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1 Introduction

In 1973, Harary, Kainen, and Schwenk proved that toroidal graphs can have arbitrarily large
crossing numbers [7]. In the same paper, they put forward the following conjecture.

Conjecture [HKS–Conjecture] The crossing number cr(Cm × Cn) of the Cartesian product
Cm × Cn is (m− 2)n, for all m,n such that n ≥ m ≥ 3.

This has been proved for m,n satisfying n ≥ m, m ≤ 7 [7, 14, 6, 5, 13, 11, 3, 12, 4, 1]. In this
paper we show that the HKS–conjecture holds for all but finitely many n, for each m ≥ 3.
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Theorem 1 Let m,n be integers such that n ≥ m(m+1),m ≥ 3. Then cr(Cm × Cn) = (m− 2)n.

The Cartesian product Cm × Cn is a particular case of an (m,n)–graph. A 4–regular graph
is an (m,n)–graph if it consists of n pairwise disjoint, cyclically ordered m–cycles R(0), R(1), . . . ,
R(n − 1) (colored red to help comprehension), plus mn (blue) edges, so that each vertex in R(j)
is adjacent, via blue edges, to one vertex in R(j 	 1) and to one vertex in R(j ⊕ 1) (throughout
this work addition and subtraction modulo n are denoted ⊕ and 	, respectively).

It is not difficult to exhibit drawings of Cm × Cn with exactly (m − 2)n crossings. Hence
cr(Cm × Cn) ≤ (m−2)n. Thus, in order to prove Theorem 1 we need to prove that cr(Cm × Cn) ≥
(m− 2)n. This inequality is a consequence of our main result, since Cm × Cn is an (m,n)–graph.

Main Theorem Let E be a drawing of an (m,n)–graph, where m,n satisfy n ≥ m(m+1),m ≥ 3.
Then E has at least (m− 2)n crossings.

The proof of the Main Theorem is largely based on techniques from the theory of arrangements,
introduced by Adamsson [1], and further developed by Adamsson and Richter [2].

In a drawing of a graph G, (different) vertices are represented by (different) points, and edges
are represented by open arcs (continuous images of (0, 1)) in such a way that the end points of the
representation of an edge e are precisely the points that represent the vertices incident with e. It
is also assumed that no representation of an edge contains a representation of a vertex.

A drawing is good if (i) no edge has a self–intersection; (ii) no two adjacent edges intersect;
(iii) no two edges intersect each other more than once; (iv) each intersection of edges is a crossing
rather than tangential; and (v) no three edges intersect in a common point.

The crossing number cr(G) of G is the minimum number of pairwise intersections of edges in a
drawing of G in the plane. A drawing E of G is optimal if its number cr(E) of pairwise intersections
of edges equals cr(G). It is a routine exercise to show that conditions (i) to (iv) in the previous
paragraph hold for every optimal drawing of G, and that every optimal drawing of G can be easily
modified to satisfy (v). Thus, in order to calculate the crossing number of G it suffices to consider
good drawings of G.

The theory of crossing numbers has recently received a good deal of attention from the point
of view of the relationship between the crossing number and the structural properties of a graph.
Good examples of work in this direction are the recent papers by Hliněný (see [8, 9]).

The heart of the proof of the Main Theorem is the following.

Theorem 2 Let E be a robust drawing of an (m,n)–graph, where m,n satisfy n ≥ m ≥ 3. Then
E has at least (m− 2)n crossings.

Roughly speaking (the formal definition is in Section 2), a drawing of an (m,n)–graph is robust
if no red cycle separates two other red cycles (in a sense made precise below) and each red cycle is
disjoint from (sufficiently) many other red cycles. As we prove below, if n is large enough compared
to m, then the only way to avoid robustness is to have a red cycle with at least m crossings.

Lemma 3 Let E be a drawing of an (m,n)–graph, where m,n satisfy n ≥ 2m + 2, m ≥ 3. Then
either E is robust or there is a red cycle with at least m crossings in E.

The argument that shows that the Main Theorem follows from Theorem 2 and Lemma 3 can
be outlined as follows.

Suppose that m,n satisfy n ≥ m(m + 1),m ≥ 3, and let E be a drawing of an (m,n)–graph.
Assume E is not robust, as otherwise we are done by Theorem 2. Then some red cycle R(j1) has m
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or more crossings in E , by Lemma 3. Repeat the argument with the drawing E1 (of an (m,n− 1)–
graph) that results by removing R(j1) from E : either E1 is robust (in which case we are done, since
then E1 has at least (m−2)(n−1) crossings, and so E has at least (m−2)(n−1)+m = (m−2)n+2
crossings), or some red cycle R(j2) has at least m crossings in E1. If we need to repeat this argument
n − (2m + 2) times (that is, if we have not proved after n − (2m + 2) steps that E has at least
(m − 2)n crossings), then at each of the n − (2m + 2) steps we have found a red cycle with m
or more crossings. Thus, after the (n − (2m + 2))–th step we have proved that E has at least
m(n− (2m + 2)) ≥ (m− 2)n crossings.

The complete, formal proof that the Main Theorem follows from Theorem 2 and Lemma 3 is
in Section 7.

Sections 2, 3, 4, 5, and 6 are devoted to the proof of Theorem 2, whose final step is in Section 7.
In Section 7 we also prove that Lemma 3 follows easily from the definition of robust drawing.

Section 8 is devoted to a discussion on Adamsson and Richter’s pioneer work on arrangements.
Section 9 contains some concluding remarks.

2 Overview of the proof of Theorem 2

The strategy of the proof of Theorem 2 is to show that in every robust drawing of an (m,n)–graph,
we can associate to each red cycle R(j) a set Ij of at least m− 2 crossings, in such a way that no
crossing is associated to more than one red cycle.

The overall strategy, and the specification of the crossings that get assigned to each red cycle are
quite similar to those of the proof of Theorem 3.13 in [1]. In that statement, Adamsson analyzed
crossings in linear (m,n)–arrangements. These structures consist of an ordered collection of n + 2
closed arcs plus m open arcs that intersect the closed arcs in the given order. Adamsson used his
knowledge on drawings of linear (m,n)–arrangements to prove (among other things) that large
classes of drawings of (m,n)–graphs have at least (m− 2)n crossings.

