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Abstract. Zarankiewicz’s Crossing Number Conjecture states that the cross-

ing number cr(Km,n) of the complete bipartite graph Km,n equals Z(m, n) :=

bm/2c b(m− 1)/2cbn/2cb(n− 1)/2c, for all positive integers m, n. This con-
jecture has only been verified for min{m, n} ≤ 6, for K7,7, K7,8, K7,9, and

K7,10, and for K8,8, K8,9, and K8,10. We determine, for each positive integer

m, an integer N0 = N0(m) with the following property: if cr(Km,n) = Z(m, n)
for all n ≤ N0, then cr(Km,n) = Z(m, n) for every n. This yields, for each

fixed integer m, a finite algorithm that either proves that cr(Km,n) = Z(m, n)
for every n, or else finds a counterexample.

1. Introduction

Perhaps the most tantalizing open crossing number problem is what appears to
be the first question in the field, namely the Brick Factory Problem, considered by
Turán back in 1944. In current terminology, Turán asked:

Question 1.1 (P. Turán). What is the crossing number cr(Km,n) of the complete
bipartite graph Km,n?

We recall that the crossing number cr(G) of a graph G is the minimum number
of pairwise crossings of edges in a drawing of G in the plane.

To date, the best exact result concerning cr(Km,n) is Kleitman’s 1970 work
showing that, for n ≥ 5, cr(K5,n) = 4bn/2cb(n − 1)/2c [6]. Woodall showed that
cr(K7,7) = 81 and cr(K7,9) = 144 in 1993 [9]. All these confirm, for the indicated
values, what has become known as Zarankiewicz’ Conjecture:

cr(Km,n) =
⌊
m

2

⌋⌊
m− 1

2

⌋⌊
n

2

⌋⌊
n− 1

2

⌋
.

We set Z(m,n) to be the number on the right hand side of this equation. Zarankie-
wicz gave a drawing of Km,n that has Z(m,n) crossings [10], so the difficulty is to
prove that cr(Km,n) ≥ Z(m,n).

Of relevance to us is the overall approach taken by Kleitman and the details of
Woodall’s arguments. Kleitman showed that, if there is an n so that cr(K5,n) is
smaller than Z(5, n), then there is such an n that is either 5 or 7. (A simple, but
useful, observation is that, if m is odd and cr(Km,n) = Z(m,n), then cr(Km+1,n) =
Z(m+ 1, n). By symmetry, the same statement holds for the second coordinate n.)
He then gave special arguments to deal with the two small cases.
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Woodall introduced cyclic-order graphs to determine (by computer) cr(K7,7) and
cr(K7,9). He pointed out that Kleitman’s approach does not obviously carry over
to now be able to conclude that, for all n, cr(K7,n) = Z(7, n).

Our main result is the following. Let N0(m) := ((2Z(m))m!(m!)!)4.

Theorem 1.2. Let m be a positive integer. If, for every n ≤ N0(m), cr(Km,n) =
Z(m,n), then, for every n, cr(Km,n) = Z(m,n).

Since determining the crossing number of any particular graph is a finite prob-
lem, our main theorem has the satisfying conclusion that it is a finite problem
to determine, for a given m, whether or not, for each n ≥ m, it is true that
cr(Km,n) = Z(m,n).

Unfortunately, our method is not practical, even for n = 5.
Very little of substance has been published concerning cr(Km,n). Turán consid-

ered the “Brick Factory Problem” when he was working in a labour camp during
World War II [7]. He mentioned the problem to Zarankiewicz in 1952 and the
latter published a paper claiming a proof of what is now known as his conjecture
in 1953 [10]. In 1966 and 1967, Kainen and Ringel noticed an unpluggable gap in
Zarankiewicz’ argument (see [5]).

