek-
Koman construction also yields drawings of Kn with exactly Z(n) crossings, and it is a particular
instance of 2-page drawings (see below for the definition).

Figure 1: Left : Harary-Hill construction for 10 points. (A cylindrical drawing.) Right : Blažek-
Koman construction for 8 points. (A 2-page drawing.)

To this date, no drawing of Kn with fewer than Z(n) crossings is known. Moreover, all general
constructions (for arbitrary values of n) known with exactly Z(n) crossings are obtained from insub-
stantial alterations of either the Harary-Hill or the Blažek-Koman constructions (a few exceptions
are known, but only for some small values of n). The tantalizingly open Harary-Hill conjecture
cr(Kn) = Z(n) has been confirmed only for n ≤ 12 [10].

The main contribution of this paper is the introduction of shellable drawings, a large class of
drawings for which (as we shall show) the Harary-Hill conjecture holds. Shellability captures the
essential features of 2-page drawings we previously used [1, 3] to prove that the 2-page crossing
number of Kn is Z(n), and allows us to extend the lower bound to a larger family of drawings,
including cylindrical, monotone, and x-bounded drawings (see definitions below).

If a drawing D of a graph is regarded as a subset of the plane, then a region of D is a connected
component of R2 \D. (If D is an embedding, then the regions of D are the faces). A drawing D
of Kn is s-shellable if there exists a subset S = {v1, v2, . . . , vs} of the vertices and a region R of D
with the following property. For 1 ≤ i < j ≤ s, if Dij denotes the drawing obtained from D by
removing v1, v2, . . . vi−1, vj+1, vj+2, . . . , vs, then for all 1 ≤ i < j ≤ s, the vertices vi and vj are on
the boundary of the region of Dij that contains R. The set S is an s-shelling of D witnessed by R.

The core of this paper is the following statement, whose proof is given in Section 2.
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Theorem 1. Let D be an s-shellable drawing of Kn, for some s ≥ n/2. Then D has at least Z(n)
crossings.

We use this to settle the Harary-Hill conjecture for several classes of drawings:

• In a 2-page book drawing (or simply 2-page drawing), the vertices are placed on a line (the
spine of the book), and each edge (except for its endvertices) lies entirely on an open halfplane
spanned by the spine (one of the 2 pages of the book). (See Figure 2, right.)

• Following Schaefer [12], in a cylindrical drawing of a graph, there are two concentric circles
that host all the vertices, and no edge is allowed to intersect these circles, other than at its
endvertices. (Schaefer defines cylindrical drawings only for bipartite graphs, but his definition
obviously applies to arbitrary graphs). (See Figure 2, left.)

Figure 2: Left: A cylindrical drawing of K10. Right: A 2-page drawing of K8.

We remark that Hill’s drawings can be naturally regarded as cylindrical drawings. Indeed, even
though in Hill’s drawings the edges joining consecutive rim vertices are placed on the rims, such
drawings are easily adapted to this definition, since those edges can be drawn arbitrarily close to a
rim.

• A drawing is monotone if each vertical line intersects each edge at most once. (See Figure 3,
right.)

• A drawing is x-bounded if by labelling the vertices v1, v2, . . . , vn in increasing order of their
x-coordinates, for all 1 ≤ i < j ≤ n the edge vivj is contained in the strip bounded by the
vertical line that contains vi and the vertical line that contains vj . (See Figure 3, left.)

In Section 3, we find a condition on drawings of Kn that guarantees that they are s-shellable
for some s ≥ n/2. Then we show that if D is a crossing minimal 2-page, cylindrical, monotone, or
x-bounded drawing, thenD satisfies this condition, thus settling (in view of Theorem 1) the Harary-
Hill conjecture for all these families of drawings. Section 4 contains some concluding remarks.

2 k-edges in shellable drawings and proof of Theorem 1

We recall that in a good drawing of a graph, no two edges share more than one point and no edge
crosses itself. It is easy to show that every crossing minimal drawing of a graph is good.
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Figure 3: Left: A monotone drawing of K8. Right: An x-bounded drawing of K8.

