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Abstract

The purpose of this discussion is to give a proof of Theorem 6 in
“Nearly–light cycles in embedded graphs and crossing–critical graphs” [1].

Since this is clearly not intended as a stand–alone manuscript, but as an
addendum to [1], we proceed right away to state and prove Theorem 6 in
that paper.

Theorem 1 (Theorem 6 in [1]). For each ε > 0 and integer χ ≤ 2 there
exist `0 := `0(ε, χ), ∆0 := ∆0(ε, χ), c := c(ε, χ) with the following property.
Let G = (V, E) be a simple connected graph with minimum degree at least 3,
embedded in a surface with Euler characteristic χ. Let F denote the set of
faces of G. Then G contains at least

(
2
3
− ε

)
|F |+ c face boundaries that are

(`0, ∆0)–nearly–light.

The length `(f) of a face f is the size (number of edges) of a boundary
walk of f . We recall the convention that an edge that is traversed twice in
the boundary walk contributes in two to this length.
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gsalazar@ifisica.uaslp.mx

1



First we prove some simple consequences of Euler’s formula.

Proposition 2. Let G = (V, E) be a simple connected graph with minimum
degree at least 3, embedded in a surface with Euler characteristic χ. Let F
denote the set of faces of the embedding. Let ∆0 > 3 and `0 > 3 be fixed
integers. Let V≥∆0 denote the set of vertices that have degree at least ∆0, and
let F≥`0 denote the set of faces with length at least `0. Then

|V | ≤ 2|F | − 2χ, (1)

|V≥∆0| ≤
(

3

∆0 − 3

)
|V | − 6χ

∆0 − 3
, and (2)

|F≥`0| ≤
(

3

`0 − 3

)
|F | − 6χ

`0 − 3
. (3)

Proof. Since G has minimum degree at least 3, it follows that 3|V | ≤ 2|E|.
Thus Euler’s formula |V | − |E| + |F | = χ implies (1). Now since G is
connected and simple, 3|F | ≤ 2|E|, and so from Euler’s formula it follows
that |E| ≤ 3|V | − 3χ. Now every vertex with degree smaller than ∆0 has
degree at least 3, and so 2|E| =

∑
v∈V d(v) ≥ ∆0|V≥∆0| + 3(|V | − |V≥∆0|) =

3|V |+ (∆0 − 3)|V≥∆0|. Since 2|E| ≤ 6|V | − 6χ, it follows that 3|V |+ (∆0 −
3)|V≥∆0| ≤ 6|V | − 6χ. This shows (2).

An application of 3|V | ≤ 2|E| yields |E| ≤ 3|F |−3χ. Since each face with
length smaller than `0 has length at least 3, it follows that 2|E| =

∑
f `(f) ≥

`0|F≥`0|+ 3(|F | − |F≥`0|) = 3|F |+ (`0 − 3)|F≥`0|. Since 2|E| ≤ 6|F | − 6χ, it
follows that 3|F |+ (`0 − 3)|F≥`0 | ≤ 6|F | − 6χ. This shows (3). �

We now combine Euler’s formula with some elementary surface topology
facts in order to bound the number of faces that can be incident with more
than one vertex of large degree.

Proposition 3. Let G = (V, E) be a simple connected graph with minimum
degree at least 3, embedded in a surface with Euler characteristic χ. Let F
denote the set of faces of the embedding. Let ∆0 > 3 be an integer. Let V≥∆0

denote the set of vertices with degree at least ∆0, and let F∆0 denote the set
of faces that are incident with at least two vertices in V≥∆0. Then

|F∆0| ≤ |F |
3

+ 4|V≥∆0| − 4χ.
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Proof. We first define an associated graph H = (VH , EH), and an embedding
Υ of H, as follows. Let VH := V≥∆0 . Now EH is defined in terms of the
faces in F∆0 in the following way. Let f be a face in F∆0 , and let Wf be a
boundary walk of f . Let v1, v2, . . . , vr−1, vr = v1 be the vertices in Wf that
are in V≥∆0 , in the cyclic order in which they appear in Wf . Suppose first
that r ≥ 4. Then, for each i = 1, 2, . . . , r − 1, we define an edge (vi, vi+1)
and let it belong to EH , and we call f the host face of each (vi, vi+1). Now if
r = 3 (the only other possibility, since f ∈ F∆0), then we let the edge (v1, v2)
belong to EH (again, f is the host face of (v1, v2)). Note that H may have
parallel edges. It is a trivial observation that |F∆0| ≤ |EH |.

It is easy to use the current embedding Π of G to define an embedding
of H: it suffices to let the vertices in VH = V≥∆0 be embedded as under Π,
and clearly every edge in EH can be embedded inside its host face, in such a
way that the result is an embedding Υ of H.

A 1–gon (respectively, 2–gon) is a contractible face in Υ whose boundary
walk has exactly one edge (respectively, two edges). A (≤ 2)–gon is either
an 1–gon or a 2–gon. Now the number of edges that H may have without
having any (≤ 2)–gon in Υ is (by a standard Euler characteristic argument)
at most the number of edges in a triangulation on |VH | = |V≥∆0| vertices,
that is, 3|V≥∆0| − 3χ. It follows that Υ has at least |EH | − (3|V≥∆0| − 3χ)
(≤ 2)–gons.

Let d be a 2–gon, and let u, v be the two vertices in V≥∆0 in the boundary
walk of d. We say that d is good if it does not contain an edge of G (embedded
under Π) joining u and v. A good (≤ 2)–gon is either a 1–gon or a good 2–
gon. We observe that at most 3|V≥∆0| − 3χ 2–gons are not good. Indeed,
this follows since no edge (embedded under Π) is contained in more than
one 2–gon, and there are (using the same Euler characteristic argument as
above) at most 3|V≥∆0| − 3χ edges of G that have both endpoints in V≥∆0 .
Thus it follows that Υ has at least |EH | − (3|V≥∆0 | − 3χ)− (3|V≥∆0| − 3χ) =
|EH | − 6|V≥∆0|+ 6χ good (≤ 2)–gons.

The crucial observation is that, since G is simple, it follows that each
good (≤ 2)–gon contains at least two faces of F that are not in F∆0 . Thus
there are at least 2(|EH | − 6|V≥∆0|+ 6χ) faces in F \ F∆0 . That is, |F∆0| ≤
|F | − 2(|EH | − 6|V≥∆0| + 6χ). Since |F∆0| ≤ |EH |, the claimed inequality
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follows. �

Proof of Theorem 1.

Let G be a simple connected graph with minimum degree at least 3,
embedded in a surface with Euler characteristic χ. Let ε > 0 and χ ≤ 2 be
given. Let ∆0 > 3 and `0 > 3 be (for the time being any) integers.

Combining Proposition 3 with (1) and (2) in Proposition 2, we obtain

|F∆0| ≤
(

1

3
+

24

∆0 − 3

)
|F | −

(
4 +

48

∆0 − 3

)
χ. (4)

Let F`0,∆0 denote the set of faces that are (`0, ∆0)–nearly–light. Thus
F`0,∆0 ⊇ F \ (F∆0 ∪ F≥`0), and so |F`0,∆0| ≥ |F | − |F∆0| − |F≥`0 |. Then (3)
in Proposition 2 and (4) imply that

|F`0,∆0| ≥
(

2

3
− 24

∆0 − 3
− 3

`0 − 3

)
|F |+

(
6χ

`0 − 3
− 48

∆0 − 3
− 4

)
χ. (5)

To conclude the proof, we note that by making `0 and ∆0 sufficiently large,
we can make the coefficient of |F | in this equation to be at least 2/3− ε. �
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