The case K3,n is quite easy and an elegant proof based on Turán’s Theorem
about the number of edges in triangle-free graphs is presented in [2]. DeKlerk
et al. used Woodall’s cyclic-order graphs to set up a quadratic program with 6!
variables whose solution requires state-of-the-art quadratic programming methods.
The result shows that cr(K7,n) ≥ .968Z(7, n)−Θ(n) [3]. DeKlerk, Pasechnik, and
Schrijver used an improved version of the same method to prove that cr(K9,n) ≥
.9667Z(9, n)−Θ(n) [4]. This roughly implies that cr(Km,n) ≥ .8594Z(m,n).

In outline, our argument proceeds as follows. Let m be a fixed positive integer.
In Section 2, we introduce templates. A drawing of Km,k is a template of rank m
and order k if no two degree m vertices have the same rotation (in that section,
we recall the definition of a rotation). We show that, for each positive integer n,
there is an optimal drawing of Km,n that can be obtained from some template B
of rank m and order k, by duplicating its degree m vertices (to create a total of n
vertices) so that the crossing number of the resulting optimal drawing of Km,n is
determined by information contained in the template and the distribution of the
duplicate vertices. A key observation is that, for each fixed m, up to isomorphism
there are only finitely many templates to consider.

In Section 3, we associate to each template B a quadratic program QP(B), whose
minimum Min(B) sheds light on the possibility that a drawing of Km,n arising from
B is a counterexample to Zarankiewicz’s Conjecture.

The proof of Theorem 1.2 has two main parts: the quite easy Proposition 4.1
treats the case of a template for which the minimum of QP (B) is smaller than
Z(m)/4 (Section 4), while the rather more technical Proposition 5.1 treats the case
minQP (B) ≥ Z(m)/4 (Section 5). These are put together in the very short Section
6 to prove Theorem 1.2.

2. Drawings and rotations

In this section we do some preliminary work to show that the drawings we need to
consider have certain useful properties that reduce the computation of the crossing
number to that of a template plus some arithmetic.
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Let G be a graph and let D be a drawing of G. We use cr(D) to denote the
number of crossings in D. Thus, the crossing number cr(G) is the minimum of
the cr(D), over all drawings D of G in the plane. The drawing D is optimal if
cr(D) = cr(G).

Let M be the part of the bipartition of Km,n having the n vertices of degree
m; these will be called the degree-m vertices (even if n = m). We let [m] =
{0, 1, . . . ,m−1} denote the other part of the bipartition. For each degree-m vertex
u of Km,n, we let crD(u) denote the number of crossings that involve an edge
incident with u. If v is a degree-m vertex distinct from u, then we let crD(u, v)
denote the number of crossings that involve an edge incident with u and an edge
incident with v.

In a drawing D of Km,n, each degree-m vertex v induces a natural cyclic order
of [m] by considering the clockwise cyclic order of the edges incident with v and
using their ends in [m] as their labels. This cyclic order is the rotation πD(v) of v
in D. There are (m− 1)! cyclic permutations of [m], and so this is also the number
of possible rotations occurring among the degree-m vertices.

The number Z(m) mentioned earlier is defined to be

Z(m) :=
⌊
m

2

⌋⌊
m− 1

2

⌋
.

It is well-known, and important for us, that if two degree-m vertices u and v have
the same rotation a drawing D of Km,2, then D has at least Z(m) crossings (for a
proof, see [9]). Thus, for any drawing D of Km,n, if u and v are distinct degree-m
vertices with πD(u) = πD(v), then crD(u, v) ≥ Z(m).

Let D be a drawing of Km,n and suppose u and v are distinct degree-m vertices
with πD(u) = πD(v) and crD(u) ≥ crD(v). We obtain the drawing D′ of Km,n from
D by deleting u from D and adding a new vertex u′ placed near v so that u′ mimics
v: all the edges incident with u′ go very near the corresponding edges incident with
v. It is a routine exercise to show that this can be done so that crD′(u′, v) = Z(m)
and, for all other vertices w of Km,n, crD′(u,w) = crD(v, w). A straightforward
verification shows that cr(D′) ≤ cr(D).