The main steps in the proof of Theorem 2 are:

(a) Define the set Ij of crossings associated to each red cycle R(j) in a robust drawing of an
(m,n)–graph;

(b) show that no crossing is associated to more than one red cycle, that is, j 6= k implies Ij∩Ik = ∅;
and

(c) show that at least m− 2 crossings are associated to each R(j), that is, |Ij | ≥ m− 2.

These three steps are carried out in Sections 4, 5, and 6, respectively.
A quick look at these sections will reveal that each of these steps involves several nontrivial

technical details. Nevertheless, the general ideas involved in the construction and analysis of Ij

are not difficult to explain. We devote this section to explore these ideas in some detail.
Before moving on any further, we wish to settle two potential sources of confusion that may

arise when analyzing drawings of graphs. The first one has to do with using the same name for
graph–theoretical objects (vertices, edges, paths) and for the subsets in the plane that represent
them. The second one arises since we are using two different types of intersections: we are inter-
ested in crossings (that is, intersections of representations of edges) in drawings of (m,n)–graphs,
and, on the other hand, we often need to analyze common structures (that is, graph–theoretical
intersections) of two subgraphs of an (m,n)–graph. In view of the following remarks, none of these
issues should be a source of confusion throughout this work.

Remark Throughout this paper, G is a fixed (m,n)–graph, and D is a fixed good drawing of G.
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Remark We often make no distinction between a graph–theoretical object (such as a vertex, or
a path, or a cycle) and the subset of IR2 that represents it. Throughout this work, we have taken
special care to ensure that no confusion arises from this practice.

Remark Suppose that H,K are subgraphs of G, such that no edge is in both H and K. We
denote by H uK the set of pairwise intersections (necessarily crossings, since D is good) of edges
in D that involve one edge in H and one edge in K.

We now go back to the discussion on the construction and analysis of Ij . First we note that
Ij is constructed under the assumption that D is robust.

2.1 Robustness

Robustness encompasses two properties of drawings of (m,n)–graphs. The first one (being red–
nonseparating) guarantees that no red cycle separates, in a sense made precise below, the other
red cycles. The second property guarantees that each red cycle is disjoint from sufficiently many
other red cycles.

We now give the formal definitions of these properties.
A closed arc is a continuous image of S1. A collection C = {C(0), . . . , C(r)} of closed arcs

is strongly nonseparating if for each C(j) there is a unique component Nj (the nice component)
of IR2 \ C(j) that intersects each arc in C different from C(j). A drawing of an (m,n)–graph is
red–nonseparating if {R(0), . . . , R(n− 1)} is strongly nonseparating.

For the rest of this subsection, we assume that D is red–nonseparating.
We now specify the additional property that the drawing D must satisfy in order to be robust.
Let j ∈ Zn = {0, . . . , n− 1} be fixed. If R(j) uR(k) = ∅ for some red cycle R(k), then let

b(j) = min{β ∈ Zn \ {0} | R(j 	 β) uR(j) = ∅}.

Thus, R(j 	 b(j)) is the closest predecessor (in the cyclic order of Zn) of R(j) that does not
cross R(j).

Suppose that b(j) is defined for every j ∈ Zn. For each v in the vertex set V (R(j)) of R(j), let

b(v) = min{β ∈ {1, . . . , b(j)} | v ∈ Nj	β}.

Thus, R(j 	 b(v)) is the closest predecessor (in the cyclic order of Zn) of R(j) whose nice
component contains v. Note that b(v) is well–defined, since v is in Nj	b(j).

Let v ∈ V (R(j)), and suppose that there is an α ∈ Zn \ {0} such that neither R(j 	 b(v)) nor
R(j) crosses R(j ⊕ α). Then define

a(v) = min{α ∈ Zn \ {0}
∣∣ R(j 	 b(v)) uR(j ⊕ α) = R(j) uR(j ⊕ α) = ∅}.

Let
Bj = {b(v) | v ∈ V (R(j))}.

Thus, Bj is a nonempty subset of {1, . . . , b(j)}.
The (red–nonseparating, by assumption) drawing D is robust if the following hold:

(i) b(j) is defined for each j ∈ Zn (thus, b(v) is defined for every vertex v in G); and

(ii) for every vertex v in G, a(v) is defined, and b(v) + a(v) < n/2.

Since our goal is to prove Theorem 2, from now on we assume that D is robust.

Remark For the rest of this paper, G is a fixed (m,n)–graph, and D is a fixed robust good drawing
of G.
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2.2 The set Ij of crossings associated to the red cycle R(j)

First we describe an important class of blue subgraphs associated to each vertex in G.
Let v ∈ V (R(j)), and let i ∈ Zn \ {0}. Since G is an (m,n)–graph, it follows that there are

unique blue paths

Bv(i, 0) =
(
u(j 	 i), u(j 	 (i− 1)), . . . , u(j 	 1), u(j)

)
, and

Bv(0, i) =
(
u(j), u(j ⊕ 1), . . . , u(j ⊕ (i− 1)), u(j ⊕ i))

)
such that u(`) ∈ V (R(`)) for each ` ∈ {j 	 i, . . . , j 	 1, j, j ⊕ 1, . . . , j ⊕ i}, and u(j) = v. We follow
the convention that Bv(0, 0) = v.

If i, k ∈ Zn are such that i + k ≤ n, then define the (blue) subgraph Bv(i, k) as the union of
Bv(i, 0) and Bv(0, k):

Bv(i, k) = Bv(i, 0) ∪Bv(0, k).

Remark If 0 < i + k < n, then Bv(i, k) is a path. If i + k = n, then Bv(i, k) is either a path or
a cycle. For instance, if G = Cm × Cn, and i + k = n, then, for every vertex v in Cm × Cn, the
blue subgraph Bv(i, k) is a cycle.

Let j ∈ Zn be fixed. The initial step in the construction of Ij is to partition V (R(j)) into sets
Cj , Tj , according to the following rule: a vertex v ∈ V (R(j)) is in Cj iff Bv(bn/2c, bn/2c) crosses
R(j). Obviously, Tj = V (R(j)) \ Cj . It is easy to check that, since the drawing D is robust, it
follows that if v ∈ Tj , then the rotation scheme around v is red–red–blue–blue. This motivates the
notation chosen for Tj and Cj : if v ∈ Cj , then Bv(bn/2c, bn/2c) crosses R(j), whereas if v ∈ Tj ,
then the blue subgraph Bv(bn/2c, bn/2c) intersects R(j) tangentially (namely at v). Once Cj and
Tj have been identified, we are ready to start constructing Ij .