We generalized the geometrical concept of a k-edge to arbitrary (topological) good drawings of
Kn [1, 3], as follows. Let D be a good drawing of Kn, pq a directed edge of D, and r a vertex of
D distinct from p and q. Then pqr denotes the oriented closed curve defined by concatenating the
edges pq, qr, and rp. An oriented, simple, and closed curve in the plane is oriented counterclockwise
(respectively, clockwise) if the bounded region it encloses is on the left (respectively, right) hand side
of the curve. Further, r is on the left (respectively, right) side of pq if pqr is oriented counterclockwise
(respectively, clockwise). We say that the edge pq is a k-edge of D if it has exactly k points of D
on one side (left or right), and thus n− 2− k points on the other side. Hence, as in the geometric
setting, a k-edge is also an (n− 2− k)-edge. The direction of the edge pq is no longer relevant and
every edge of D is a k-edge for some unique k such that 0 ≤ k ≤ ⌊n/2⌋ − 1.

Following our previous work [1, 3], if D is a good drawing of Kn, then for each 0 ≤ k ≤ ⌊n/2⌋−1
we define the set of ≤k-edges of D as all j-edges in D for j = 0, . . . , k. The number of ≤k-edges of
D is denoted by

E≤k (D) :=
k

∑

j=0

Ej (D) .

Similarly, we denote the number of ≤≤k-edges of D by

E≤≤k (D) :=
k

∑

j=0
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k

∑

j=0

j
∑

i=0

Ei (D) =
k

∑

i=0

(k + 1− i)Ei (D) . (1)

It is known [1, 3] that if D is a good drawing, then D has exactly
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crossings. Thus we now concentrate on bounding E≤≤k(D). We need a few more definitions. If
Dy is the drawing of Kn−1 obtained from D by deleting a vertex y, then an edge non-incident to
y is (D,Dy)-invariant if for some 0 ≤ k ≤ ⌊(n− 3)/2⌋ it is a k-edge in both D and Dy. We let
E≤k(D,Dy) denote the number of (D,Dy)-invariant ≤ k-edges.

2.1 Ordering the vertices with respect to a boundary point

The unbounded region of a drawing D is its unique region with noncompact closure. We refer to
the topological boundary of the unbounded region of D simply as the boundary of D.
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Figure 4: The order induced by x.

Let D be a good drawing of Kn and assume that x is a vertex on the boundary of D. Then there
is a natural order of the vertices ofDx induced by the order in which the edges ofD leave x. Namely,
there is a disk Ω with center x and radius ǫ > 0 that intersects D only at the edges incident to x.
Moreover, for ǫ small enough, Ω intersects each edge incident to x in a simple connected Jordan
curve. (See Figure 4.) Exactly two of these curves, say xy ∩ Ω and xz ∩ Ω for some vertices
y and z, are on the boundary of D. Suppose without loss of generality that the triangle xyz is
oriented counter-clockwise. Then we can label the vertices of Dx by x1, x2, . . . , xn−1 so that x1 = y,
xn−1 = z, and the Jordan curves xx1∩Ω, xx2∩Ω, . . . , xxn−1∩Ω appear in counter-clockwise order
around x. We refer to this as the order induced by x in D.

Proposition 2. Let n ≥ 1 and consider a good drawing D of the complete graph Kn. Let x be a
vertex on the boundary of D, and let x1, x2, . . . , xn−1 be the order induced by x in D. Then xxi
and xxn−i are i− 1-edges of D for 1 ≤ i ≤ ⌊(n− 2)/2⌋.

Proof. Consider a disk Ω as above. Then any point p in Ω and outside the triangle xyz is in the
unbounded region of D. (See Figure 4.) This means that p cannot be in the interior of any triangle
of D. In particular, if j < i, then the triangle xxjxi is oriented counter-clockwise as otherwise its
interior would contain p. This means that xj is to the right of xxi if j < i, and to the left if j > i.
Thus there are exactly i− 1 vertices to the right of xxi and n− 1− i to the left. This means that
xxi is a min(i− 1, n− 1− i)-edge of D, implying the result.