For a drawing D of Km,n, the degree-m vertices u and v are duplicates in D if:
(1) πD(u) = πD(v);
(2) crD(u, v) = Z(m); and
(3) for every other degree-m vertex w, crD(u,w) = crD(v, w).

We have proved the following.

Lemma 2.1. If D is a drawing of Km,n, then there is another drawing D′ of Km,n

so that:
(1) cr(D′) ≤ cr(D); and,
(2) if u and v are distinct degree-m vertices such that πD′(u) = πD′(v), then u

and v are duplicates in D′. �

We continue our “tidying up” of drawings of Km,n. For any distinct rotations π
and π′ of [m], there is a drawing D of Km,2 so that one degree-m vertex has the
rotation π, while the other has the rotation π′, and cr(D) < Z(m). We wish to show
that this property can be enforced on the degree-m vertices of Km,n. From Lemma
2.1, we may assume that any two vertices with the same rotation are duplicates.

Suppose D is a drawing of Km,n for which there are degree-m vertices u and v
so that πD(u) 6= πD(v), and yet crD(u, v) ≥ Z(m). Call such a pair {πD(u), πD(v)}
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of rotations a bad pair . We exhibit a drawing D′ with fewer bad pairs than D and
with cr(D′) ≤ cr(D).

Choose the labelling so that crD(u) ≤ crD(v). Obtain D′ from D by deleting v
and all its duplicates and making them all duplicates of u. Again, a routine check
shows that cr(D′) ≤ cr(D) and D′ has fewer bad pairs than D. Thus, we have
proved the following (the first conclusion being Lemma 2.1).

Lemma 2.2. If D is a drawing of Km,n, then there is a drawing D′ of Km,n so
that cr(D′) ≤ cr(D) and, for any two degree-m vertices u and v:

(1) if πD′(u) = πD′(v), then u and v are duplicates in D′; and
(2) if πD′(u) 6= πD′(v), then crD′(u, v) < Z(m). �

Definition 2.3 (Clean drawings). A drawing D′ of Km,n is clean if (1) and (2) of
Lemma 2.2 hold for D′.

Since we are interested in optimal drawings, in view of Lemma 2.2 we may
restrict our attention to clean drawings. The great advantage of this is that, in a
clean drawing, all the relevant topological information is contained in a subdrawing
of bounded size. To formalize this idea, in the next section we introduce the concept
of a template.

3. Templates

In this section we introduce templates and, for each template B, a quadratic
programQP (B) that contains significant information about drawings ofKm,n based
on the template B.

Definition 3.1 (Templates). Let m and k be positive integers.

(1) A template B of rank m and order k is a drawing of Km,k in which no two
degree-m vertices have the same rotation.

(2) Let {v1, v2, . . . , vk} be the set of degree-m vertices ofB. For i, j ∈ {1, 2, . . . , k},
i 6= j, let qB

i,j := crB(vi, vj), and let qB
i,i := Z(m). Then the integers qB

i,j

define a k × k-matrix QB = (qB
i,j), the crossing matrix of B. (For brevity,

we often omit the reference to B, and simply write qi,j and Q).

Remark 3.2. If B is a template of rank m and order k, then k ≤ (m − 1)!. This
follows since there are (m− 1)! distinct cyclic permutations of [m].

Definition 3.3. Let D be a clean drawing of Km,n, and let v1, v2, . . . , vk be a
maximal set of degree-m vertices whose rotations in D are pairwise distinct. The
drawing of Km,k induced by v1, v2, . . . , vk is (evidently) a template B. We say that
B is a base for D or, equivalently, that D is an n-extension of B.

The following proposition shows that, for an n-extension D of a template B,
cr(D) can be calculated knowing only B and, for each rotation, how many vertices
have that rotation in D. The first statement is a simple consequence of Lemma 2.2.

Proposition 3.4. (1) Let D be a drawing of Km,n. Then there is an n-
extension D′ of a base template so that cr(D′) ≤ cr(D).

