
THE OPTIMAL DRAWINGS OF K5,n1
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Abstract. Zarankiewicz’s Conjecture (ZC) states that the crossing
number cr(Km,n) equals Z(m, n) := bm

2 cb
m−1

2 cb
n
2 cb

n−1
2 c. Since Kleit-

man’s verification of ZC for K5,n (from which ZC for K6,n easily fol-
lows), very little progress has been made around ZC; the most notable
exceptions involve computer-aided results. With the aim of gaining a
more profound understanding of this notoriously difficult conjecture,
we investigate the optimal (that is, crossing-minimal) drawings of K5,n.
The widely known natural drawings of Km,n (the so-called Zarankiewicz
drawings) with Z(m, n) crossings contain antipodal vertices, that is, pairs
of degree-m vertices such that their induced drawing of Km,2 has no
crossings. Antipodal vertices also play a major role in Kleitman’s in-
ductive proof that cr(K5,n) = Z(5, n). We explore in depth the role of
antipodal vertices in optimal drawings of K5,n, for n even. We prove
that if n ≡ 2 (mod 4), then every optimal drawing of K5,n has antipodal
vertices. We also exhibit a two-parameter family of optimal drawings
Dr,s of K5,4(r+s) (for r, s ≥ 0), with no antipodal vertices, and show that
if n ≡ 0 (mod 4), then every optimal drawing of K5,n without antipodal
vertices is (vertex rotation) isomorphic to Dr,s for some integers r, s.
As a corollary, we show that if n is even, then every optimal drawing
of K5,n is the superimposition of Zarankiewicz drawings with a drawing
isomorphic to Dr,s for some nonnegative integers r, s.

1. Introduction.3

We recall that the crossing number cr(G) of a graph G is the minimum4

number of pairwise crossings of edges in a drawing of G in the plane. A5

drawing of a graph is good if no adjacent edges cross, and no two edges cross6

each other more than once. It is trivial to show that every optimal (that is,7

crossing-minimal) drawing of a graph is good.8

One of the most tantalizingly open crossing number questions was raised9

by Turán in 1944: what is the crossing number cr(Km,n) of the complete10

bipartite graph Km,n? Zarankiewicz [8] described how to draw Km,n with11
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exactly Z(m,n) crossings, where12

Z(m,n) :=
⌊
m

2

⌋⌊
m− 1

2

⌋⌊
n

2

⌋⌊
n− 1

2

⌋
.

Figure 1. Drawing of K5,6 with Z(5, 6) = 24 crossings.

Zarankiewicz’s construction is shown in Figure 1 for the casem = 5, n = 6.13

It is straightforward to generalize this drawing to a drawing of Km,n with14

Z(m,n) crossings, for all positive integers m and n, and so cr(Km,n) ≤15

Z(m,n). The drawings thus obtained are the Zarankiewicz drawings of16

Km,n.17

In [8], Zarankiewicz claimed to have proved that cr(Km,n) = Z(m,n) for18

all positive integers m,n. However, Kainen and Ringel independently found19

a flaw in Zarankiewicz’s argument (see [5]), and the statement cr(Km,n) =20

Z(m,n) has become known as Zarankiewicz’s Conjecture.21

Very little of substance is known about cr(Km,n). An elegant argument us-22

ing cr(K3,3) = 1 plus purely combinatorial arguments (namely, Turán’s the-23

orem on the maximum number of edges in a triangle-free graph) shows that24

cr(K3,n) = Z(3, n). An easy counting argument shows that cr(K2s−1,n) =25

Z(2s − 1, n) (for any s ≥ 1) implies that cr(K2s,n) = Z(2s, n). Thus it fol-26

lows that cr(K4,n) = Z(4, n). Kleitman [6] proved that cr(K5,n) = Z(5, n).27

By our previous remark, this implies that cr(K6,n) = Z(6, n).28

After Kleitman’s theorem, most progress around Zarankiewicz’s Conjec-29

ture consists of computer-aided results. Woodall [7] verified Zarankiewicz’s30

Conjecture for K7,7 and K7,9. De Klerk et al. [2] used semidefinite pro-31

gramming techniques to show that limn→∞ cr(K7,n)/Z(7, n) ≥ 0.968. Also32

using semidefinite programming and deeper algebraic techniques, De Klerk33

et al. [4] proved that limn→∞ cr(K9,n)/Z(9, n) ≥ 0.966. In a related result,34

De Klerk and Pasechnik [3] recently showed that the 2-page crossing number35

ν2(K7,n) of K7,n satisfies limn→∞ cr(K7,n)/Z(7, n) = 1.36
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We finally mention that recently Christian et al. [1] proved that deciding37

Zarankiewicz’s Conjecture is a finite problem for each fixed m.38

To give a brief description of our results, let us color the 5 degree-n vertices39

of K5,n black, and color the n degree-5 vertices white. Two white vertices40

are antipodal in a drawing D of K5,n if the drawing of the K5,2 they induce41

has no crossings. A drawing is antipodal-free if it has no antipodal vertices.42

Antipodal pairs are evident in Zarankiewicz’s drawings (moreover, the43

set of white vertices can be decomposed into two classes, such that any two44

white vertices in distinct classes are antipodal). Antipodal pairs are also45

crucial in the inductive step of Kleitman’s proof, which does not concern46

itself with the different ways (if more than one) to achieve Z(5, n) crossings47

with a drawing of K5,n.48

Given their preeminence in Zarankiewicz’s Conjecture, we set out to in-49

vestigate the role of antipodal pairs in the optimal drawings of K5,n. Our50

main result (Theorem 1) characterizes optimal drawings of K5,n, for even n,51

as follows. First, if n ≡ 2 (mod 4), then all optimal drawings of K5,n have52

antipodal pairs. Second, if n ≡ 0 (mod 4), then every antipodal-free opti-53

mal drawing of K5,n is isomorphic (we review vertex rotation isomorphism54

in Section 2) to a drawing in a two-parameter family Dr,s of drawings we55

have fully characterized. As a consequence of these facts, we show (Theo-56

rem 2) that if n is even, then every optimal drawing of K5,n can be obtained57

by starting with Dr,s, for some nonnegative (possibly zero) integers r and s,58

and then superimposing Zarankiewicz drawings.59

The rest of this paper is organized as follows. In Section 2 we review the60

concept of vertex rotation, which is central to the criterion to decide when61

two drawings are isomorphic. In Section 3 we describe the two-parameter62

family of optimal, antipodal-free drawings Dr,s (for integers r, s ≥ 0) of63

K5,4(r+s). In Section 4 we state our main results. Theorem 1 claims that (i)64

if n ≡ 2 (mod 4), then every optimal drawing of K5,n has antipodal vertices;65

and that (ii) if n ≡ 0 (mod 4), then every antipodal-free optimal drawing of66

K5,n is isomorphic to Dr,s for some integers r, s such that 4(r + s) = n. In67

Theorem 2 we state the decomposition of optimal drawings of K5,n, along68

the lines of the previous paragraph. The proof of Theorem 2 is also given69

in this section; the rest of the paper is devoted to the proof of Theorem 1.70

In Section 5 we introduce the concept of a clean drawing. Loosely speaking,71

a drawing is clean if its white vertices can be naturally partitioned into72

bags, so that vertices in the same bag have the same (crossing number wise)73

properties. In Section 6 we introduce keys, which are labelled graphs that74

capture the essential (crossing number wise) information of a clean drawing.75

This abstraction (and the related concept of core) will prove to be extremely76

useful for the proof of Theorem 1. In Section 7 we investigate which labelled77

graphs can be the key of a relevant (clean, optimal, antipodal-free) drawing.78

Cores are certain more manageable subgraphs of keys, that retain all the79

(crossing number wise) useful information of a key. We devote Sections 8,80

9, 10, and 11 to the task of completely characterizing which graphs can be81
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the core of an antipodal-free optimal drawing. The information in these82

sections is then put together in Section 12, where we show that the core of83

every optimal drawing is isomorphic either to the 4-cycle or to the graph C684

obtained by adding to the 6-cycle a diametral edge. The proof of Theorem 1,85

given in Section 13, is an easy consequence of this full characterization of86

cores.87

2. Rotations and isomorphic drawings.88

To help comprehension, throughout this paper we color the 5 degree-n89

vertices in K5,n black, and the n degree-5 vertices white. We label the black90

vertices 0, 1, 2, 3, 4. Unless otherwise stated, we label the white vertices91

a0, a1, . . . , an−1. We adopt the notation [n] := {0, 1, . . . , n− 1}.92

Given vertices ai, aj with i, j ∈ [n], we let S(ai) denote the star centered93

at ai, that is, the subgraph (isomorphic to K5,1) induced by ai and the94

vertices 0, 1, 2, 3, 4. If D is a drawing of K5,n, we let crD(ai, aj) denote the95

number of crossings in D that involve an edge of S(ai) and an edge of S(aj),96

and we let crD(ai) :=
∑

k∈[n],k 6=i crD(ai, ak). Formalizing the definition from97

Section 1, ai and aj are antipodal (in D) if crD(ai, aj) = 0.98

The rotation rotD(ai) of a white vertex ai in a drawing D is the cyclic99

permutation that records the (cyclic) counterclockwise order in which the100

edges leave ai. We use the notation 01234 for permutations, and (01234)101

for cyclic permutations. For instance, the rotation rotD(a3) of the vertex102

a3 in the drawing D in Figure 2 is (02431): following a counterclockwise103

order, if we start with the edge leaving from a3 to 0, then we encounter the104

edge leaving to 2, then the edge leaving to 4, then the edge leaving to 3,105

and then the edge leaving to 1. We emphasize that a rotation is a cyclic106

permutation; that is, (02431), (24310), (43102), (31024), and (10243) denote107

(are) the same rotation. We let Π denote the set of all cyclic permutations108

of 0, 1, 2, 3, 4. Clearly, |Π| = 5!/5 = 4! = 24. The rotation rotD(i) of a109

black vertex i is defined analogously: for each i ∈ [5], rotD(i) is a cyclic110

permutation of a0, a1, . . . , an−1.111

The rotation multiset RotM (D) of D is the multiset (that is, repetitions112

are allowed) containing the n rotations rotD(ai), for i = 0, 1, . . . , n − 1.113