For each v ∈ Cj , we assign to Ij one crossing (we specify which one in Section 4) between
Bv(bn/2c, bn/2c) and R(j). Let Yj denote the collection of crossings in Ij obtained in this way.
Thus, |Yj | = |Cj |. In order to complete Ij , we need to specify an additional collection Xj of
m− 2− |Cj | = |Tj | − 2 crossings that get assigned to Ij .

In the construction of Xj , a predominant role is played by a particular type of blue path. For
each v ∈ Tj , the main blue path Mv of v is Bv(b(v), a(v)) (note that since D is robust, Bv(b(v), a(v))
is indeed a path for every v). We also let Mj = {Mv | v ∈ Tj}. The first step in the construction
of Xj is to partition Tj into subcollections Tj(β) as follows:

Tj(β) = {v ∈ Tj | b(v) = β}.

This partition of Tj naturally induces a partition of Mj . Indeed, for each β ∈ Bj , let Mj(β) =
{Mv | v ∈ Tj(β)}. Then Mj is the disjoint union of the collections Mj(β).

Remark If u, v ∈ Tj(β), then a(u) = a(v) (this follows immediately from the definition of a(u)
and a(v)). Thus, if Mu,Mv are in Mj(β), then each of Mu and Mv has an end point in R(j 	 β)
and the other end point in R(j ⊕ a(u)) = R(j ⊕ a(v)).

For each β ∈ Bj , we identify a collection Xj(β) of crossings associated to the paths in Mj(β).
These crossings (whose precise nature is described in Section 4) are of three different types: (i)
crossings between paths in Mj(β); (ii) crossings involving a path Mv in Mj(β) and an edge in
either R(j 	 β) or R(j ⊕ a(v)); and (iii) crossings between R(j 	 β) and R(j).

Finally, we let Xj = ∪β∈BjXj(β).
As we mentioned above, Ij is defined as the union of Yj and Xj . Thus,

Ij = Yj ∪
( ⋃

β∈Bj

Xj(β)
)

. (1)
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2.3 No crossing is associated to more than one red cycle

As we pointed out above, a crucial property of the collections Ij , j ∈ Zn, is that no crossing is in
Ij and Ik if j 6= k.

Lemma 4 If j 6= k, then Ij ∩ Ik = ∅. That is, no crossing in D is associated to more than one
red cycle.

This essential fact is established in Section 5, as a corollary of the following more general result.

Proposition 5 Let j, k ∈ Zn, β ∈ Bj, and β′ ∈ Bk. Then:

(a) If j 6= k, then Yj ∩ Yk = ∅.

(b) Yj ∩ Xk(β′) = ∅.

(c) If j 6= k or β 6= β′, then Xj(β) ∩ Xk(β′) = ∅.

We emphasize that only very elementary combinatorial and topological arguments are required
in the proof of Proposition 5 (this proof is in Section 5). Indeed, once Yj and Xj(β) have been
carefully defined in Section 4, the proof of Proposition 5 reduces to a (somewhat painstaking)
exercise of careful bookkeeping.

Proposition 5 also implies the following crucial result.

Proposition 6 Each of the unions on the right hand side of Eq. (1) is a disjoint union.

This statement is an immediate corollary of Proposition 5. Moreover, this explains why Propo-
sition 5 is stronger than what is strictly required for the proof of Lemma 4. Indeed, the following
two assertions contained in Proposition 5 are not needed to establish Lemma 4: (i) if j = k, then
Yj ∩ Xk(β′) = ∅; and (ii) if j = k and β 6= β′, then Xj(β) ∩ Xk(β′) = ∅. On the other hand, these
statements, together with (a) in Proposition 5, immediately imply Proposition 6.

2.4 At least m− 2 crossings are associated to each red cycle

The final step in the proof of Theorem 2 is to show that |Ij | ≥ m− 2, for each j ∈ Zn.

Lemma 7 For each j ∈ Zn, |Ij | ≥ m − 2. In other words, there are at least m − 2 crossings
associated to each red cycle.

As we pointed out in Subsection 2.2, in order to show that |Ij | ≥ m− 2 it suffices to show that
|Xj | ≥ |Tj | − 2 = (

∑
β∈Bj

|Tj(β)|)− 2 .
Since by Proposition 6 Xj is the disjoint union ∪β∈Bj

Xj(β), it follows that in order to show
that |Ij | ≥ m− 2 it suffices to prove the following.

Proposition 8 For each j ∈ Zn, the following statements hold.

(a) For each β ∈ Bj,β 6= b(j), |Xj(β)| ≥ |Tj(β)|.

(b) If b(j) ∈ Bj, then |Xj(b(j))| ≥ |Tj(b(j))| − 2.
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This statement is established in Section 6. However, as we now explain, its proof heavily relies
on some technical results from Section 3.

As we mentioned above, the crossings in Xj(β) are obtained by analyzing the collection of main
paths Mv in Mj(β), and the red cycles R(j 	 β), R(j), and R(j ⊕ a(v)) (recall that a(v) is the
same for each v ∈ Tj(β)). We also recall that for each Mv in Mj(β), the rotation scheme around
v is red–red–blue–blue.

In view of this, it is not surprising that in order to find lower bounds for the sizes of the
collections Xj(β), we need to analyze crossings in (s, 1)–arrangements. Roughly speaking, (s, 1)–
arrangements are drawings of structures that consist of three closed curves C0, C1, C2 (such that
neither C0 nor C1 intersects C2) plus s open arcs A0, . . . , As−1 that intersect the curves in the
given order.

We devote the next section to establishing the facts about (s, 1)–arrangements that are required
in the proof of Proposition 8.

3 Analysis of crossings in (s, 1)–arrangements

The theory of arrangements was introduced and extensively investigated by Adamsson in his
Ph.D. thesis [1], and further developed by Adamsson and Richter [2]. Adamsson and Richter
showed the enormous relevance that these structures have in the analysis of drawings of (m,n)–
graphs. In [1] and [2], the results from (linear and circular) arrangements are used to prove that
cr(C7 × Cn) = 5n (as conjectured), and to prove that large classes of drawings of (m,n)–graphs
have at least (m− 2)n crossings, as conjectured.