(2) Let B be a clean template of rank m and order k, with degree-m vertices
v1, v2, . . . , vk, and let Q = (qi,j) be the crossing matrix of B. Let D be an
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n-extension of B, with: ni degree-m vertices in D having the same rotation
as vi; xi := ni/n; n = (n1, n2, . . . , nk)T ; and x = (x1, x2, . . . , xk)T . Then

cr(D) =
k∑

i=1

qi,i

(
ni

2

)
+

∑
1≤i<j≤k

qi,jninj(3.1)

=
1
2
nT Qn− nZ(m)

2
(3.2)

=
n2

2
xT Qx− nZ(m)

2
.(3.3)

Proof. We only need to prove Item (2). For i = 1, 2, . . . , k, let Si denote the set
of degree-m vertices in D that have the same rotation as vi. Let u,w be dis-
tinct degree-m vertices in D, and let i, j be the integers such that u ∈ Si and
w ∈ Sj . Since D is clean, it follows that crD(u,w) = qi,j . Now we note that
cr(D) = (1/2)

∑
(u,w) crD(u,w), where the summation is over all ordered pairs

(u,w) of distinct degree-m vertices in D. Since |Si| = ni for i = 1, 2, . . . , k, Equa-
tion (3.1) easily follows. Finally, Equations (3.2) and (3.3) follow from (3.1) by
straightforward manipulations, since each qi,i is Z(m). �

An elementary counting argument using cr(K3,n) = Z(3, n) yields that cr(Km,n)
is of order m2n2, whereas the term Z(m) · n/2 in (3.2) is of order m2n. This is a
key hint of the importance of investigating the quadratic expression xT Qx (as in
(3.3)). Motivated by this, we introduce the quadratic program QP(B) associated
to a template B.

Definition 3.5. Let B be a template of rank m and order k, and let Q = (qi,j) be
the crossing matrix of B. The quadratic program QP(B) associated to B is:

Minimize fB(x) :=
1
2
xT Qx =

1
2

k∑
i,j=1

qi,jxixj over all x = (x1, x2, . . . , xk) s.t.

(a)
k∑

i=1

xi = 1; and (b) xi ≥ 0 for i = 1, 2, . . . , k.

We use the notation Min(B) for the minimum of QP(B). Theorem 1.2 follows
easily from two statements (namely Proposition 4.1 for the case Min(B) < Z(m)/4
and Proposition 5.1 for the case Min(B) ≥ Z(m)/4) about whether template B has
an extension that is a counterexample to Zarankiewicz’ Conjecture.

We finish this section by proving the existence of an optimal solution for QP(B),
each of whose coordinates can be expressed as a quotient of integers that are
bounded above by an explicit function of m. Let N2(m) := (2Z(m))(m−1)!(m!)!.

Proposition 3.6. Let B be a clean template of rank m and order k. Then there
exist nonnegative integers p1, p2, . . . , pk, with p :=

∑k
i=1 pi ≤ N2(m), such that

(p1/p, p2/p . . . , pk/p) achieves the minimum for QP(B).

Proof. Among all optimal solutions for QP(B), let x∗ = (x∗1, x
∗
2, . . . , x

∗
k) be one

in which the number of nonzero coordinates is least possible. By rearranging the
columns and rows of Q if necessary, we may assume that there is an s, 1 ≤ s ≤ k,
such that x∗i > 0 for i ≤ s, and x∗i = 0 for i > s. If s = 1 then we are clearly
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done (setting p1 = p = 1, and p2 = p3 = · · · = pk = 0 yields the required optimal
solution), and so we assume that s ≥ 2.

Since x∗ is an optimal solution for QP(B), it immediately follows that (x∗1, x
∗
2,

. . . , x∗s) is an optimal solution for the quadratic program QP∗ on the variables
x1, x2, . . . , xs obtained from QP(B) by forcing all of xs+1, . . . , xk to be 0.