Proposition 3. Let 0 ≤ i − 1 ≤ k ≤ ⌊(n− 3)/2⌋, D a good drawing of the complete graph Kn,
and x and y vertices of D. Let U be a subset of i− 1 vertices of D not including x and y. Assume
that x is on the boundary of the drawing D(U) obtained from D by removing U . Then there exist
at least k − i+ 2 edges incident to x and non-incident to vertices in U that are (D,Dy)-invariant
≤ k-edges.

Proof. Consider the order x1, x2, . . . xn−i induced by x in D(U). As before, xℓ is to the right of xxj
if ℓ < j, and to the left if ℓ > j. Thus there are exactly j − 1 vertices in D(U) to the right of xxj
and n− i− j to the left. Including U , this means that there are at most i− 1 + j − 1 = i+ j − 2
vertices to the right of xxj in D and at most i− 1 + n− i− j = n− j − 1 to the left.

Now consider the point y, which is equal to xw for some 1 ≤ w ≤ n− i. If w > k + 2− i, then
for 1 ≤ j ≤ k+2− i the edge xxj has at most i+ j − 2 ≤ i+ (k+ 2− i)− 2 = k points to its right
and y on its left (because w > k + 2 − i ≥ j). If w ≤ k + 2 − i, then for n − k − 1 ≤ j ≤ n − i
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the edge xxj has at most n − j − 1 ≤ n − (n − k − 1) − 1 = k points to its left and y on its right
(because k ≤ (n − 3)/2 < (n − 3 + i)/2 and thus w ≤ k + 2 − i < n − k − 1 ≤ j). In either case,
the k + 2− i edges xxj are (D,Dy)-invariant ≤ k-edges.

2.2 Bounding the number of ≤≤ k-edges in shellable drawings of Kn

We now bound the number of ≤≤ k-edges of s-shellable drawings of Kn for a certain interval of k
determined by s.

Proposition 4. Let D be an s-shellable good drawing of the complete graph Kn, in which the region
R that witnesses the s-shellability of D is its unbounded region. Then E≤≤k(D) ≥ 3

(

k+3

3

)

for all
0 ≤ k ≤ min(s− 2, ⌊(n− 3)/2⌋).

Proof. Let V be the set of vertices of D and S = {v1, v2, . . . , vs} an s-shelling of D witnessed by
the unbounded region R. Fix k with 0 ≤ k ≤ min(s− 2, ⌊(n− 3)/2⌋). We prove that

E≤≤i(D1,s−k+i) ≥ 3

(

i+ 3

3

)

(3)

for 0 ≤ i ≤ k by induction on i. For i = 0, because S is an s-shelling of D, and the unbounded
region witnesses this s-shellability, it follows that v1 and vs−k are on the boundary of D1,s−k. By
Proposition 2 each of these two vertices (they are different because k ≤ s − 2) is incident to two
0-edges and they can share at most one 0-edge. That is, E≤≤0(D1,s−k) ≥ 3. We now compare the
following two identities obtained from (1). For 1 ≤ r ≤ s and 0 ≤ k′ ≤ ⌊(n− s+ r)/2⌋,

E≤≤k′(D1,r) =
k′
∑

j=0

(k′ + 1− j)Ej(D1,r) (4)

and

E≤≤k′−1(D1,r−1) =
k′−1
∑

j=0

(k′ − j)Ej(D1,r−1). (5)

As shown in our previous work [2], for a j ≤ k′ a j-edge incident to vr contributes k′ − j to (4)
and nothing to (5), a (D1,r, D1,r−1)-invariant edge contributes 1 more to (4) than to (5), and all
other edges contribute the same to (4) and (5). Therefore,

E≤≤k′(D1,r) = E≤≤k′−1(D1,r−1) +

k′
∑

ℓ=0

(k′ + 1− ℓ)eℓ(vr) + E≤k(D1,r, D1,r−1), (6)

where eℓ(r) is the number of ℓ-edges incident to vr in D1,r.
Now, choose i such that 1 ≤ i ≤ k and assume that

E≤≤i−1(D1,s−k+i−1) ≥ 3

(

i+ 2

3

)

. (7)