The rotation set Rot(D) of D is the underlying set (that is, no repeti-114

tions allowed) of RotM (D). Thus, in the example of Figure 2, RotM (D) =115

[(04321), (04321), (01234), (02431)] (we use square brackets for multisets),116

and Rot(D) = {(04321), (01234), (02431)}.117

Two multisets M,M ′ of rotations are equivalent (we write M ∼= M ′) if118

one of them can be obtained from the other by a relabelling (formally, a119

self-bijection) of 0, 1, 2, 3, 4. Two drawings D,D′ of K5,n are isomorphic if120

RotM (D) ∼= RotM (D′). Loosely speaking, two drawings D,D′ of K5,n are121

isomorphic if 0, 1, 2, 3, 4 and a0, a1, . . . , an−1 can be relabelled (say in D′), if122

necessary, so that rotD(ai) = rotD′(ai) for every i ∈ [n].123
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Figure 2. A drawing D of K5,4 with rotD(a0) = rotD(a1) =
(04321), rotD(a2) = (01234), and rotD(a3) = (02431). Thus the
pair a0, a2 (as well as the pair a1, a2) is antipodal.

Our ultimate interest lies in optimal drawings (of K5,n). It is not dif-124

ficult to see (we will prove this later) that if D is an optimal drawing125

and ai, aj , ak, a` are vertices such that rotD(ai) = rotD(aj) and rotD(ak) =126

rotD(a`), then crD(ai, ak) = crD(aj , a`). Thus an optimal drawing of K5,n127

is adequately described by choosing a representative vertex of each rotation,128

and giving the information of how many vertices there are for each rotation.129

This supports the pertinence of focusing on the rotations as the criteria for130

isomorphism.131

3. An antipodal-free drawing of K5,4(r+s)132

In this section we describe an antipodal-free drawing Dr,s of K5,4(r+s), for133

each pair r, s of nonnegative integers.134

The construction is based on the drawing D∗ of K5,6 in Figure 3. As135

shown, the rotations in D∗ of the white vertices are rotD∗(a0) = (01234),136

rotD∗(a1) = (04231), rotD∗(a2) = (01342), rotD∗(a3) = (04312), rotD∗(a4) =137

(01432), rotD∗(a5) = (02314).138

It is immediately checked that D∗ is antipodal-free. Note that D∗ itself139

is not optimal, as it has 25 = Z(5, 6) + 1 crossings.140

Suppose first that both r and s are positive. To obtain Dr,s, we add141

4(r+ s)−6 white vertices to D∗. Now r−1 of these vertices are drawn very142

close to a1, and r−1 are drawn very close to a2; s−1 vertices are drawn very143

close to a4, and s−1 are drawn very close to a5; finally, r+s−1 vertices are144

drawn very close to a0, and r+s−1 are drawn very close to a3. It is intuitively145

clear what is meant by having ai drawn “very close” to aj . Formally, we146

require that: (i) ai and aj have the same rotation; (ii) crDr,s(ai, aj) = 4; and147

(iii) for any other vertex ak, crDr,s(ai, ak) = crDr,s(aj , ak). These properties148

are easily satisfied by having the added vertex ai drawn sufficiently close to149
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Figure 3. This antipodal-free drawing D∗ of K5,6 is the base
of the construction of the optimal antipodal-free drawing Dr,s of
K5,4(r+s) for all r, s. It is easily verified that rotD∗(a0) = (01234),
rotD∗(a1) = (04231), rotD∗(a2) = (01342), rotD∗(a3) = (04312),
rotD∗(a4) = (01432), rotD∗(a5) = (02314).

aj , so that the edges incident with ai follow very closely the edges incident150

with aj .151

If one of r or s is 0, then we make the obvious adjustments. That is, (i)152

if r = 0, then we remove a1 and a2, and for each i = 0, 3, 4, 5, we draw s− 1153

new vertices very close to ai; and (ii) if s = 0, then we remove a4 and a5,154

and for each i = 0, 1, 2, 3, we draw r − 1 new vertices very close to ai. (In155

the extreme case r = s = 0, we remove all the white vertices from D∗, and156

are left with an obviously optimal drawing of K5,0).157

For each i = 0, 1, 2, 3, 4, 5, the bag [ai] of ai is the set that consists of the158

vertices drawn very close to ai, plus ai itself.159

Note that each of [a0] and [a3] has r+ s vertices, each of [a1] and [a2] has160

r vertices, and each of [a4] and [a5] has s vertices.161

An illustration of the construction for r = 2 and s = 1 is given in Figure 4,162

where the gray vertices are the ones added to D∗.163

Claim. For every pair r, s of nonnegative integers, Dr,s is an antipodal-free164

optimal drawing of K5,4(r+s).165

Proof. First we note that since D∗ is antipodal-free, it follows immediately166

that Dr,s is also antipodal-free. Thus we only need to prove optimality.167

An elementary calculation gives the number of crossings in Dr,s. For168

instance, take a vertex u in [a0]. Now crDr,s(u, v) equals (i) 4 if v ∈ [a0], v 6=169

u; (ii) 1 if v ∈ [a1]; (iii) 2 if v ∈ [a2]; (iv) 1 if v ∈ [a3]; (v) 1 if v ∈ [a4]; and (vi)170

2 if v ∈ [a5]. Since |[a0]| = r+s, |[a1]| = r, |[a2]| = r, |[a3]| = r+s, |[a4]| = s,171
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Figure 4. The antipodal-free drawing D2,1. To obtain this op-
timal drawing of K5,12 = K5,4(2+1), we start with the drawing in
Figure 3 and add two vertices very close to a0, two vertices very
close to a3, one vertex very close to a1, and one vertex very close
to a2. Since s − 1 = 0, no vertices are added very close to either
a4 or a5. The added vertices are colored gray in this drawing.

and |[a5]| = s, it follows that crDr,s(u) = 4(r+s−1)+r+2r+(r+s)+s+2s =172

4(2r + 2s− 1).173

A totally analogous argument shows that, actually, crDr,s(w) = 4(2r +174

2s − 1) for every white vertex w. Since there are 4(r + s) white vertices in175

total, it follows that cr(Dr,s) = (1/2)
(
4(r + s)

)(
4(2r + 2s − 1)

)
=
(
4(r +176

s)
)(

4(r + s)− 2
)

= Z(5, 4(r + s)). �177

4. Main results: the optimal drawings of K5,n, for n even.178

We now state our main results.179

Theorem 1. Let n be a positive even integer.180

(1) If n ≡ 2 (mod 4), then all optimal drawings of K5,n have antipodal181

vertices.182

(2) If n ≡ 0 (mod 4), then every antipodal-free optimal drawing of K5,n183

is isomorphic to Dr,s (described in Section 3) for some integers r, s184

such that 4(r + s) = n.185

Before moving on to the proof of Theorem 1 (the rest of the paper is186

devoted to this proof), we will show that it implies a decomposition of all187

the optimal drawings of K5,n, for n even.188

In Section 1 we defined, somewhat informally, a Zarankiewicz drawing.189

Let us now formally define these drawings using rotations (we focus on190

K5,n, although the definition is obviously extended to Km,n for any m). For191
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Figure 5. An optimal drawing of K5,10 that is neither a
Zarankiewicz drawing nor the superimposition of Zarankiewicz
drawings. As predicted by Theorem 2, this is the superimposi-
tion of a Zarankiewicz drawing (the K5,2 induced by a8, a9 and
the five black vertices) plus a drawing Dr,s (namely with r = s =
1).

a nonnegative integer n, a drawing D of K5,n is a Zarankiewicz drawing if192

the white vertices can be partitioned into two sets, of sizes bn/2c and dn/2e,193

so that vertices in different sets are antipodal in D, and vertices ai, aj in the194

same set satisfy crD(ai, aj) = 4 (see Figure 1 for a Zarankiewicz drawing of195

K5,6). A quick calculation shows that every Zarankiewicz drawing of K5,n196

is an optimal drawing.197

Theorem 2 (Decomposition of optimal drawings ofK5,n, for n even). Let D198

be an optimal drawing of K5,n, with n even. Then the set of n white vertices199

can be partitioned into two sets A,B (one of which may be empty), with |A| =200

4t for some nonnegative integer t, such that: (i) the vertices in B can be201

decomposed into |B|/2 antipodal pairs; and (ii) the drawing of K5,4t induced202

by A is antipodal-free, and it is isomorphic to the drawing Dr,s described in203

Section 3, for some integers r, s such that r + s = t. Equivalently, either204

D is the superimposition of Zarankiewicz drawings, or it can be obtained205

by superimposing Zarankiewicz drawings to the drawing Dr,s described in206

Section 3, for some integers r, s (see Figure 5).207

Proof. We proceed by induction on n. It is trivial to check that the two208

white vertices of every optimal drawing of K5,2 are an antipodal pair, and209

so the statement holds in the base case n = 2. For the inductive step, we210

consider an even integer n, and assume that the statement is true for all211

k < n.212



THE OPTIMAL DRAWINGS OF K5,n 9

Let D be an optimal drawing of K5,n. If D has no antipodal pairs, then213

the statement follows immediately from Theorem 1 (without even using214

the induction hypothesis). Thus we may assume that D has at least one215

antipodal pair ai, aj . It suffices to show that the drawing D′ that results216

by removing ai and aj from D is an optimal drawing of K5,n−2, as then217

the result follows by the induction hypothesis. Clearly cr(D) = cr(D′) +218 ∑
k∈[n]−{i,j}(crD(ai, ak) + crD(aj , ak)) ≥ cr(D′) + (n− 2)Z(5, 3) = cr(D′) +219