Using the constraint
∑s

i=1 xi = 1, we can eliminate the variable xs in QP∗. The
constraint xs > 0 becomes

∑s−1
i=1 xi < 1. Thus it follows that (x∗1, x

∗
2, . . . , x

∗
s−1) is

an optimal solution for a quadratic program QP∗∗ of the form:

min{g(x1, . . . , xs−1) |
s−1∑
i=1

xi < 1, and, for i = 1, 2, . . . , s− 1, xi > 0} .

Because the feasible domain is open, ∇g(x∗1, . . . , x
∗
s−1) = 0. In fact, we now

show (x∗1, x
∗
2, . . . , x

∗
s−1) is the unique solution of ∇g = 0.

As g is a quadratic function, ∇g(x1, x2, . . . , xs−1) = 0 is a system of linear equa-
tions, so its solution set is a subspace W of Rs−1. The mean value theorem implies
that, for every (u1, u2, . . . , us−1) ∈W , g(u1, u2, . . . , us−1) = g(x∗1, x

∗
2, . . . , x

∗
s−1).

The closure of the feasible region for QP∗∗ is a compact set. If W has positive
dimension, then W must have a point on the boundary of the feasible region; any
such point yields an optimal solution of QP(B) having fewer non-zero components
than (x∗1, . . . , x

∗
k), a contradiction.

We now know that (x∗1, x
∗
2, . . . , x

∗
s−1) is the unique solution of the system of s−1

linear equations in s− 1 unknowns ∇g = 0, or:

s−1∑
i=1

(
qi,` + qs,s − qi,s − q`,s

)
xi = qs,s − q`,s, for ` = 1, 2, . . . , s− 1.

Since 0 ≤ qi,j ≤ Z(m) for all i, j ∈ {1, 2, . . . , k}, in absolute value each of these
coefficients is at most 2Z(m). Cramer’s Rule and the permutation expansion for
the determinant imply the (equal) denominators are all at most (2Z(m))s−1(s−1)!.
Since s ≤ k ≤ (m− 1)!, this is easily seen to be at most N2. �

4. The case Min(B) < Z(m)/4

In this section, we treat the easier of the two parts of the proof of Theorem 1.2
by showing that if B is a template with Min(B) < Z(m)/4, then there is a (not very
large) n so that cr(Km,n) < Z(m,n). Recall that N0(m) = ((2Z(m))m!(m!)!)4.

Proposition 4.1. Let m be any positive integer, and let B be a clean template of
rank m. If Min(B) < Z(m)/4, then, for each n ≥ N0(m), there is an n-extension
D of B such that cr(D) < Z(m,n). In particular, for each n ≥ N0(m), cr(Km,n) <
Z(m,n).

Proof. First we note that m ≥ 3, as otherwise Z(m) = 0, and we obtain the
contradiction that Min(B) < 0.

Let v1, v2, . . . , vk be the degree-m vertices and let Q = (qi,j) be the cross-
ing matrix of B. By Proposition 3.6, there exist integers p1, p2, . . . , pk, with
p =

∑k
i=1 pi ≤ N2, such that x = (p1/p, p2/p, . . . , pk/p) is an optimal solution

of QP(B).
We observe that p ≥ 2, as otherwise (1/2)xT Qx = Z(m)/2, a contradiction.
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By hypothesis, fB(x) = Z(m)/4 − ε, where ε > 0. Since fB(x) = (1/2)xT Qx,
and Q is an integral matrix, it follows that fB(x) = L/2p2 for some integer L, and
therefore ε = `/4p2 for some integer `. In particular, ε ≥ 1/4p2.

Let n be any positive integer, and let r, s be the unique integers such that
n = rp + s, with 0 ≤ s < p. Let ni = rpi + δi for i = 1, 2, 3, . . . , k, with s

of the δi equal to 1 and the rest 0. Note that n =
∑k

i=1 ni and, for each i,
ni ≤ (r + 1)pi. Consider an n-extension D of B, in which, for i = 1, 2, . . . , k, there
are ni degree-m vertices with rotation πB(vi). From Proposition 3.4(2), where
n = (n1, n2, . . . , nk)T ,

cr(D) =
1
2
nT Qn− nZ(m)

2
.