Arrangements consist of two collections of arcs with certain special properties. Before moving
on to the definition of an arrangement, we need to give a precise definition of open and closed arcs.

An open arc γ is the image of a continuous map f : (0, 1) → IR2 such that: (i) no point in IR2

is the image under f of more than two points in (0, 1), and the set of points in IR2 that are the
image of more than one point in (0, 1) is finite; (ii) the unique continuous extension f : [0, 1] → IR2

of f to [0, 1] is such that f(0), f(1) /∈ f(0, 1), and f(0) 6= f(1). The points f(0) and f(1) are the
end points of γ (note that the end points of γ are not in γ).

A closed arc γ is the image of a continuous map f : S1 → IR2 such that no point in IR2 is the
image under f of more than two points in S1, and the set of points in IR2 that are the image of
more than one point in S1 is finite.

Following Adamsson and Richter, an (s, 1)–linear arrangement (or simply an (s, 1)–arrangement)
is a pair (C,A), where C = {C0, C1, C2} is a collection of closed arcs and A = {A1, . . . , As−1} is a
collection of open arcs with the following properties:

(i) C is strongly nonseparating;

(ii) (C0 ∪ C1) ∩ C2 = ∅;

(iii) each Ai has one end point (the initial point t(i) of Ai) in C0, the other end point (the final
point f(i) of Ai) in C2, and a middle point w(i) ∈ Ai in C1;

(iv) each t(i) is in the same component of IR2\{C1} as C2, and each w(i) is in the same component
of IR2 \ {C0} as C2.

We are interested exclusively in certain (s, 1)–arrangements induced from good drawings of
(m,n)–graphs. An (s, 1)–arrangement is neat if it satisfies the following additional conditions:
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(v) for each i, the only intersection point between Ai and C1 is w(i) (it is straightforward to check
that (iv) implies that then w(i) is a tangential intersection);

(vi) no point in C1 is the middle point of two different arcs in A.

A linear arrangement (C,A) is k–intersecting if |C0 ∩ C1| = k.
As we mentioned in the previous section, we are interested in (s, 1)–arrangements because these

structures are naturally induced in D by each collection Mj(β) of main paths. We now formalize
this idea.

Proposition 9 Let Mj(β) be a collection of main paths, and let |Mj(β)| = s. Let Mv ∈Mj(β),
and define α = a(v) (recall that a(v) is the same for each vertex v ∈ Tj(β)). Construct the
collections C = {C0, C1, C2},A = {A0, A1, . . . , As−1} of closed and open arcs, respectively, in the
following way:

(i) C0, C1, and C2 are the drawings of R(j 	 β), R(j), and R(j ⊕ α) induced by D, respectively;

(ii) the arcs in A are the drawings of the main paths (without their end points) Mv ∈ Mj(β)
induced by D.

Then (C,A) is a neat (s, 1)–arrangement.

We call the neat arrangement in the previous statement the (s, 1)–arrangement induced by
Mj(β).

We are interested in certain types of crossings that appear in neat (s, 1)–arrangements. More
specifically, we are interested in (i) crossings that involve one open arc in A and one closed arc
in {C0, C2} (recall that in a neat (s, 1)–arrangement no open arc crosses C1); and (ii) crossings
between two different open arcs in A. Moreover, the crossings of the latter type in which we are
interested involve very particular subarcs of the open arcs in A.

For each Ai in A, let Ti denote the (unique) open subarc of Ai whose end points are t(i) and
w(i), and let Fi denote the (unique) open subarc of Ai whose end points are w(i) and f(i). The
subarcs Ti and Fi are the initial and final subarcs of Ai, respectively. Thus, Ai = Ti ∪Fi ∪{w(i)}.

The main results on crossings in (s, 1)–arrangements that we will need later are the following.

Lemma 10 Let (C,A) = ({C0, C1, C2}, {A0, . . . , As−1}) be a 0–intersecting neat (s, 1)–arrange-
ment. Let x1 denote the number of crossings of (C,A) that involve one initial subarc and one final
subarc. Let x2 denote the number of initial arcs that cross C2. Let x3 denote the number of final
arcs that cross C0. Then x1 + x2 + x3 ≥ s− 2.

Lemma 11 Let (C,A) = ({C0, C1, C2}, {A0, . . . , As−1}) be a k–intersecting (s, 1)–arrangement,
where k > 0. Let x1 denote the number of crossings of (C,A) that involve one initial subarc and
one final subarc. Let x2 denote the number of initial arcs that cross C2. Let x3 denote the number
of final arcs that cross C0. Then x1 + x2 + x3 + k ≥ s.

These results follow from (the proofs of) Corollary 3.6 and Theorem 3.11, respectively, in [1].

4 The set Ij of crossings associated to the red cycle R(j)

The aim in this section is to define the set Ij of crossings associated to each red cycle R(j).
As we explained in Section 2, some of the crossings in Ij involve one edge in R(j) and one

blue edge in a blue subgraph Bv(bn/2c, bn/2c) (recall that this blue subgraph is either a path or

8



a cycle). Since in some cases R(j) and Bv(bn/2c, bn/2c) cross more than once, we need to specify
which such crossing belongs to Ij . This motivates the following definitions.

Let s, t ∈ Zn be such that 0 ≤ s ≤ bn/2c, 0 ≤ t ≤ bn/2c, and consider the blue subgraph
Bv(s, t). Let R(j) be the red cycle that contains v. Thus, Bv(s, t) has one end vertex in R(j 	 s)
and one end vertex in R(j ⊕ t), and so we can traverse Bv(s, t) following its positive direction
(starting at R(j	 s)) or following its negative direction (starting at R(j⊕ t)). An (Bv(s, t), R(k))–
crossing is a crossing between an edge in Bv(s, t) and an edge in R(k) (that is, a crossing in
Bv(s, t) uR(k)).

Suppose that Bv(s, t) and R(`) have the common vertex v`. If Bv(s, t) crosses R(k), then the
first (Bv(s, t), R(k))–crossing from R(`) (respectively last) is the first (Bv(s, t), R(k))–crossing we
find as we traverse Bv(s, t), starting at v`, following the positive (respectively negative) direction
of Bv(s, t).