4n − 8. Thus cr(D′) ≤ cr(D) − 4n + 8 = Z(5, n) − 4n + 8. An elementary220

calculation shows that Z(5, n)− 4n+ 8 = Z(5, n− 2), so we obtain cr(D′) ≤221

Z(5, n−2). Since cr(K5,n−2) = Z(5, n−2), it follows that cr(D′) = Z(5, n−222

2), that is, D′ is an optimal drawing of K5,n−2. �223

5. Clean drawings.224

A good drawing of K5,n is clean if:225

(1) for all distinct white vertices ai, aj such that rotD(ai) = rotD(aj),226

we have crD(ai, aj) = 4;227

(2) for all distinct white vertices ai, aj , ak, a` such that rotD(ai) = rotD(aj)228

and rotD(ak) = rotD(a`), we have crD(ai, ak) = crD(aj , a`); and229

(3) for any distinct white vertices ai, ak, crD(ai, ak) ≤ 4.230

Proposition 3. Let D be an optimal drawing of K5,n. Then there is an231

optimal drawing D′, isomorphic to D, that is clean.232

Proof. For each white vertex ai, define di :=
∑
{a` | rotD(a`)6=rotD(ai)} crD(ai, a`).233

Let π ∈ Rot(D). Take a white vertex ai with rotD(ai) = π, such that for all234

j with rotD(aj) = π we have di ≤ dj . It is easy to see that we can move every235

vertex aj with rotD(aj) = π very close to ai, so that crD(ai, ak) = crD(aj , ak)236

for every white vertex ak /∈ {ai, aj}, and so that crD(ai, aj) = 4. If we per-237

form this procedure for every rotation in Rot(D), the result is an optimal238

drawing D′, isomorphic to D, that satisfies (1) and (2).239

Now to prove that D′ also satisfies (3) we suppose, by way of contradic-240

tion, that there exist ai, ak such that crD(ai, ak) > 4. Define di, dk as in the241

previous paragraph. We may assume without loss of generality that di ≤ dk.242

Now letD′′ be the drawing that results from moving ak very close to ai, mak-243

ing it have the same rotation as ai, and so that crD′′(ai, a`) = crD′′(ak, a`)244

for every ` 6∈ {i, k}, and crD′′(ai, ak) = 4. It is readily checked that D′′ has245

fewer crossings than D′, contradicting the optimality of D′. �246

Remark 4. We are interested in classifying optimal drawings up to iso-247

morphism (Theorem 1). In view of Proposition 3, we may assume that all248

drawings of K5,n under consideration are clean. We will work under this249

assumption for the rest of the paper.250

6. The key of a clean drawing.251

We now associate to every clean drawing of K5,n an edge-labeled graph252

that (as we will see) captures all its relevant crossing number information.253
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LetD be a clean drawing ofK5,n. The keyΦ(D) ofD is the (edge-labeled)254

complete graph whose vertices are the elements of Rot(D), and where each255

edge is labeled according to the following rule: if π, π′ ∈ Rot(D), with256

rotD(ai) = π and rotD(aj) = π′, then the label of the edge joining π and π′257

is crD(ai, aj). It follows from the cleanness of D that crD(ai, aj) does not258

depend on the choice of ai and aj , and so Φ(D) is well-defined for every259

clean drawing D. Moreover, it also follows that every edge label in Φ(D) is260

in {0, 1, 2, 3, 4}. The core of D is the subgraph Φ1(D) of Φ(D) that consists261

of all the vertices of Φ(D) and the edges of Φ(D) with label 1. In Figure 6262

we give a (clean and optimal) drawing D of K5,3, and illustrate its key and263

its core.264

Our main interest is in antipodal-free drawings, that is, those drawings in265

which every edge label in Φ(D) is in {1, 2, 3, 4}. A key is 0–free (respectively,266

4-free) if none of its edges has 0 (respectively, 4) as a label. A key is {0, 4}-267

free if it is both 0- and 4-free.268

π0

3 0

1
π1 π2

π0

1
π1 π2

a2

a1

a0

Figure 6. A drawing D of K5,3. By letting rotD(a0) =
π0, rotD(a1) = π1, and rotD(a2) = π2, we obtain the key Φ(D)
(right, above) and the core Φ1(D) (right, below) of D.

The main step in our strategy to understand optimal drawings is to char-269

acterize which labelled graphs are the key of some optimal drawing. To this270

end, we introduce a system of linear equations associated to each key, as271

follows.272

Definition 5 (The system of linear equations of a key). Let D be an optimal273

drawing of K5,n, with n even. Let the vertices of Φ(D) (that is, the elements274

of Rot(D)) be labelled π0, π1, . . . , πm−1, and let λij denote the label of the275

edge πiπj, for all i 6= j. For each i ∈ [m], the linear equation E(πi,Φ(D))276

for πi in Φ(D) is the linear equation on the variables t0, t1, . . . , tm−1 given277
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by278

E(πi,Φ(D)) : 2ti +
∑

j∈[m], j 6=i

(λij − 2)tj = 0.

The set {E(πi,Φ(D))}i∈[m] is the system of linear equations associated279

to Φ(D), and is denoted L(Φ(D)).280

The characterization of when a labelled graph is the key of an optimal281

drawing is mainly based on the following crucial fact.282

Proposition 6. Let D be an optimal drawing of K5,n, with n even. Then283

the system of linear equations L(Φ(D)) associated to Φ(D) has a positive284

integral solution (t0, t1, . . . , tm−1) such that t0 + t1 + · · ·+ tm−1 = n.285

Proof. First we show that if D is an optimal drawing of K5,n with n even,286

then for every i = 0, 1, . . . , n − 1, we have crD(ai) = 2n − 4. To this end,287

suppose that crD(ai) > 2n − 4 for some i. Since D is optimal, cr(D) =288

Z(5, n) = n(n−2), and so the drawing D′ ofK5,n−1 that results by removing289

ai from D has fewer than n(n − 2) − (2n − 4) = n2 − 4n + 4 = (n − 2)2 =290

Z(5, n − 1) crossings, contradicting that cr(K5,n−1) = Z(5, n − 1). Thus291

crD(ai) ≤ 2n − 4 for every i. Now suppose that crD(ai) < 2n − 4 for292

some i. Then cr(D) = (1/2)
∑

j∈[n] crD(aj) < (1/2)(2n − 4)n = n(n − 2),293

contradicting that cr(K5,n) = Z(5, n) = n(n− 2). Thus for every i ∈ [n] we294

have crD(ai) = 2n− 4, as claimed.295

Now let π0, π1, . . . , πm−1 be the elements of Rot(D) (that is, the vertices of296

Φ(D)), and for each i, j ∈ [m], i 6= j, let λij denote the label of the edge πiπj297

in Φ(D). For each i ∈ [m], let ti be the number of vertices with rotation πi298

in D. Then (using that D is clean) for every i ∈ [m] and every white vertex299

ak with rotD(ak) = πi we have crD(ak) = 4(ti − 1) +
∑

j∈[m],j 6=i λijtj . Now300

from the previous paragraph for each ak we have crD(ak) = 2n − 4. Using301

that n =
∑

j∈[m] tj , we obtain 4(ti − 1) +
∑

j∈[m],j 6=i λijtj = 2
∑

j∈[m] tj −302

4. Equivalently, 2ti +
∑

j∈[m],j 6=i(λij − 2)tj = 0, for every i ∈ [m]. Thus303

(t0, t1, . . . , tm−1) is a positive integral solution of L(Φ(D)). �304

7. Properties of the key of a clean drawing.305

We start with an easy, yet crucial, observation.306

Proposition 7. Let D be an optimal drawing of K5,n. Then, for any three307

distinct white vertices ai, aj , ak, crD(ai, aj) + crD(aj , ak) + crD(ai, ak) is an308

even number greater than or equal to 4.309

Proof. This follows since cr(K5,3) = Z(5, 3) = 4 and (see for instance [6])310

every good drawing of K5,3 has an even number of crossings. �311

The following is an equivalent form of this statement, in the setting of312

keys.313
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Proposition 8. Let D be a clean drawing of K5,n, and let π0, π1, π2 be314

vertices of Φ(D). Let λij be the label of the edge πiπj, for i, j ∈ {0, 1, 2}, i 6=315

j. Then λ01 + λ12 + λ02 is an even number greater than or equal to 4. �316

Let γ, κ be cyclic permutations on the same set of symbols. A route from317

γ to κ is a set of distinct transpositions, which may be ordered into some318

sequence such that the successive application of (all) the transpositions in319

this sequence takes γ to κ. For instance, if γ = (abcd) and κ = (acdb), then320

{(bd), (bc)} is a route from γ to κ: if we apply first (bc) to γ, and then (bd)321

to the resulting cyclic permutation, we obtain κ.322

The size |P | of a route P is its number of transpositions. An antiroute323

from γ to κ is a route from γ to the reverse cyclic permutation κ of κ. Note324

that if P is a route (respectively, antiroute) from γ to κ, then P is also a325

route (respectively, antiroute) from κ to γ. The antidistance between two326

cyclic permutations is the smallest size of an antiroute between them.327

The following is an easy consequence of (the proof of) Theorem 5 in [7].328

Lemma 9. Let D be a good drawing of K5,2, with white vertices a0, a1.329

Then there is an antiroute from rotD(a0) to rotD(a1) of size crD(a0, a1). �330

The following statement is implicitly proved in the discussion after the331

proof of [7, Theorem 5].332

Lemma 10. Let D be a clean drawing of K5,r with white vertices a0, a1, . . . ,333

ar−1, and let πi := rotD(ai). Suppose that πi 6= πj whenever i 6= j, and for334

all i 6= j let λij := crD(ai, aj). For k = 0, 1, 2, 3, 4, let γk := rotD(k). Then335

there exist:336

(1) for all i, j ∈ [r] with i 6= j, an antiroute Pij from πi to πj of size λij;337