By (6) for k′ = i and r = s− k + i, we have that

E≤≤i(D1,s−k+i) = E≤≤i−1(D1,s−k+i−1)+
i

∑

ℓ=0

(i+1− ℓ)eℓ(vs−k+i)+E≤i(D1,s−k+i, D1,s−k+i−1), (8)
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We separately bound each term of the right-hand side of (8). The first term is bounded in (7).
For the second term, Proposition 2 (for x = vs−k+i is on the boundary of D1,s−k+i) implies that
eℓ(vs−k+i) = 2 and thus

i
∑

ℓ=0

(i+ 1− ℓ)eℓ(vs−k+i) =
i

∑

ℓ=0

(i+ 1− ℓ)2 = 2

(

i+ 2

2

)

. (9)

Finally, we show that

E≤i(D1,s−k+i, D1,s−k+i−1) ≥
i+1
∑

ℓ=1

(i− ℓ+ 2) =

(

i+ 2

2

)

. (10)

We use Proposition 3 for the drawing Dℓ,s−k+i, x = vℓ, y = vs−k+i, and U = {v1, v2 . . . , vℓ−1}. Note
that k ≤ s − 2 implies 1 ≤ ℓ ≤ i + 1 < s − k + i and thus vℓ and vs−k+i are different and do
not belong to {v1, v2, . . . vℓ−1}. Moreover, vℓ and vs−k+i are on the boundary of D1,s−k+i because
S is an s-shelling of D. Also, Dℓ,s−k+i has n − s + (s − k + i) = n − k + i vertices and thus
we must check that 0 ≤ ℓ − 1 ≤ i ≤ (n − k + i − 3)/2. The first two inequalities hold because
1 ≤ ℓ ≤ i + 1. The last inequality follows from k ≤ min(s − 2, ⌊(n− 3)/2⌋) ≤ ⌊(n− 3)/2⌋, which
implies k+ i ≤ 2k ≤ n−3. Therefore, Proposition 3 implies that for 1 ≤ ℓ ≤ i+1 there are at least
i − ℓ + 2 edges incident to vℓ and non-incident to v1, v2, . . . , vℓ−1 (so all these edges are different)
that are (Ds−k+i−1, Ds−k+i)-invariant ≤ i-edges.

2.3 Proof of Theorem 1

Let D be an s-shellable drawing of Kn, for some s ≥ n/2. By using a suitable inversion, if needed,
we transform D into a drawing D′, with the same number of crossings as D, such that the region
that witnesses the s-shellability of D′ is the unbounded region. Since min(s − 2, ⌊(n− 3)/2⌋) =
⌊(n− 3)/2⌋, it follows from Proposition 4 that E≤≤k(D

′) ≥ 3
(

k+3

3

)

for all 0 ≤ k ≤ ⌊(n− 3)/2⌋.
Since D′ is a good drawing, then by (2) D′ has exactly

2

⌊n/2⌋−2
∑

k=0

E≤≤k(D
′)−

1

2

(

n

2

)⌊

n− 2

2

⌋

−
1

2
(1 + (−1)n)E≤≤⌊n/2⌋−2(D

′)

crossings. Using this fact, a straightforward calculation [1, 3] shows that if D′ is a drawing of Kn

that satisfies E≤≤k(D
′) ≥ 3

(

k+3

3

)

for all 0 ≤ k ≤ ⌊(n− 3)/2⌋, then D′ has at least Z(n) crossings.�

3 Verifying the Harary-Hill conjecture for 2-page, cylindrical,

monotone, and x-bounded drawings

The workhorse of this section is a property of a drawing that guarantees its shellability:

Lemma 5. Let D be a drawing of Kn. Suppose that C = v1v2 . . . vs is a cycle that satisfies the
following: (i) the edge vsv1 has no crossings; and (ii) for k = 1, . . . , s− 1 all crossings in the edge
vkvk+1 involve edges vivj with i < k and j > k + 1. Then D is s-shellable.