We are now ready to specify the sets Yj and Xj(β) of crossings that are associated to R(j).
Recall that v ∈ Cj iff Bv(bn/2c, bn/2c) crosses R(j). As we pointed out in Section 2, for each

v ∈ Cj one such crossing is assigned to Yj . To specify which crossing is assigned to Yj , we introduce
sets C+

j , C−j , whose union equals Cj .
Define C+

j and C−j as follows. Let v ∈ Cj . Then:

(a) v ∈ C+
j iff Bv(0, bn/2c) crosses R(j);

(b) v ∈ C−j iff Bv(bn/2c, 0) crosses R(j).

Clearly, Cj is the union of C+
j and C−j .

One word regarding the introduction of the superscripts + and − in these definitions. Suppose
that v ∈ Cj . Then v is in C+

j iff the blue path of length bn/2c starting at v and following the
positive direction crosses R(j). Similarly, v is in C−j iff the blue path of length bn/2c starting at v
and following the negative direction crosses R(j).

Now define the collections Y+
j and Y−j of crossings specified as follows:

(i) If v ∈ C+
j , then let the first (Bv(0, bn/2c), R(j))–crossing from R(j) belong to Y+

j ;

(ii) if v ∈ C−j , then let the last (Bv(bn/2c, 0), R(j))–crossing from R(j) belong to Y−j .

Finally, define Yj = Y+
j ∪ Y−j . Clearly, |Yj | ≥ |Cj |.

Remark The union that defines Yj is a disjoint union. Indeed, the only blue edge involved in
each crossing in Y+

j is in Bv(0, bn/2c), and the only blue edge involved in each crossing in Y−j is
in Bv(bn/2c, 0), and no blue edge is in both blue subgraphs.

We now move on to the definition of Xj(β).
For each j ∈ Zn, and each β ∈ Bj , let Xj(β) denote the set of crossings of the following types:

(i) all the crossings between R(j 	 β) and R(j);

(ii) if v ∈ Tj(β) and R(j 	 β) u Bv(0, a(v)) 6= ∅, the last (Bv(0, a(v)), R(j 	 β))–crossing from
R(j ⊕ a(v));

(iii) if v ∈ Tj(β) and R(j ⊕ a(v)) u Bv(β, 0) 6= ∅, the first (Bv(β, 0), R(j ⊕ a(v)))–crossing from
R(j 	 β);

(iv) if v, w ∈ Tj(β), v 6= w, every crossing between Bv(β, 0) and Bw(0, a(w)).
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We are now ready to complete the definition of the set Ij of crossings associated to each red
cycle R(j):

Ij = Yj ∪
( ⋃

β∈Bj

Xj(β)
)

. (1)

In the next section we show that if j 6= k, then Ij ∩ Ik = ∅.

5 No crossing is associated to more than one red cycle

Our main result in this section is the following.

Lemma 4 If j 6= k, then Ij ∩ Ik = ∅. That is, no crossing in D is associated to more than one
red cycle.

This statement is an immediate consequence of our next result.

Proposition 5 Let j, k ∈ Zn, β ∈ Bj, and β′ ∈ Bk. Then:

(a) If j 6= k, then Yj ∩ Yk = ∅.

(b) Yj ∩ Xk(β′) = ∅.

(c) If j 6= k or β 6= β′, then Xj(β) ∩ Xk(β′) = ∅.

Proof of (a). Suppose j 6= k. Each crossing in Yj (respectively Yk) is a bichromatic crossing
whose red edge involved is in R(j) (respectively R(k)). Since j 6= k, (a) follows.

Proof of (b). Seeking a contradiction, suppose that for some j, k ∈ Zn, β′ ∈ Bk, some (necessarily
bichromatic, by the definition of Yj) crossing x belongs to both Yj and Xk(β′). Since x is in Yj ,
it follows that there is a vertex u in R(j) such that Bu(bn/2c, bn/2c) crosses R(j) at x. Thus, in
particular, the red edge involved in x is in R(j). Now, since x is in Xk(β′), then there is a vertex
v in Tk(β′) such that x is a (Bv(β′, a(v)), R(j))–crossing (note that b(v) = β′).

By the definition of Xk(β′), a bichromatic crossing in Xk(β′) involves an edge in R(j) only if
j is either k 	 β′ or k ⊕ a(v). Thus, either j = k 	 β′ or j = k ⊕ a(v). We analyze these cases
separately.

Let l(x) denote the blue edge involved in x.

Case 1. j = k 	 β′. By the definition of Xk(β′), l(x) is in Bv(0, a(v)). Moreover, x is the last
(Bv(0, a(v)), R(j))–crossing from R(k ⊕ a(v)). Since x is in Yj , x is in Y+

j or in Y−j .
Suppose that x ∈ Y−j . Then, x occurs between R(j) and Bu(bn/2c, 0). Thus l(x) is in both

Bu(bn/2c, 0) and Bv(0, a(v)). It is straightforward to check that these blue subgraphs (which
are paths, since D is robust) have edges in common only if bn/2c + β′ + a(v) > n (recall that
u ∈ V (R(j)) and v ∈ V (R(k))). However, this inequality does not hold, since D is robust.

Suppose now that x ∈ Y+
j . Then, x is the first (Bu(0, bn/2c), R(j))–crossing from R(j). As

we pointed out above, x is also the last (Bv(0, a(v)), R(j))–crossing from R(k ⊕ a(v)). In order
for these crossings to be the same, Bv(0, a(v)) needs to cross R(j) exactly once. On the other
hand, v ∈ Nj (by the definition of Tk(β′)) and R(k ⊕ a(v)) ⊆ Nj (since, by the definition of a(v),
R(k⊕a(v))uR(k	β′) = ∅, and j = k	β′). Therefore |Bv(0, β′+a(v))uR(j)| ≥ 2, a contradiction.

Case 2. j = k ⊕ a(v). By the definition of Xk(β′), l(x) is in Bv(β′, 0). Moreover, x is the first
(Bv(β′, 0), R(j))–crossing from R(k 	 β′). Since x is in Yj , it is in Y+

j or Y−j .
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Suppose that x ∈ Y+
j . Then, x occurs between R(j) and Bu(0, bn/2c). Thus l(x) is in both

Bu(0, bn/2c) and Bv(β′, 0). It is straightforward to check that these blue paths have edges in
common only if bn/2c+ β′ + a(v) > n. However, this inequality does not hold, since D is robust.