Since each ni ≤ (r + 1)pi = ((r + 1)p)(pi/p) ≤ (n+ p)(pi/p), and (1/2)xT Qx ≤
(Z(m)/4)− (1/4p2), it follows that

cr(D) ≤ (n+ p)2
(
Z(m)

4
− 1

4p2

)
− nZ(m)

2
.

Now observe that Z(m)(n − 1)2/4 ≤ Z(m,n) + (Z(m)/4), that is,
(
(n − 1)2 −

1
)
(Z(m)/4) ≤ Z(m,n). Therefore, using (n+ p)2 =

(
(n− 1)2−1

)
+ 2n+ 2np+ p2,

we readily get

(4.1) cr(D)≤ Z(m,n) +
(
2np+ p2

)Z(m)
4
− (n+ p)2

4p2
.

Claim 4.2. For n ≥ N0, (n+ p)2/(4p2) > (2np+ p2)(Z(m)/4).

Proof. First we note that m ≥ 3 implies

(2Z(m))m! ≥ 2Z(m)(2Z(m))(m−1)! ,

which trivially implies(
(2Z(m))m!

)4 ≥ 2Z(m)
(

(2Z(m))(m−1)!
)4

.

Multiplying both sides by ((m!)!)4 shows N0 ≥ 2Z(m)N4
2 .

Note that n ≥ N0 and N2 ≥ p, so n ≥ 2Z(m)p4. Obviously, 2n > p. Since p ≥ 2,
p(p− 1) ≥ p, and so

2np(p− 1) > p2 .

Thus, 2np2 > 2np+ p2.
Consequently,

(n+ p)2

4p2
>

n2

4p2
≥ n(2p4Z(m))

4p2
>

(2np+ p2)Z(m)
4

. �

Inequality (4.1) and Claim 4.2 show that if n ≥ N0, then cr(D) < Z(m,n),
completing the proof of the proposition. �
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5. The case Min(B) ≥ Z(m)/4

In this section, we aim for the other half of the proof of Theorem 1.2, now
considering a template B for which Min(B) ≥ Z(m)/4. Let

N1(m) := (Z(m) + 2)2m!(2m!)! .

Proposition 5.1. Let B be a template with Min(B) ≥ Z(m)/4. If there is an
n-extension D of B so that cr(D) < Z(m,n), then there is such an n-extension for
which n ≤ N1.

The rest of this section is devoted to proving Proposition 5.1. Throughout, B,
D, and n are as in the hypotheses of the proposition. For i = 1, 2, . . . , k, let ni be
the number of vertices having rotation πi in D and let xi = ni/n. Equation (3.2)
shows that, for x = (x1, . . . , xk)T ,

cr(D) =
n2

2
xT Qx− Z(m)n

2
.

Since x is a feasible point for QP(B), 1
2xT Qx is at least Min(B) and, therefore, at

least Z(m)/4. Thus,

(5.1) cr(D) ≥ Z(m)n2

4
− Z(m)n

2
.

As Z(m,n) = Z(m)Z(n) and, when n is even, Z(n) = n(n−2)/4 = (n2/4)− (n/2),
we see that, if n is even, cr(D) ≥ Z(m,n). In fact, we have proved the following.

Observation 5.2. For every even integer s, if D′ is an s-extension of B, then
cr(D′) ≥ Z(m, s). In particular, n is odd. �

For i = 1, 2, . . . , k, if v is a degree-m vertex with rotation πi in D, then set
ti = 2crD(v)− Z(m)n. (We note that ti is independent of the choice of v.)