(2) for all k, ` ∈ [5] with k 6= `, an antiroute Qk` from γk to γ`;338

such that the transposition (ai aj) is in Qk` if and only if the transposition339

(k `) is in Pij. �340

We now use these powerful statements to prove that certain graphs cannot341

be the subgraphs of the key of a clean drawing.342

Proposition 11. The graph in Figure 7 is not the key of any clean drawing343

of K5,n.344

Proof. Suppose by way of contradiction that the graph in Figure 7 is the key345

of some clean drawing of K5,n. This implies in particular that there exists a346

drawing D of K5,4 with white vertices a0, a1, a2, a3 such that rotD(ai) = πi347

for i = 0, 1, 2, 3, with π0 = (01234), π1 = (01432), π2 = (04312), and π3 =348

(03421), and crD(a0, a1) = crD(a0, a2) = crD(a0, a3) = 1, and crD(a1, a2) =349

crD(a1, a3) = crD(a2, a3) = 2.350

The required contradiction is obtained by showing that there do not exist351

rotations rotD(0), rotD(1), rotD(2), rotD(3), rotD(4), and antiroutes Pij , Qk`352

that satisfy Lemma 10 (with the given values of crD(ai, aj) for i, j ∈ {0, 1, 2, 3},353

i 6= j). We start by determining the possible antiroutes Pij (these depend354
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π3 = (03421)

2

π0 = (01234)

2

π1 = (01432)

1

π2 = (04312)

2

1 1

Figure 7. This cannot be the key of a clean drawing of K5,n.

only on the information we already have). Then we investigate the possible355

antiroutes Qk` consistent with each choice of the antiroutes Pij , and prove356

that, in all cases, every possible choice of rotD(0), rotD(1), rotD(2), rotD(3)357

and rotD(4) leads to an inconsistency.358

The following facts are easily verified: (i) the only antiroute from π0 to π1359

of size 1 is {(01)}; (ii) the only antiroute from π0 to π2 of size 1 is {(12)}; (iii)360

the only antiroute from π0 to π3 of size 1 is {(34)}; (iv) the only antiroute361

of size 2 from π1 to π2 is {(02), (34)}; (v) there are two distinct antiroutes362

of size 2 from π2 to π3, namely {(01), (02)} and {(03), (04)}; and (vi) there363

are two distinct antiroutes of size 2 from π1 to π3, namely {(02), (12)} and364

{(23), (24)}.365

Now for i, j ∈ {0, 1, 2, 3}, i 6= j, let Pij be the antiroute guaranteed366

by Lemma 10. By the previous observations it follows that necessarily367

P01 = {(01)}, P02 = {(12)}, P03 = {(34)}, and P12 = {(02), (34)}. Also by368

the previous observations there are two choices for P23, namely {(01), (02)}369

and {(03), (04)}; and there are two choices for P13, namely {(02), (12)} and370

{(23), (24)}.371

Thus P01, P02, P03, P12 are all determined:372

P01 = {(01)}, P02 = {(12)}, P03 = {(34)}, P12 = {(02), (34)},

and there are four possible combinations of P13 and P23:373

(a) P23 = {(01), (02)} and P13 = {(02), (12)}.374

In this case, by Lemma 10, we have Q01 = {(a0a1), (a2a3)}, Q02 =375

{(a1a2), (a2a3), (a1a3)}, Q03 = ∅, Q04 = ∅, Q12 = {(a0a2), (a1a3)},376

Q13 = ∅, Q14 = ∅, Q23 = ∅, Q24 = ∅, and Q34 = {(a0a3), (a1a2)}.377

(b) P23 = {(01), (02)} and P13 = {(23), (24)}.378
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In this case, by Lemma 10, we have Q01 = {(a0a1), (a2a3)}, Q02 =379

{(a1a2), (a2a3)}, Q03 = ∅, Q04 = ∅, Q12 = {(a0a2)}, Q13 = ∅, Q14 =380

∅, Q23 = {(a1a3)}, Q24 = {(a1a3)}, and Q34 = {(a0a3), (a1a2)}.381

(c) P23 = {(03), (04)} and P13 = {(02), (12)}.382

In this case, by Lemma 10, we have Q01 = {(a0a1)}, Q02 = {(a1a2),383

(a1a3)}, Q03 = {(a2a3)}, Q04 = {(a2a3)}, Q12 = {(a0a2), (a1a3)},384

Q13 = ∅, Q14 = ∅, Q23 = ∅, Q24 = ∅, and Q34 = {(a0a3), (a1a2)}.385

(d) P23 = {(03), (04)} and P13 = {(23), (24)}.386

In this case, by Lemma 10, we have Q01 = {(a0a1)}, Q02 = {(a1a2)},387

Q03 = {(a2a3)}, Q04 = {(a2a3)}, Q12 = {(a0a2)}, Q13 = ∅, Q14 =388

∅, Q23 = {(a1a3)}, Q24 = {(a1a3)}, and Q34 = {(a0a3), (a1a2)}.389

We only analyze (that is, derive a contradiction from) (a). The cases (b),390

(c), and (d) are handled in a totally analogous manner.391

Since Q13 = Q14 = ∅, it follows that rotD(3) and rotD(4) are both equal392

to the reverse of rotD(1); in particular, rotD(3) = rotD(4). Since Q01 =393

{(a0a1), (a2a3)} and Q12 = {(a0a2), (a1a3)}, it follows that in rotD(1): (i)394

a0 and a1 must be adjacent; (ii) a2 and a3 must be adjacent; (iii) a0 and395

a2 must be adjacent; and (iv) a1 and a3 must be adjacent. It follows imme-396

diately that rotD(1) is either (a0a2a3a1) or (a0a1a3a2). Since rotD(3) and397

rotD(4) are both the reverse of rotD(1), then each of rotD(3) and rotD(4)398

is either (a0a1a3a2) or (a0a2a3a1). However, since Q34 = {(a0a3), (a1a2)},399

then one must reach the reverse of rotD(4) from rotD(3) by applying the400

transpositions (a0a3) and (a1a2) (in some order). Since neither of these401

transpositions may be applied to (a0a1a3a2) or (a0a2a3a1), we obtain the402

required contradiction. �403

Proposition 12. The graph in Figure 8 is not the key of any clean drawing404

of K5,n.405

Proof. Suppose by way of contradiction that the graph in Figure 8 is the406

key of some clean drawing of K5,n. Thus there exists a drawing D of K5,4407

with white vertices a0, a1, a2, a3 such that rotD(ai) = πi for i = 0, 1, 2, 3,408

with π0 = (01234), π1 = (01432), π2 = (03241), and π3 = (04231), and409

crD(a0, a1) = crD(a1, a2) = crD(a2, a3) = crD(a0, a3) = 1, and crD(a0, a2) =410

crD(a1a3) = 2. For i, j ∈ {0, 1, 2, 3}, i 6= j, let Pij be the antiroute guaran-411

teed by Lemma 10. It is easy to verify that the only antiroute of size 1 from412

π0 to π1 is {(01)}, and so necessarily P01 = {(01)}. Analogous arguments413

show that necessarily P23 = {(01)} and that P12 = P03 = {(23)}. It is also414

readily checked that there are two antiroutes of size 2 from π0 to π2, namely415

{(04), (14)} and {(24), (34)} (moreover, these are also the two antiroutes of416

size 2 from π1 to π3). Thus each of P02 and P13 is either {(04), (14)} or417

{(24), (34)}.418
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π0 = (01234)

π1 = (01432) π3 = (04231)
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Figure 8. This cannot be the key of a clean drawing of K5,n.

Thus P01, P03, P12, and P23 are all determined:419

P01 = P23 = {(01)}, P03 = P12 = {(23)},

and there are four possible combinations of P02 and P13:420

(a) P02 = P13 = {(04), (14)}.421

422

In this case, by Lemma 10, Q01 = {(a0a1), (a2a3)}, Q04 = {(a0a2),423

(a1a3)}, Q14 = {(a0a2), (a1a3)}, Q23 = {(a0a3), (a1a2)}, and Q02 =424

Q03 = Q12 = Q13 = Q24 = Q34 = ∅.425

(b) P02 = {(04), (14)} and P13 = {(24), (34)}.426

427

In this case, by Lemma 10, Q01 = {(a0a1), (a2a3)}, Q04 = Q14 =428

{(a0a2)}, Q23 = {(a0a3), (a1a2)}, Q24 = Q34 = {(a1a3)}, and Q02 =429

Q03 = Q12 = Q13 = ∅.430

(c) P02 = {(24), (34)} and P13 = {(04), (14)}.431

432

In this case, by Lemma 10, Q01 = {(a0a1), (a2a3)}, Q04 = Q14 =433

{(a1a3)}, Q23 = {(a0a3), (a1a2)}, Q24 = Q34 = {(a0a2)}, and Q02 =434

Q03 = Q12 = Q13 = ∅.435

(d) P02 = P13 = {(24), (34)}.436

437

In this case, by Lemma 10, Q01 = {(a0a1), (a2a3)}, Q23 = {(a0a3),438

(a1a2)}, Q24 = Q34 = {(a0a2), (a1a3)}, and Q02 = Q03 = Q04 =439

Q12 = Q13 = Q14 = ∅.440

We only analyze (that is, derive a contradiction from) (a). The cases (b),441

(c), and (d) are handled analogously.442
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Since Q02 = Q03 = Q12 = Q13 = Q24 = Q34 = ∅, it follows that443