Suppose now that x ∈ Y−j . Then, x is the last (Bu(bn/2c, 0), R(j))–crossing from R(j). As we
pointed out above, x is also the first (Bv(β′, 0), R(j))–crossing from R(k 	 β′). In order for these
crossings to be the same, Bv(β′, 0) needs to cross R(j) exactly once. On the other hand, since both
R(k 	 β′) and R(k) are contained in Nj (this is true since none of them crosses R(j)), it follows
that |(Bv(β′, 0) uR(j)| ≥ 2, a contradiction.

Proof of (c). We derive a contradiction from the assumption that the following hold: (i) either
j 6= k or β 6= β′; and (ii) there is a crossing x in both Xj(β) and Xk(β′).

It follows from the very definitions of Xj(β) and Xk(β′) that if j = k and β 6= β′, then no
crossing can belong to both Xj(β) and Xk(β′). Thus we assume, without any loss of generality,
that (i) k 	 j ≤ n/2; and (ii) k 6= j.

Suppose that both edges involved in x are red. Then, x ∈ R(j 	 β) u R(j) and x ∈ R(k 	
β′) u R(k). This clearly cannot happen, since there are at least three different cycles in {R(j 	
β), R(j), R(k	β′), R(k)} (this follows since D is robust). Therefore x involves either one blue edge
and one red edge or two blue edges. We analyze these cases separately.

Before moving on to this case analysis, we need to make the following crucial observation.

Claim Suppose that w ∈ Tk(β′), and let z denote the vertex in R(j) that is also in Bw(k 	 j, 0).
Suppose further that k 	 j ≤ n/2. If z ∈ Tj, then β′ ≤ k 	 j.

Assuming this statement for the moment, we complete the proof of (c).

Case 1. x involves one blue edge l(x) and one red edge r(x). Since x is in Xj(β), there is a vertex
v ∈ Tj(β) such that either (i) x is the last (Bv(0, a(v)), R(j	β))–crossing from R(j⊕a(v)), or (ii)
x is the first (Bv(β, 0), R(j ⊕ a(v)))–crossing from R(j 	 β). since x is in Xk(β′), there is a vertex
u ∈ Tk(β′) such that either (a) x is the last (Bu(0, a(u)), R(k	 β′))–crossing from R(k⊕ a(u)), or
(b) x is the first (Bu(β′, 0), R(k ⊕ a(u)))–crossing from R(k 	 β′).

Hence, either (I) Statements (i) and (a) hold; (II) Statements (i) and (b) hold; (III) Statements
(ii) and (a) hold; (IV) Statements (ii) and (b) hold. We analyze these four possibilities separately.

It is straightforward to check that, since l(x) is in both Bv(β, a(v)) and Bu(β′, a(u)), the Claim
above holds with u = w and v = z. Thus, β′ ≤ k 	 j.

Subcase (I) Statements (i) and (a) hold. By (i), r(x) is in R(j 	 β), and by (a), r(x) is in
R(k	β′). Thus, j	β = k	β′. But this is impossible, since (k	 j)⊕β = β′ ≤ k	 j ≤ n/2,
and β < n/2.

Subcase (II) Statements (i) and (b) hold. By (i), r(x) is in R(j 	 β), and by (b), r(x) is in
R(k⊕ a(u)). Thus, j	 β = k⊕ a(u). It follows from the definitions of Tj(β) and Tk(β′) that
l(x) is in both Bv(0, a(v)) and Bu(β′, 0). However, these paths have edges in common only
if β + β′ + a(v) + a(u) > n (recall that u ∈ V (R(j)) and v ∈ V (R(k))), contradicting the
assumption that D is robust.

Subcase (III) Statements (ii) and (a) hold. By (ii), r(x) is in R(j⊕ a(v)), and by (a), r(x) is in
R(k 	 β′). Thus, j ⊕ a(v) = k 	 β′. It follows from the definitions of Tj(β) and Tk(β′) that
l(x) is in both Bv(β, 0) and Bu(0, a(u)). However, these paths have edges in common only if
β + β′ + a(v) + a(u) > n, contradicting the assumption that D is robust.
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Subcase (IV) Statements (ii) and (b) hold. By (ii), r(x) is in R(j⊕ a(v)), and by (b), r(x) is in
R(k ⊕ a(u)). Thus, j ⊕ a(v) = k ⊕ a(u). It follows from the definitions of Tj(β) and Tk(β′)
that l(x) is in both Bv(β, 0) and Bu(β′, 0). However, these paths have no edges in common,
since β′ ≤ k 	 j ≤ n/2 and β < n/2.

Case 2. x involves two blue edges. By the definitions of Xj(β) and Xk(β′), there exist vertices
v, v0 ∈ Tj(β) and u, u0 ∈ Tk(β′) such that (i) x occurs between an edge e in Bv(β, 0) and an edge e0

in Bv0(0, a(v0)); and (ii) x occurs between an edge f in Bu(β′, 0) and an edge f0 in Bu0(0, a(u0)).
As in Case 1, it is straightforward to check that β′ ≤ k 	 j.
Since β′ ≤ k 	 j ≤ n/2 and β < n/2, it follows that if w ∈ Tk(β′), then e 6∈ Bw(β′, 0). Thus,

e = f0 is in both Bu0(0, a(u0)) and Bv(β, 0). A similar argument shows that f = e0 is in both
Bv0(0, a(v0)) and Bu(β′, 0).

Hence, Bu0(0, a(u0)) has an edge in common with Bv(β, 0), and Bv0(0, a(v0)) has an edge in
common with Bu(β′, 0). It is straightforward to check that this implies β +a(u0)+β′+a(v0) > n,
contradicting the assumption that D is robust.

Proof of Claim β′ ≤ k 	 j.
Suppose that β′ > k 	 j. The following statements imply that Bz(bn/2c, bn/2c) is contained

in Nj :

(i) Bz(bn/2c, bn/2c) uR(j) = ∅ (since z ∈ Tj);

(ii) R(j 	 b(j)) ⊆ Nj (this follows from the definitions of b(j) and Nj);

(iii) Bz(bn/2c, bn/2c) has a vertex in common with R(j 	 b(j)) (since D is robust).

On the other hand, the assumption β′ > k	 j implies w /∈ Nj , by the definition of Tk(β′). This
is a contradiction, since the inequality k 	 j < β′ ≤ bn/2c implies that w is in Bz(bn/2c, bn/2c),
and Bz(bn/2c, bn/2c) ⊆ Nj .