Then

4cr(D) =
∑

v

2crD(v) =
k∑

i=1

(ti + Z(m)n)ni , or(5.2)

k∑
i=1

tini = 4cr(D)− Z(m)n2 .(5.3)

For any degree-m vertex v with rotation πi, crD(v) may be computed as follows:

crD(v) = Z(m)(ni − 1) +
∑
j 6=i

qi,jnj .

Replacing crD(v) with (Z(m)n+ ti)/2 and rearranging, we get

ti = 2Z(m)ni − 2Z(m)− Z(m)n+
∑
j 6=i

2qi,jnj .

Since n =
∑k

i=1 ni, this becomes

(5.4) ti = Z(m)ni − 2Z(m) +
∑
j 6=i

(2qi,j − Z(m))nj .
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We define ε by cr(D) = Z(m,n) − ε, so ε > 0. Substituting this into (5.3), we
get

k∑
i=1

tini = 4Z(m)(n− 1)2/4− 4ε− Z(m)n2 , or(5.5)

k∑
i=1

tini = Z(m)(−2n+ 1)− 4ε .(5.6)

In this framework, we see that, if cr(D) < Z(m,n), then, for some ε > 0 and some
integers t1, . . . , tk, there are non-negative integers n1, . . . , nk so that n =

∑k
i=1 ni

is odd, and both (5.4) and (5.6) both hold.
Conversely, suppose there exist ε > 0, integers t1, t2, . . . , tk, and non-negative

integers n1, . . . , nk so that n =
∑

i ni is odd and both (5.4) and (5.6) hold. Let
D′ be an n-extension of B so that there are ni vertices with rotation πi. From the
above remarks, (5.4) implies that ti = 2crD′(v)− Z(m)n, for each vertex v having
rotation πi. Therefore, (5.3) implies

∑
i tini = 4cr(D′) − Z(m)n2. This together

with (5.6) implies cr(D′) = Z(m,n)− ε < Z(m,n).
We summarize the above remarks as follows.

Proposition 5.3. Let B be a template with rotations π1, . . . , πk and suppose
Min(B) ≥ Z(m)/4. Then there is an n-extension D of B so that cr(D) < Z(m,n)
if and only if, for some integers t1, . . . , tk, there is a solution in non-negative integers
n1, n2, . . . , nk, r to:

(1) for i = 1, . . . , k,

(5.7) ti = Z(m)ni − 2Z(m) +
∑
j 6=i

(2qi,j − Z(m))nj ;

(2) the inequality
∑k

i=1 niti ≤ Z(m)(1− 2n)− 4, where n =
∑

i ni; and
(3) n = 2r + 1. �

By itself, Proposition 5.3 is not enough to prove Proposition 5.1. We need to
show:

(1) that only finitely many possible k-tuples (t1, t2, . . . , tk) need be considered;
and

(2) that, for each one, if it yields a solution n1, n2, . . . , nk, then
∑k

i=1 ni ≤ N1.

The remainder of this section is devoted to these two points.
Recall that D is an n-extension of B so that cr(D) < Z(m,n) and n is odd.

There are ni vertices with rotation πi, i = 1, 2, . . . , k. If v is a degree-m vertex
with rotation πi, then we can obtain an (n + 1)-extension D+ of B by adding a
duplicate of v and an (n−1)-extension D− of B by deleting v. It is easy to compute
cr(D−) = cr(D) − crD(v) and cr(D+) = cr(D) + crD(v) + Z(m). (For the latter,
the duplicate has the same crossings as v plus its crossings with edges incident with
v.)
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Since n−1 and n+1 are both even, Observation 5.2 implies cr(D−) ≥ Z(m,n−1)
and cr(D+) ≥ Z(m,n+ 1). It follows that

Z(m,n+ 1) ≤ cr(D) + crD(v) + Z(m)
< Z(m,n) + crD(v) + Z(m), or,

Z(m)
(
n2 − 1

4

)
< Z(m)

(
(n− 1)2

4

)
+ crD(v) + Z(m),

so that
ti = 2crD(v)− Z(m)n ≥ −3Z(m)− 2 .