rotD(2) and rotD(3) are equal to each other, and equal to the reverse of444

each of rotD(0), rotD(1), and rotD(4). Thus rotD(0) = rotD(1) = rotD(4).445

Since Q01 = {(a0a1), (a2a3)} and Q04 = {(a0a2), (a1a3)}, it follows that446

in rotD(0): (i) a0 and a1 must be adjacent; (ii) a2 and a3 must be ad-447

jacent; (iii) a0 and a2 must be adjacent; and (iv) a1 and a3 must be448

adjacent. Thus rotD(0) is either (a0a2a3a1) or (a0a1a3a2). Now since449

Q23 = {(a0a3), (a1a2)}, it follows that in rotD(2) (and hence in its reverse450

rotD(0)) we have that a0 is adjacent to a3, and that a1 is adjacent to a2. But451

this is impossible, since in neither (a0a2a3a1) nor (a0a1a3a2) any of these452

adjacencies occurs. �453

8. Properties of cores. I. Forbidden subgraphs.454

We recall that the core of a clean drawing D of K5,n is the subgraph455

Φ1(D) of Φ(D) that consists of all the vertices of Φ(D) and the edges of456

Φ(D) with label 1. Note that while Φ(D) is obviously connected, Φ1(D)457

may be disconnected. As all edges of a core are labelled 1, we sometimes458

omit the reference to the edge labels altogether when working with Φ1(D).459

Our first result on the structure of cores is a workhorse for the next few460

sections.461

Claim 13. If π1, π2 and π3 are distinct rotations for white vertices in a462

drawing of K5,n, then there exists at most one rotation π0 such that there is463

an antiroute of size 1 from π0 to each of π1, π2, and π3.464

Proof. By way of contradiction, suppose that there exist distinct vertices465

π0, π1, π2, π3, π4 and antiroutes of size 1 from πi to π1, π2, and π3, for i = 0466

and 4. For j = 1, 2, 3 the antiroutes from π0 and π4 to πj induce a route467

P04(j) of size two from π0 to π4. Assume without loss of generality that468

π0 = (01234). Suppose that for some j, the transpositions in P04(j) involve469

(in total) four distinct elements in {0, 1, 2, 3, 4}. It is immediately checked470

that this implies that P04(j) is the only route of size 2 from π0 to π4, and471

that this in turn implies that at least two of π1, π2, and π3 are equal to472

each other, a contradiction. Thus each of P04(1), P04(2), and P04(3) involve473

fewer than four elements in {0, 1, 2, 3, 4}. None of these routes can involve474

only two elements (since they have size 2, and π0 6= π4), and so we conclude475

that each of P04(1), P04(2), and P04(3) involve exactly three elements in476

{0, 1, 2, 3, 4}. In particular, P04(1) must equal either {(k, k + 1), (k, k + 2)}477

or {(k + 1, k + 2), (k, k + 2)}, for some j ∈ {0, 1, 2, 3, 4} (operations are478

modulo 5; we note that we deviate from the usual notation and separate the479

elements of a transposition with a comma, for readability purposes). We480

derive a contradiction assuming that the first possibility holds; the other481

possibility is handled analogously. Relabelling 0, 1, 2, 3, and 4, if needed, we482

may assume that P04(1) = {(01), (02)}. Thus π4 is (03412). It is readily483

verified that the only routes of size 2 from π0 = (01234) to π4 = (03412)484

are P04(1) = {(01), (02)} and {(03), (04)}. This in turn immediately implies485
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Figure 9. The graph obtained by subdividing exactly once
each of the edges in a 3-cycle of K4.

that the antiroutes of size 1 from π0 to π1, π2, and π3 are either {(01)} or486

{(04)}, since the transpositions (02) and (03) cannot be applied to π0. But487

then we arrive from π0 to two elements in {π1, π2, π3} by applying the same488

transposition; that is, πi = πj for some i, j ∈ {1, 2, 3}, i 6= j, a contradiction.489

�490

Proposition 14. Let D be an optimal drawing of K5,n. Suppose that Φ(D)491

is {0, 4}-free. Then:492

(1) Φ1(D) does not contain K2,3 as a subgraph.493

(2) Φ1(D) has maximum degree at most 3.494

(3) Φ1(D) does not contain as a subgraph the graph obtained from K4 by495

subdividing exactly once each of the edges in a 3-cycle (see Fig. 9).496

Proof. We start by noting that (1) follows immediately by Claim 13 and497

Lemma 9.498

Suppose now by way of contradiction thatΦ1(D) has a vertex π0 of degree499

at least 4. Thus Φ1(D) has distinct vertices π1, π2, π3, π4 such that the edge500

joining π0 to πi has label 1, for i = 1, 2, 3, 4. Thus, for i = 1, 2, 3, 4, there501

exists an antiroute from π0 to πi of size 1. Without loss of generality we may502

assume π0 = (01234). The five cyclic rotations that have an antiroute of size503

1 to π0 are (01432), (03214), (03421), (04312), and (04231). By performing504

a relabelling j → j + 1 on {0, 1, 2, 3, 4} for some j ∈ {0, 1, 2, 3, 4} (with505

operations modulo 5) if needed (note that the cyclic permutation π0 =506

(01234) is left unchanged in such a relabelling), we may assume without loss507

of generality that {π1, π2, π3, π4} = {(01432), (03214), (03421), (04312)}. By508

exchanging π1, π2, π3, π4 if needed, we may assume that π1 = (01432), π2 =509

(04312), and π3 = (03421).510

Since Φ(D) is {0, 4}-free, it follows by Proposition 8 that the edge joining511

πi to πj has label 2, for i, j ∈ {1, 2, 3}, i 6= j. Thus, for i, j = 1, 2, 3, i 6= j,512

there exists an antiroute from πi to πj of size 2. Thus Φ(D) contains as a513

subgraph the graph in Figure 7, contradicting Proposition 11. This proves514

(2).515

We finally prove (3). Suppose by way of contradiction that Φ1(D) con-516

tains as a subgraph the graph obtained from K4 by subdividing once each517

of the edges in a 3-cycle (Fig. 9). Let ρ0 be the “central vertex” in Fig. 9,518

that is, the only vertex in Φ1(D) adjacent to three degree-3 vertices, and519
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let ρ1, ρ3, ρ4 denote these three vertices. An argument similar to the one in520

the second paragraph of this proof shows the following: if ρ0 = (01234) is a521

vertex adjacent to vertices ρ1, ρ3, ρ4 in Φ1(D), then we may assume (that is,522

perhaps after a relabelling of 0, 1, 2, 3, 4), that ρ1 = (01432), ρ3 = (04231),523

and ρ4 = (04312). Now let ρ2 be the vertex adjacent to ρ1 and ρ3 in Φ1(D).524

Thus it follows that in Φ(D), the edges joining ρ0 and ρ1, ρ0 and ρ3, ρ1525

and ρ2, and ρ2 and ρ3 are labelled 1. By Proposition 8, the edge joining ρ1526

and ρ3, as well as the edge joining ρ0 and ρ2 have even labels, which must527

be 2 since Φ(D) is {0, 4}-free. Now it is easy to verify that the only cyclic528

permutation other than ρ0 which has antiroutes of size 1 to both ρ1 and ρ3 is529

(03241). Thus ρ2 must be (03241). But then the subgraph of Φ(D) induced530

by ρ0, ρ1, ρ2, and ρ3 is isomorphic to the graph in Figure 8, contradicting531

Proposition 12. �532

9. Properties of cores. II. Structural properties.533

Proposition 15. Let D be an optimal drawing of K5,n, with n even. Sup-534

pose that Φ(D) is {0, 4}-free. Then:535

(1) Φ1(D) is bipartite.536

(2) Φ1(D) is connected.537

Proof. Suppose that C = (π0, π1, π2, . . . , πr−1, πr, π0) is an odd cycle in538

Φ1(D). It follows from Proposition 8 that π0π2 must have an even label539

in Φ(D), since π0π1 and π1π2 are both labelled 1 in Φ(D); now this even540

label must be 2, since Φ(D) is {0, 4}-free. Similarly, since π2π3 and π3π4 are541

also labelled 1 in Φ(D), then π2π4 must also be labelled 2 in Φ(D). Now542

since both π0π2 and π2π4 have label 2 in Φ(D), it follows that π0π4 also543

has label 2 in Φ(D). By repeating this argument we find that π0πj must544

have label 2 in Φ(D) for every even j. In particular, π0πr must have label 2,545

contradicting that π0πr is in Φ1(D) (that is, that the label of π0πr in Φ(D)546

is 1). Thus Φ1(D) cannot have an odd cycle. This proves (1).547

To prove (2) we assume, by way of contradiction, that Φ1(D) is not548

connected.549

We start by observing that Φ(D) must have at least one edge labelled 1.550

Indeed, otherwise every edge Φ(D) has label of at least 2, and so cr (D) ≥551

2
(n

2
)

= n(n− 1) > Z(5, n), contradicting the optimality of D.552

Thus there exists a component H of Φ1(D) with at least 2 vertices. Let
U be the set of white vertices whose rotation is a vertex in H, and let V be
all the other white vertices. Let r := |U | and s := |V |. Note that

cr (D) =
∑

ai,aj∈U,

ai 6=aj

crD(ai, aj) +
∑

ai,aj∈V,

ai 6=aj

crD(ai, aj) +
∑

ai∈U,aj∈V

crD(ai, aj)

≥ Z(5, r) + Z(5, s) + 2rs,(1)
since every vertex of U is joined to every vertex of V by an edge with a label553