Proof. Let R be a region of D containing the edge vsv1 on its boundary. Let 1 ≤ i < j ≤
s and define Dij as before. Let R′ be the region of Dij that contains R. Since the vertices
v1, v2, . . . , vi−1, vj+1, vj+2, . . . , vs, and consequently any edge incident to one of these vertices, are
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removed to obtainDij , then v1 and vs are in the interior of R′. Moreover, it follows from the crossing
properties of the edges of C that the edges v1v2, v2v3, . . . , vi−1vi, vjvj+1, vj+1vj+2, . . . , vs−1vs are not
intersected by any edge of Dij . Hence the paths vi, vi−1, . . . , v1 and vj , vj+1, . . . , vs are completely
contained in R′ and thus vi and vj are on the boundary of R. Therefore, {v1, v2, . . . , vs} is an
s-shelling of D witnessed by R.

We need the full strength of Lemma 5 to show that monotone and x-bounded drawings satisfy
the Harary-Hill conjecture. However, it seems worth stating the following weaker form, which is all
we need to show that the Harary-Hill conjecture holds for 2-page and cylindrical drawings:

Corollary 6. If a drawing D of Kn has a crossing-free cycle C of size s then D is s-shellable. �

We are finally ready to verify the Harary-Hill conjecture for several classes of drawings.

Theorem 7. Every cylindrical drawing of Kn has at least Z(n) crossings.

Proof. Let D be a crossing-minimal cylindrical drawing of Kn. Out of the two concentric cycles
that contain all the vertices, let ρ be one that contains at least n/2 vertices. Let v1, v2, . . . , vs be the
vertices on ρ, in counterclockwise order. Since no two edges cross each other more than once (this
follows since D is crossing-minimal) and no edge crosses ρ, it follows that the cycle v1v2 . . . vsv1 is
uncrossed in D. Since s ≥ n/2, the result follows by Theorem 1 and Corollary 6.

A 2-page drawing is a particular kind of a cylindrical drawing, namely, a degenerate one with all
vertices on one of the concentric circles. Thus Theorem 7 immediately implies our previous result
[1, 3] for 2-page drawings:

Corollary 8. Every 2-page drawing of Kn has at least Z(n) crossings. �

It is straightforward to check that any x-bounded drawing D of Kn satisfies the conditions of
Lemma 5. Thus the Harary-Hill conjecture holds for x-bounded drawings:

Theorem 9. Every x-bounded drawing of Kn has at least Z(n) crossings. �

Since every monotone drawing is obviously x-bounded, this implies the Harary-Hill conjecture
for monotone drawings (previously proved by the authors [2] and by Balko et al. [4]):

Corollary 10. Every monotone drawing of Kn has at least Z(n) crossings. �

4 Concluding remarks

Cylindrical drawings of Kn were previously investigated by Richter and Thomassen [11]. In that
paper, they determined the number of crossings in a cylindrical drawing ofKm,m with one chromatic
class on the inner circle and the other chromatic class on the outer circle. From their result it follows
that a cylindrical drawing of K2m in which the edges joining vertices on the same circle are not
drawn on the annulus (bounded by the two circles) has at least Z(2m) crossings.

As we observed in Section 1, the 2-page and the cylindrical constructions (possibly with some
insubstantial alterations) are the only known drawings of Kn with Z(n) crossings for arbitrary
values of n. In his interesting entry at mathoverflow.net, Kynčl [8] asks about the existence of
alternative constructions, and observes that there is a plethora of drawings with Z(n) + O(n3)
crossings (noting that Moon showed that a random spherical drawing of Kn has expected crossing
number (1/64)n(n− 1)(n− 2)(n− 3) = Z(n) +O(n3)).
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Balko et al. [4] noted that there are cylindrical drawings D that do not satisfy the bound
E≤≤k(D) ≥ 3

(

k+3

3

)

. However, as shown in this paper, for every such drawing there exists a second
drawing D′ obtained from D by an appropriate inversion (and thus with the same number of
crossings) that satisfies E≤≤k(D

′) ≥ 3
(

k+3

3

)

.
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[1] Bernardo Ábrego, Oswin Aichholzer, Silvia Fernández-Merchant, Pedro Ramos, Gelasio
Salazar. The 2-Page Crossing Number of Kn. Discrete and Computational Geometry, 49 (4)
747–777 (2013).
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