Likewise, Z(m,n − 1) ≤ cr(D−) implies that ti ≤ −Z(m) − 2. Accordingly, for
each i = 1, 2, . . . , k, −3Z(m)−2 ≤ ti ≤ −Z(m)−2, so there are indeed only finitely
many choices for (t1, t2, . . . , tk).

Finally, suppose that t1, t2, . . . , tk are such that, for each i = 1, 2, . . . , k, −3Z(m)−
2 ≤ ti ≤ −Z(m)− 2 and that there are non-negative integers n1, n2, . . . , nk, r sat-
isfying the constraints (1)–(3) in Proposition 5.3. We show that there is such a
solution n1, n2, . . . , nk, r so that

∑k
i=1 ni ≤ N1. The following result from [8] does

this for us.

Theorem 5.4 (Von Zur Gathen-Sieveking, 1978). Let A,b,C and d be p × r-,
p× 1-, q× r-, and q× 1-matrices respectively with integer entries. Let s be the rank
of A, and let T be the rank of the matrix

(
A
C

)
. Let M be an upper bound on the

absolute values of those (T − 1)× (T − 1)- or T × T -subdeterminants of the matrix(
A b
C d

)
which are formed with at least s rows from (A,b). If Ax = b and Cx ≥ d have a
common integral solution, then they have one in which each coordinate is bounded
by (T + 1)M .

In our context, we have the k equalities (5.7), plus n = 2r + 1, yielding k + 1
equations in k+ 1 unknowns. We also have k+ 1 inequalities (non-negativity of the
ni and (5.6)) in the same k + 1 unknowns. Therefore, the rank of

(
A
C

)
is obviously

at most (k+1). For M , we note that the absolute value of each entry in the matrix(
A b
C d

)
is bounded by 3Z(m) + 2. Thus, any subdeterminant (having at most k+ 1

rows) of this matrix is bounded in absolute value by (3Z(m) + 2)k+1(k + 1)!. We
may take this value for M .

Theorem 5.4 implies that, if the constraints in Proposition 5.3 admit an integral
solution, then it admits an integral solution in which each ni is at most (2k +
3)(Z(m) + 2)2k+2(2k + 2)!. For such a solution,

∑k
i=1 ni ≤ k(2k + 3)(Z(m) +

2)2k+2(2k+ 2)!. Now since k ≤ (m− 1)!, it follows that
∑k

i=1 ni ≤ (m− 1)!(2(m−
1)! + 3)(Z(m) + 2)2(m−1)!+2(2(m − 1)! + 2)!. It is easy to check that this last
expression is at most N1. This completes the proof of Proposition 5.1.

6. Proof of Theorem 1.2

In this short section, we use Propositions 4.1 and 5.1 to prove Theorem 1.2.

Proof of Theorem 1.2. Let m,n be positive integers. By hypothesis, if n ≤ N0,
then cr(Km,n) = Z(m,n). Thus we let n > N0, and finish the proof by showing
that cr(Km,n) = Z(m,n). As we have observed, Zarankiewicz’ construction shows
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that cr(Km,n) ≤ Z(m,n), so we need to prove the reverse inequality cr(Km,n) ≥
Z(m,n).

Let D be an optimal drawing of Km,n. Our aim is to show that cr(D) ≥ Z(m,n).
Lemma 2.2 implies that we may assume that D an n-extension of a template B.
If Min(B) < Z(m)/4, then it follows from Proposition 4.1 that cr(Km,N0) <

Z(m,N0), contradicting the hypothesis of the theorem.
Therefore Min(B) ≥ Z(m)/4. By hypothesis, cr(Km,n′) = Z(m,n′) for all

n′ ≤ N0. It is easy to check that, for every m ≥ 3, N1 ≤ N0. In particular it follows
that, for every n′ ≤ N1, every n′-extension of B has at least Z(m,n′) crossings.
Therefore Proposition 5.1 applies, and so cr(D) ≥ Z(m,n), as required. �
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