2 or greater.554
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We claim that, moreover, strict inequality must hold in (1). To see this,555

first we note that, since H has at least 2 vertices, it follows that there exist556

white vertices ak, a` whose rotations are in H and such that crD(ak, a`) = 1.557

Since by assumption Φ1(D) is not connected, there is a vertex π in Φ1(D)558

not in H. Let ai be a white vertex such that rotD(ai) = π. Now crD(ak, ai)559

and crD(a`, ai) are both at least 2. However, we cannot have crD(ak, ai)560

and crD(a`, ai) both equal to 2, since then crD(ak, a`) = 1 would contradict561

Proposition 7. Thus either crD(ak, ai) or crD(a`, ai) is at least 3. This proves562

that Inequality (1) must be strict, that is,563

(2) cr (D) > Z(5, r) + Z(5, s) + 2rs.
Suppose that r (and consequently, also s) is even. In this case, since564

Z(5,m) = m(m − 2) for even m, using (2) we obtain cr (D) > r(r − 2) +565

s(s− 2) + 2rs = (r+ s)(r+ s− 2) = Z(5, r+ s) = Z(5, n), contradicting the566

optimality of D.567

Suppose finally that r is odd (and so s is odd, since |U |+ |V | = n is even).568

Using that r and s are odd, and that Z(5,m) = (m − 1)2 for odd m, with569

(2) we obtain cr (D) > (r − 1)2 + (s− 1)2 + 2rs = (r + s)(r + s− 2) + 2 =570

Z(5, r+ s) + 2 = Z(5, n) + 2, again contradicting the optimality of D. This571

finishes the proof of (2). �572

10. Properties of cores. III. Minimum degree.573

Proposition 16. Let D be an optimal drawing of K5,n, with n even. Sup-574

pose that Φ(D) is {0, 4}-free. Let π0, π1, π2, π3 be a path in Φ1(D). Suppose575

that in Φ1(D), π1 is the only vertex adjacent to both π0 and π2, and π2 is576

the only vertex adjacent to both π1 and π3. Then:577

(1) every vertex in Φ1(D) is adjacent (in Φ1(D)) to a vertex in {π0, π1,578

π2, π3}; and579

(2) π0 and π3 are adjacent in Φ1(D).580

Proof. Let π0, π1, . . . , πr−1 be the vertices of Φ1(D) (and of Φ(D) as well).
For i, j ∈ [r], i 6= j, let λij denote the label of the edge that joins πi to
πj in Φ(D). Recall that Φ1(D) is bipartite (Proposition 15(1)). Since
π0, π1, π2, π3 is a path inΦ(D), it follows that π0 and π2 are in the same chro-
matic class A, and π1 and π3 are in the same chromatic class B. Moreover,
since Φ(D) is {0, 4}-free, it follows from Proposition 8 that λij = 2 whenever
πi and πj belong to the same chromatic class. Thus we have λ02 = λ13 = 2
and (since π0, π1, π2, π3 is a path in Φ1(D)) λ01 = λ12 = λ23 = 1. It follows
that the equations of L(Φ(D)) corresponding to π0, π1, π2, and π3 are:
E0 : 2t0 − t1 + (λ03 − 2)t3 +

∑
j∈[r],j>3

(λ0j − 2)tj = 0,

E1 : −t0 + 2t1 − t2 +
∑

j∈[r],j>3
(λ1j − 2)tj = 0,

E2 : − t1 + 2t2 − t3 +
∑

j∈[r],j>3
(λ2j − 2)tj = 0,

E3 : (λ03 − 2)t0 − t2 + 2t3 +
∑

j∈[r],j>3
(λ3j − 2)tj = 0,
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where for simplicity we define Ei := E(πi,Φ(D)) for i ∈ {0, 1, 2, 3}. Sum-581

ming up these four linear equations we obtain582

(3) (λ03 − 1)t0 + (λ03 − 1)t3 +
∑

j∈[r],j>3
(λ0j + λ1j + λ2j + λ3j − 8)tj = 0

We claim all the coefficients in (3) are nonnegative. First we note that since583

λ03 ≥ 1, then the coefficients of t0 and t3 are indeed nonnegative. For the584

remaining coeficients, consider any vertex πj in Φ(D), with j > 3. Since585

Φ(D) is {0, 4}-free, it follows that λij ≥ 1 for every i ∈ {0, 1, 2, 3}.586

Since Φ1(D) is bipartite, it follows that πj cannot be adjacent (in Φ1(D))587

to two elements in {π0, π1, π2, π3} whose indices have distinct parity. Now588

it follows by hypothesis that πj cannot be adjacent to both π0 and π2, or to589

π1 and π3. Thus πj is adjacent to at most one of π0, π1, π2 and π3 in Φ1(D).590

Using this, and the fact that πj has the same chromatic class as exactly two591

of these vertices, it follows that at least one element in {λ0j , λ1j , λ2j , λ3j} is592

3, and at least two elements are 2. Thus it follows that (λ0j + λ1j + λ2j +593

λ3j − 8) ≥ 0.594

Therefore (3) implies that (λ03 − 1)t0 + (λ03 − 1)t3 ≤ 0. Recall that λ03595

is either 1 or 3. If λ03 = 3, then we have 2t0 + 2t3 ≤ 0, which contradicts596

(Proposition 6) that L(Φ(D)) has a positive integral solution. We conclude597

that λ03 = 1, that is, π0 and π3 are adjacent in Φ1(D). This proves (2).598

We also note that since λ03 = 1, (3) implies that599

(4)
∑

j∈[r],j>3
(λ0j + λ1j + λ2j + λ3j − 8)tj = 0.

By way of contradiction suppose there is a vertex π4 adjacent to none of600

π0, π1, π2, π3 in Φ1(D). Then each of λ04, λ14, λ24, λ34 is at least 2. Using601

Proposition 8 and that Φ(D) is {0, 4}-free, it follows that two of these λs602

are 2, and the other two are 3. Therefore (λ04 + λ14 + λ24 + λ34 − 8) = 2.603

Using (4) we obtain604

(5) 2t4 +
∑

j∈[r],j>4
(λ0j + λ1j + λ2j + λ3j − 8)tj = 0.

We recall that λ0j + λ1j + λ2j + λ3j − 8 ≥ 0 for every j > 3. Using this605

and (5), it follows that 2t4 ≤ 0. But this contradicts that L(Φ(D)) has a606

positive integral solution. �607

Proposition 17. Let D be an optimal drawing of K5,n, with n even. Sup-608

pose that Φ(D) is {0, 4}-free. Then Φ1(D) has minimum degree at least609

2.610

Proof. By way of contradiction, suppose that Φ1(D) has a vertex of degree611

0 or 1.612

Suppose first thatΦ1(D) has a vertex of degree 0. Then the connectedness613

of Φ1(D) implies that this is the only vertex in Φ1(D) (and, consequently,614

the only vertex in Φ(D)). Thus all vertices of D have the same rotation.615

Since if ai, aj have the same rotation in a drawing D′ then crD′(ai, aj) = 4,616
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it follows that cr(D) ≥ 4
(n

2
)

= 2n(n − 1). Since Z(5, n) = n(n − 2) and D617

is optimal, we must have 2n(n− 1) ≤ n(n− 2), but this inequality does not618

hold for any positive integer n.619

Thus we may assume that Φ1(D) has a vertex of degree 1.620

Let π0, π1, . . . , πm−1 denote the vertices of Φ1(D). Without any loss of621

generality we may assume that π0 has degree 1 in Φ1(D). For i, j ∈ [m], let622

λij denote the label of the edge πiπj .623

We divide the rest of the proof into two cases.624

Case 1. Φ1(D) has a path with 4 vertices starting at π0.625

Without loss of generality, let π0, π1, π2, π3 be this path. Since π0 is a626

leaf, it follows that π1 is the only vertex of Φ1(D) adjacent to both π0 and627

π2. We note that then there must be a vertex in Φ1(D) (say π4, without628

loss of generality) adjacent to both π1 and π3, as otherwise it would follow629

by Proposition 16(2) that π0 is adjacent to π3, contradicting that π0 is a630

leaf. Thus (π1, π2, π3, π4, π1) is a cycle.631

For i, j ∈ [5], let λij denote the label of πiπj in Φ(D). Since the edges632

π0π1, π1π2, π2π3, π3π4 and π1π4 are all in Φ1(D), it follows that λ01 = λ12 =633

λ23 = λ34 = λ14 = 1. Now since Φ(D) is {0, 4}-free, using Proposition 8 it634

follows that λ02 = λ04 = λ24 = λ13 = 2 and (since π0π3 is not in Φ1(D))635

that λ03 = 3.636

Subcase 1.1. π0, π1, π2, π3, π4 are all the vertices in Φ1(D).637

In this case the linear system L(Φ(D)) reads:638

E0 : 2t0 − t1 + t3 = 0,
E1 : −t0 + 2t1 − t2 − t4 = 0,
E2 : − t1 + 2t2 − t3 = 0,
E3 : t0 − t2 + 2t3 − t4 = 0,
E4 : − t1 − t3 + 2t4 = 0,

where for brevity we let Ei := E(πi,Φ(D)) for i ∈ [5].639

Subtracting E4 from E2, we obtain that t2 = t4. Adding the equations640

E0, E1, E2, and using t2 = t4, we obtain t0 = 0. Thus the system L(Φ(D))641

has no positive integral solution, contradicting (by Proposition 6) the opti-642

mality of D.643

Subcase 1.2. Φ1(D) has a vertex π5 /∈ {π0, π1, π2, π3, π4}.644

The connectedness of Φ1(D) implies that π5 is adjacent to πi for some645

i ∈ {0, 1, 2, 3, 4}. Since π0 is a leaf only adjacent to π1, then i 6= 0. Since π1646

already has degree 3 in Φ1(D), it follows from Proposition 14(2) that i 6= 1.647

Thus i is either 2, 3 or 4. Since the roles of 2 and 4 are symmetric, we may648

conclude that π5 is adjacent to either π2 or to π3.649

Suppose first that π5 is adjacent to π3 in Φ1(D).650
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In this case λ35 = 1. Using Proposition 8, that Φ(D) is {0, 4}-free, that
π0 is only adjacent to π1, and Claim 13, we obtain λ05 = λ25 = λ45 = 2
and that λ15 = 3. Thus in this case the 0-th and the 5-th equations of the
system L(Φ(D)) read:

E0 : 2t0 − t1 + t3 +
∑

j∈[m],j>5
(λ0j − 2)tj = 0.