We close this section by observing the following consequence of Proposition 5.

Proposition 6 Each of the unions on the right hand side of Eq. (1) is a disjoint union.

This statement will play a central role in the proof that |Ij | ≥ m− 2.

6 At least m− 2 crossings are associated to each red cycle

The purpose of this section is to prove the following.

Lemma 7 For each j ∈ Zn, |Ij | ≥ m − 2. In other words, there are at least m − 2 crossings
associated to each red cycle.

Proof. Suppose that b(j) ∈ Bj . Then, by Proposition 6, |Ij | = |Yj | +
(∑

β∈Bj ,β 6=b(j) |Xj(β)|
)

+

|Xj(b(j))|. Applying (a) and (b) in Proposition 8 below (also recall that |Yj | ≥ |Cj |), |Ij | ≥
|Cj |+

(∑
β∈Bj ,β 6=b(j) |Tj(β)|

)
+|Tj(b(j))|− 2. Since V (R(j)) is the disjoint union of Cj and the sets

Tj(β) (for all β ∈ Bj), and |V (R(j))| = m, it follows that |Ij | ≥ m− 2, as required.
Now suppose b(j) /∈ Bj . Then, by Proposition 6, |Ij | = |Yj |+

(∑
β∈Bj ,β 6=b(j) |Xj(β)|

)
. Applying

(a) in Proposition 8 ((b) is not required, since b(j) /∈ Bj), and the inequality |Yj | ≥ |Cj |, |Ij | ≥
|Cj |+

(∑
β∈Bj ,β 6=b(j) |Tj(β)|

)
. Since V (R(j)) is the disjoint union of Cj and the sets Tj(β) (for all

β ∈ Bj), and |V (R(j))| = m, we obtain |Ij | ≥ m.

Proposition 8 For each j ∈ Zn, the following statements hold.
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(a) For each β ∈ Bj,β 6= b(j), |Xj(β)| ≥ |Tj(β)|.

(b) If b(j) ∈ Bj, then |Xj(b(j))| ≥ |Tj(b(j))| − 2.

Proof of (a). This follows from Proposition 9 and Lemma 11 (in Section 3), and the definition of
Xj(β), since the (|Tj(β)|, 1)–arrangement induced by Mj(β) is a neat |R(j	β)uR(j)|–intersecting
arrangement.

Proof of (b). This follows from Proposition 9 and Lemma 10 (in Section 3), and the definition of
Xj(β), since the (|Tj(β)|, 1)–arrangement induced by Mj(β) is a neat 0–intersecting arrangement
for β = b̄(j).

7 Proofs of Theorem 2, Lemma 3, and the Main Theorem

We are now ready to prove Theorem 2 and the Main Theorem.

Proof of Theorem 2. This follows from the definition of Ij , Lemma 4, and Lemma 7.

Now for the proof of the Main Theorem.
First we show that if n is sufficiently large compared to m, then every drawing of an (m,n)–

graph either is robust or has a red cycle with at least m crossings.

Lemma 3 Let E be a drawing of an (m,n)–graph, where m,n satisfy n ≥ 2m + 2, m ≥ 3. Then
either E is robust or there is a red cycle with at least m crossings in E.

Proof. We assume that E is not robust, and show that then there is a red cycle with at least m
crossings in E .

If every red cycle different from R(j) crosses R(j) (at least twice, by the Jordan Curve Theorem),
then R(j) has at least 2(n− 1) > m crossings, as required. Thus there is some red cycle R(k) that
does not cross R(j).

Now we show that if E is not red–nonseparating, then there is a red cycle with m or more
crossings.

Suppose that E is not red–nonseparating. Then there is a red cycle R(j) such that either (i)
no component of IR2 \ R(j) intersects every red cycle different from R(j); or (ii) two (or more)
components of IR2 \ R(j) intersect every red cycle different from R(j). It is easy to check that,
since R(k) does not cross R(j), then (ii) cannot hold. Suppose now that (i) holds. Let Ω denote
the component of IR2 \ R(j) that contains R(k). By assumption, some red cycle R(`) does not
intersect Ω. It is easy to check that, since the graph under consideration is an (m,n)–graph, then
R(j) is crossed by at least m blue edges. Thus R(j) has at least m crossings, as required.

Thus it suffices to show that if E is red–nonseparating and not robust, then there is a red cycle
with m or more crossings.

Suppose then that E is red–nonseparating and not robust. Then there is a vertex v in a red
cycle R(j) such that either (i) b(j) is not defined; or (ii) b(j) (and consequently b(v)) is defined, but
a(v) is not defined; or (iii) b(j) (and consequently b(v)) and a(v) are defined, but b(v)+a(v) > n/2.

If b(j) is not defined, then R(j) intersects every red cycle different from R(j), and so R(j) has
at least 2(n− 1) > m crossings, as required. Similarly, if b(j) (and thus b(v)) is defined but a(v) is
not defined, then every red cycle R(k) not in {R(j), R(j	 b(v))} crosses either R(j) or R(j	 b(v)).
In this case, either R(j) or R(j 	 b(v)) crosses at least (n− 2)/2 other red curves, and so it has at
least n− 2 > m crossings, as required. Thus we may assume that (iii) holds.

By the definitions of b(j) and b(v), R(j) crosses every red cycle in {R(j	(b(v)−1)), . . . , R(j	1)}.
By the definition of a(v), each red cycle in {R(j⊕1), . . . , R(j⊕(a(v)−1))} is crossed by either R(j)
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or R(j 	 b(v)). Thus, the set R of red cycles crossed by (at least) one of R(j) and R(j 	 b(v)) has
size at least b(v)+a(v)−2. If neither R(j) nor R(j	b(v)) has m or more crossings, then |R| ≤ m−1
(recall that red cycles that cross each other do so at least twice). Thus b(v) + a(v) − 2 ≤ m − 1.
Since by assumption b(v) + a(v) > n/2, it follows that n/2 < m + 1, that is, n < 2m + 2, a
contradiction. Therefore either R(j) or R(j 	 b(v)) has m or more crossings, as required.