E5 : + t1 − t3 + 2t5 +
∑

j∈[m],j>5
(λ5j − 2)tj = 0.

where for brevity we let Ei := E(πi,Φ(D)) for i = 0 and 5.651

Adding these equations, we get652

(6) 2t0 + 2t5 +
∑

j∈[m],j>5
(λ0j + λ5j − 4)tj = 0.

We now argue that λ0j +λ5j − 4 ≥ 0 whenever j > 5. To see this, note that
π0 and π5 are in the same chromatic class. If πj is in the same chromatic
class, then, since Φ(D) is {0, 4}-free, it follows that λ0j and λ5j are both 2,
and so λ0j + λ5j − 4 ≥ 0, as claimed. If πj is in the other chromatic class,
then both λ0j and λ5j are odd. Since π0 is a leaf whose only adjacent vertex
is π1, it follows that λ0j = 3. On the other hand, λ5j is either 1 or 3. In
particular, λ5j ≥ 1, and thus also in this case λ0j + λ5j − 4 ≥ 0, as claimed.
It follows from this observation and (6) that

2t0 + 2t5 ≤ 0,
and so the system L(Φ(D)) has no positive integral solution, contradicting653

Proposition 6.654

Suppose finally that π5 is adjacent to π2 in Φ1(D).655

Consider then the path π0, π1, π2, π5. Since π0 is a leaf, it follows that π1656

is the only vertex adjacent to both π0 and π2. Now note that π2 is the only657

vertex adjacent to both π1 and π5, since by Proposition 14(2) π1 cannot658

be incident to any vertex other than π0, π2, and π4. Thus Proposition 16659

applies, and so we must have that π0 and π5 are adjacent in Φ1(D). But660

this is impossible, since the only vertex in Φ1(D) adjacent to the leaf π0 is661

π1.662

Case 2. Φ1(D) has no path with 4 vertices starting at π0.663

We recall that π0 is a leaf in Φ1(D). Let π1 be the vertex adjacent to π0.664

Suppose first that π0 and π1 are the only vertices in Φ1(D). Then665

L(Φ(D)) consists of only two equations, namely 2t1− t0 = 0 and 2t0− t1 =666

0. This system obviously has no positive integral solutions, contradicting667

Proposition 6.668

We may then assume that there is an additional vertex π2 in Φ1(D). By669

connectedness of Φ1(D), and since π0 is a leaf, it follows that π2 is adjacent670

to π1.671

If π0, π1, π2 are the only vertices Φ(D), then the system L(Φ(D)) consists672

of the three equations 2t0−t1 = 0, −t0 +2t1−t2 = 0, and and −t1 +2t2 = 0.673
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Adding these equations we obtain t0+t2 = 0. Thus also in this case L(Φ(D))674

does not have a positive integral solution, again contradicting Proposition 6.675

Thus there must exist an additional vertex π3 in Φ1(D). Since π0 is a676

leaf, and by assumption (we are working in Case 2) there is no path with 4677

vertices starting at π0, it follows that π3 must be adjacent to π1. We already678

know that λ01 = λ12 = λ13 = 1. Since Φ(D) is {0, 4} free, it follows from679

Proposition 8 that λ02 = λ03 = λ23 = 2. Thus in this case L(Φ(D)) consists680

of the equations 2t0 − t1 = 0, −t0 + 2t1 − t2 − t3 = 0, −t1 + 2t2 = 0, and681

−t1 + 2t3 = 0. It is an elementary exercise to show that these equations682

do not have a simultaneous positive integral solution, and so in this case we683

also obtain a contradiction to Proposition 6. �684

11. Properties of cores. IV. Girth and maximum size.685

Proposition 18. Let D be an optimal drawing of K5,n, with n even. Sup-686

pose that Φ(D) is {0, 4}-free. Then:687

(1) Φ1(D) has girth 4.688

(2) If v is a degree-2 vertex in Φ1(D), then v is in a 4-cycle in Φ1(D).689

(3) Φ1(D) has at most 7 vertices.690

Proof. By Proposition 17, the minimum degree of Φ1(D) is at least 2. Since691

Φ1(D) is simple and bipartite, it immediately follows that the girth ofΦ1(D)692

is a positive number greater than or equal to 4. Let π0, π1, π2, π3 be a path693

in Φ1(D). If there is a vertex other than π1 adjacent to both π0 and π2, or694

a vertex other than π2 adjacent to both π1 and π3, then Φ1(D) clearly has a695

4-cycle, and we are done. Otherwise, it follows from Proposition 16(2) that696

π0 is adjacent to π3, and so (π0, π1, π2, π3, π0) is a 4-cycle. Thus (1) follows.697

Now let π1 be a degree-2 vertex in Φ1(D). Since Φ1(D) has minimum698

degree at least 2, using (1) it obviously follows that there exists a path699

π0, π1, π2, π3 in Φ1(D). If there is a vertex adjacent to both π0 and π2 other700

than π1, then π1 is obviously contained in a 4-cycle. In such a case we are701

done, so suppose that this is not the case. Since π1 is only adjacent to π0702

and π2, using that the degree of π1 is 2 it follows that no vertex other than703

π2 is adjacent to both π1 and π3. Thus it follows from Proposition 16(2)704

that π0 and π3 are adjacent in Φ1(D). Thus π1 is contained in the 4-cycle705

(π0, π1, π2, π3, π0), and (2) follows.706

Let C = (π0, π1, π2, π3, π0) be a 4-cycle in Φ1(D); the existence of C is707

guaranteed from (1). By Proposition 14(1) Φ1(D) contains no subgraph708

isomorphic to K2,3, and so, in Φ1(D), no vertex other than π1 or π3 is709

adjacent to both π0 and π2, and no vertex other than π2 or π0 is adjacent to710

both π1 and π3. Thus Proposition 16 applies. Using Proposition 14(2) and711

Proposition 16(1), we obtain that Φ1(D) has at most 4 vertices other than712

π0, π1, π2, and π3; that is, Φ1(D) has at most 8 vertices in total; moreover,713

if Φ1(D) has exactly 8 vertices, then every vertex of C has degree 3. Since714

C was an arbitrary 4-cycle, we have actually proved that if Φ1(D) has 8715
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vertices, then every vertex contained in a 4-cycle must have degree 3. In716

view of (2), this implies that if Φ1(D) has 8 vertices, then it must be cubic.717

Now the unique (up to isomorphism) cubic connected bipartite graph on718

8 vertices is the 3-cube. Since the 3-cube contains as a subgraph the graph719

in Figure 9, it follows that Φ1(D) cannot have exactly 8 vertices. �720

12. The possible cores of an antipodal-free optimal drawing.721

Our goal in this section is to establish Lemma 21, which states that the722

core of every antipodal-free optimal drawing of K5,n is isomorphic to either723

a 4-cycle or to the graph C6 obtained from the 6-cycle by adding an edge724

joining two diametrically oposed vertices (see Figure 10).725

Figure 10. The graph C6.

We first show this for the particular case in which Φ(D) is not only726

antipodal-free (that is, 0-free), but also 4-free:727

Proposition 19. Let D be an optimal drawing of K5,n, with n even. If728

Φ(D) is {0, 4}-free, then Φ1(D) is isomorphic to the 4-cycle or to C6.729

Proof. By way of contradiction, suppose thatΦ1(D) is isomorphic to neither730

a 4-cycle nor to C6. Recall that Φ1(D) has minimum degree at least 2731

(Proposition 17). We divide the proof into two cases, depending on whether732

or not Φ1(D) has degree-2 vertices.733

Case 1. Φ1(D) has at least one degree-2 vertex.734

By Proposition 18(3), Φ1(D) has at most 7 vertices. If all the vertices in735

Φ1(D) have degree 2, then (since Φ1(D) is simple and, by Proposition 15(2),736

connected) Φ1(D) is a cycle. By Proposition 18(1), in this case Φ1(D) is a737

4-cycle, contradicting our assumption at the beginning of the proof.738

Thus we may assume that Φ1(D) has at least one degree-3 vertex. Let739

H be the graph obtained by suppressing the degree-2 vertices from Φ1(D).740

We call the vertices of Φ1(D) that correspond to the vertices in H (that is,741

the degree-3 vertices of Φ1(D)) the nodes of Φ1(D).742
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It follows from elementary graph theory that Φ1(D) has an even number743

of nodes. Since Φ1(D) has at most 7 vertices, it follows that Φ1(D) has744

either 2, 4, or 6 nodes.745

Subcase 1.1. Φ1(D) has 6 nodes.746

Up to isomorphism, there are only two cubic simple graphs on 6 nodes,747

namely K3,3 and the triangular prism T3 (this is the simple cubic graph748

with a matching whose removal leaves two disjoint 3-cycles). Now T3 has749

two vertex disjoint 3-cycles, and so in order to turn it into a bipartite graph,750