Proof of Main Theorem. First we note that if n ≥ m(m + 1), then min{(m − 2)n, m(n −
(2m + 2))} = (m− 2)n. Therefore it suffices to show that if n ≥ 2m + 2, then every drawing of an
(m,n)–graph has at least min{(m− 2)n, m(n− (2m + 2))} crossings. We prove this by induction
on n.

The base case is n = 2m + 2, for which there is nothing to prove. Suppose that the statement
holds for n = k − 1 ≥ 2m + 2, and consider a drawing E of an (m, k)–graph. If E is robust, then
we are done, since by Theorem 2 E has at least (m − 2)k crossings. Thus we assume E is not
robust. Since k > 2m + 2, it follows from Lemma 3 that there is a red cycle R(j) with m or
more crossings in E . The drawing E ′ that results by removing R(j) from E has, by the induction
hypothesis, at least min{(m − 2)(k − 1),m(k − 1 − (2m + 2))} crossings, and so E has at least
min{(m − 2)(k − 1) + m,m(k − 1 − (2m + 2)) + m} = min{(mk − 2(k − 1),m(k − (2m + 2))}
crossings. Since mk − 2(k − 1) > (m − 2)k, then E has at least min{(m − 2)k,m(k − (2m + 2))}
crossings, as required.

8 On the Adamsson and Richter work on arrangements

As it transpires from our discussions in Sections 2 and 3, the present work is heavily influenced by
techniques and results from the theory of arrangements, introduced by Adamsson [1] and further
developed by Adamsson and Richter [2].

Our aim in this section is to discuss Adamsson and Richter’s work in more detail. We also
explain the difference between their and our assignment of crossings to red cycles.

The fundamental structures analyzed in [1] are (linear) (m,n)–arrangements. An (m,n)–
arrangement consists of a collection C of n+2 ordered (red) closed curves S = C0, C1, C2, . . . , Cn, T =
Cn+1 plus a collection P of m (blue) open arcs, each of which intersects the red curves in the given
order. Each of these (forced by definition) intersections is regarded as a vertex, and additional
intersections are counted as crossings (which they are indeed, since the curves in C ∪ P can be
assumed to be in general position). It can be assumed with no loss of generality that each closed
curve in C \ {S} is contained in the unbounded component of IR2 \ {S} and each closed curve in
C \ {T} is contained in the unbounded component of IR2 \ {T}.

A crucial result in [1] is that each (m,n)–arrangement has at least (m− 2)n crossings. This is
proved by assigning to each red closed curve in {C1, . . . , Cn} a collection of at least m−2 crossings.
It is natural to ask what is the difference between this assignment of crossings and the assignment
we describe in Section 4.

In order to discuss the difference between these assignments, one must point out that the objects
under study are different at this stage. Indeed, our objects of study are drawings of (m,n)–graphs,
and in the assignment in [1], the objects under consideration are (m,n)–arrangements (which
appear naturally as induced drawings in certain drawings of (m,n)–graphs).

This distinction has an impact in the difference between our assignment and the assignment
in [1]. In [1], each of the curves C1, . . . , Cn gets assigned m − 2 crossings, and this assignment is
based on the assumption that all the curves C1, . . . , Cn have a common predecessor S = C0 and
a common successor T = Cn+1 with the properties mentioned above. In the present paper, we
work with each red curve R(j), find a collection of predecessors and (respective) successors, and
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for each predecessor–successor pair we describe an assignment of crossings quite similar to the one
used in [1]. An important distinction is that we do not require the predecessors to be disjoint from
the red curve being analyzed.

Once Adamsson and Richter prove that (m,n)–arrangements have at least (m− 2)n crossings,
they move on to apply this result to circular (m,n)–arrangements. A circular (m,n)–arrangement
is the underlying drawing of an (m,n)–graph. Adamsson and Richter prove that if a circular
(m,n)–arrangement satisfies certain additional conditions (namely, if it is partitioned), then their
knowledge on linear (p, q)–arrangements can be applied to show that the circular arrangement
under consideration has at least (m− 2)n crossings.

The exact definition of when a circular arrangement is partitioned is somewhat technical. How-
ever, to give the reader an idea of the generality and power of this concept, we mention that
every drawing of an (m,n)–graph in which the union of the closed curves R(j) has at least three
components is a partitioned (m,n)–circular arrangement. This implies the following quite general
result.

Theorem [Adamsson and Richter] Let E be a drawing of an (m,n)–graph. Suppose that the
union of the induced drawings of the red cycles R(j) has at least three components. Then E has at
least (m− 2)n crossings.

In Chapter 6 of his Ph.D. thesis, Adamsson wrote: “This work on arrangements has pushed
the knowledge of crossing numbers further than it was before, but it has the potential to lead to
even more impressive results, and maybe to provide the final proof of the HKS–conjecture”. In
the present work we have extended these techniques to show that the HKS–Conjecture holds for
all but finitely many values of n, for each m. We hope that a combination of the ideas involved in
the powerful concept of partitioned circular arrangements (a concept we did not invoke at all in
this paper) with the refinement of the techniques of linear (m,n)–arrangements presented in this
work will lead to a final proof of the HKS–Conjecture.

9 Concluding Remarks

In the proof of the Main Theorem we used as a base case of the induction the (obviously true) fact
that for every (m, 2m + 2)–graph G, cr(G) ≥ 0. It is natural to ask if Theorem 1 is substantially
improved if instead we use a nontrivial bound for cr(Cm ×C2m+2). The best general lower bound
known for the crossing number of Cm × Cn (for n ≥ m ≥ 3) is cr(Cm ×Cn) ≥ (1/2)(m− 2)n [10].
Using this bound, we obtain the following slightly improved version of Theorem 1.

Theorem 1 [Improved version]. Let m,n be integers such that n ≥ (m + 1)(m + 2)/2, m ≥ 3.
Then cr(Cm × Cn) = (m− 2)n.

While Theorem 1 (and its improved version above) settles the HKS–Conjecture for all but
finitely many values of n, for each m, the HKS–Conjecture remains open for n < (m+1)(m+2)/2,
m ≥ 8. For values of n sufficiently close to m (more precisely, for m,n such that m ≥ 8, m ≤
n ≤ 5(m − 1)/4), it is known that cr(Cm × Cn) ≥ (5/7)mn [15]. For n between 5(m − 1)/4 and
(m + 1)(m + 2)/2, the best general lower bound known is cr(Cm × Cn) ≥ (m− 2)n/2 [10].
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