we must subdivide at least 2 edges, that is, add at least two vertices to T3.751

Since Φ1(D) has at most 7 vertices, it follows that H cannot be isomorphic752

to T3.753

Suppose finally that H is isomorphic to K3,3. Since no bipartite graph754

on 7 vertices is a subdivision of K3,3, it follows that Φ1(D) must be itself755

isomorphic to K3,3. Since K3,3 obviously contains K2,3 as a subgraph, this756

contradicts Proposition 14(1).757

Subcase 1.2. Φ1(D) has 4 nodes.758

In this case H must be isomorphic to K4, the only cubic graph on four759

vertices. It is readily seen that there are only two ways to turn K4 into760

a bipartite graph using at most three edge subdivisions. One way is to761

subdivide once each of the edges in a 3-cycle of K4, and the other way is762

to subdivide (once) two nonadjacent edges (in the latter case, we obtain a763

graph that has a subgraph isomorphic to K2,3). By Proposition 14, neither764

of these graphs can be the core of D.765

Subcase 1.3. Φ1(D) has 2 nodes.766

In this case H must consist of two vertices joined by three parallel edges.767

Since Φ1(D) is bipartite it follows that each of these edges must be sub-768

divided the same number of times modulo 2 (subdividing an edge 0 times769

being a possibility). Moreover, since Φ1(D) is simple at least two edges770

must be subdivided at least once each.771

Now no edge may be subdivided more than twice, as in this case the772

result would be a graph with a degree-2 vertex belonging to no 4-cycle,773

contradicting Proposition 18(2).774

Suppose now that some edge ofH is subdivided exactly twice. Then, since775

Φ1(D) has at most 7 vertices, it follows that two edges of H are subdivided776

exactly twice, and the other edge ofH is not subdivided. Thus it follows that777

in this case Φ1(D) is isomorphic to C6, contradicting our initial assumption.778

Suppose finally that no edge of H is subdivided more than once. Since779

Φ1(D) is bipartite, it follows that every edge of H must be subdivided780
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exactly once. Thus Φ1(D) is isomorphic to K2,3, contradicting Proposi-781

tion 14(1).782

Case 2. Φ1(D) has no degree-2 vertices.783

In this case, Φ1(D) is cubic. By Proposition 15, Φ1(D) is bipartite and784

connected. By Proposition 18(3), Φ1(D) has at most 7 vertices. By ele-785

mentary graph theory, since Φ1(D) is cubic, then it has an even number786

of vertices. Since Φ1(D) is simple, it follows that Φ1(D) has either 4 or 6787

vertices.788

Now there are no simple cubic bipartite graphs on 4 vertices, so Φ1(D)789

must have 6 vertices. Up to isomorphism, the only cubic bipartite graph790

on 6 vertices is K3,3. But Φ1(D) cannot be isomorphic to K3,3, since by791

Proposition 14(1) Φ1(D) does not contain a subgraph isomorphic to K2,3.792

�793

Proposition 20. Let D be an antipodal-free, optimal drawing of K5,n, with794

n even. Then Φ(D) is 4-free.795

Proof. By way of contradiction, suppose that Φ(D) is not 4-free. Then there796

exist distinct rotations π, π′, and white vertices ai, aj such that rotD(ai) = π797

and rotD(aj) = π′, and crD(ai, aj) = 4.798

Without loss of generality, suppose that crD(ai) ≤ crD(aj). We move,799

one by one, every vertex aj with rotation π′ very close to ai, so that in800

the resulting drawing D′ we have crD′(aj , ak) = crD′(ai, ak) for every vertex801

k /∈ {i, j}. It is readily checked that the resulting drawing D′ is also optimal,802

and Φ(D′) has one fewer edge with label 4 than Φ(D). By repeating this803

process as many times as needed, we arrive to a drawing Do such thatΦ(Do)804

has exactly one edge with label 4 (if Φ(D) has exactly one edge with label 4805

to begin with, then we let Do = D). Denote by π0, π1 the vertices of Φ(Do)806

whose joining edge has label 4.807

If we apply the described process one more time to Do with π = π0 and808

π′ = π1, we obtain a {0, 4}-free optimal drawing E of K5,n. By Proposi-809

tion 19, Φ1(E) contains a 4-cycle (π0, π2, π3, π4, π0). Now if we apply the810

process to Do with π = π1 and π′ = π0, then we obtain another {0, 4}-free811

optimal drawing F of K5,n. Note that π2, π3, π4 are not affected in the pro-812

cess, and so (π1, π2, π3, π4, π1) is a 4-cycle in Φ1(F ). Thus it follows that813

Φ1(Do) has two degree-3 vertices π2 and π4, plus the vertices π0, π1, π3,814

each of which is joined to both π2 and π4 with an edge labelled 1. This815

contradicts Claim 13.816

�817

Lemma 21. Let D be an antipodal-free, optimal drawing of K5,n, with n818

even. Then Φ1(D) is isomorphic either to the 4-cycle or to C6.819

Proof. By Proposition 20, Φ(D) is 4-free. By hypothesis Φ(D) is also 0-free820

(since D is antipodal-free), and so Φ(D) is {0, 4}-free. The lemma then821

follows by Proposition 19. �822
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13. Proof of Theorem 1.823

We need one final result before moving on to the proof of Theorem 1.824

In the following statement and its proof, we sometimes use the notation825

(i, j, k, `,m) for cyclic permutations (that is, we separate the elements with826

commas, as opposed to our usual practice in which for such a cyclic permu-827

tation we would have written (ijk`m)).828

Proposition 22. Let D be a drawing of K5,n. Suppose that Φ(D) is829

{0, 4}-free, and that Φ1(D) is a 4-cycle (π0, π1, π2, π3, π0). Suppose that830

π0 = (01234). Then there exists an m ∈ {0, 1, 2, 3, 4} and a relabelling of831

{0, 1, 2, 3, 4} that leaves π0 invariant, such that (operations are modulo 5):832

• π2 = (m,m+ 1,m+ 3,m+ 4, m+ 2); and833

• {π1, π3} = {(m,m + 4,m + 2,m + 3,m + 1), (m,m+ 4,m + 3,m +834

1,m+ 2)}.835

Proof. The reverse permutation π0 of π0 is (43210). Since π0π1 and π0π3836

have label 1 in Φ(D), it follows that each of π1 and π3 is obtained from π0 by837

performing one transposition. Thus there exist distinct k,m ∈ {0, 1, 2, 3, 4}838

such that {π1, π3} = {(k, k + 4, k + 2, k + 3, k + 1), (m,m+ 4,m+ 2,m +839

3,m+ 1)}.840

Suppose that k = m + 3. Using a relabelling on {0, 1, 2, 3, 4} that leaves841

(01234) invariant, we may assume that m = 2 and k = 0. Then {π1, π3} =842

{(04231), (03214)}. Now since the edge joining π2 to each of π1 and π3843

in Φ(D) has label 1, it follows that there are antiroutes of size 1 from π2844

to each of π1 and π3. It is easy to check that the only such possibility is845

that π2 = (04132). Using the relabelling j 7→ j − 2 on {0, 1, 2, 3, 4}, we846

get {π0, π1, π2, π3} = {(01234), (01432), (03241), (04231)}. But then Φ(D)847

is the labelled graph in Fig. 8, contradicting Proposition 12. An analogous848

contradiction is obtained under the assumption k = m+ 2. Thus k = m+ 1849

or k = m+ 4.850

Suppose that k = m+ 1. Thus {π1, π3} = {(m+ 1,m,m+ 3,m+ 4,m+851

2), (m,m + 4,m + 2,m + 3,m + 1)}. Using the relabelling j 7→ j − 1 on852

{0, 1, 2, 3, 4} (which obviously leaves (01234) invariant), we obtain {π1, π3} =853

{(m,m+4,m+2,m+3,m+1), (m+4,m+3,m+1,m+2,m)} = {(m,m+854

4,m+2,m+3,m+1), (m,m+4,m+3,m+1,m+2)}, as required. Finally,855

since the edge joining π2 to each of π1 and π3 in Φ(D) has label 1, it follows856

that π2 = (m,m + 1,m + 3,m + 4,m + 2). The case k = m + 4 is handled857

in a totally analogous manner. �858

Proposition 23. Suppose that D is a drawing of K5,n. Suppose that Φ(D)859

is {0, 4}-free, and that Φ1(D) is isomorphic to C6. Let the vertices of Φ1(D)860

be labeled π0, π1, π2, π3, π4, π5, so that (π0, π1, π2, π3, π0) and (π0, π4, π5, π3, π0)861

are 4-cycles. Suppose that π0 = (01234). Then there exists an m ∈ {0, 1, 2, 3,862

4} and a relabelling of {0, 1, 2, 3, 4} that leaves π0 invariant, such that (op-863

erations are modulo 5):864

• π3 = (m,m+ 4,m+ 3, m+ 1,m+ 2);865
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• {(π1, π2), (π4, π5)} = {((m,m+4,m+2,m+3,m+1), (m,m+1,m+866

3,m + 4,m + 2)), ((m,m + 1,m + 4,m + 3,m + 2), (m,m + 2,m +867

3,m+ 1,m+ 4))}.868

Proof. By Proposition 22, there exists an m ∈ {0, 1, 2, 3, 4} such that π2 =869

(m,m+ 1,m+ 3,m+ 4,m+ 2) and {π1, π3} = A := {(m,m+ 4,m+ 2,m+870

3,m+ 1), (m,m+ 4,m+ 3,m+ 1,m+ 2)}. By the same proposition, there871

exists a k ∈ {0, 1, 2, 3, 4} such that π5 = (k, k + 1, k + 3, k + 4, k + 2) and872

{π3, π4} = B := {(k, k+ 4, k+ 2, k+ 3, k+ 1), (k, k+ 4, k+ 3, k+ 1, k+ 2)}.873

Since π2 6= π5, it follows that m 6= k. Thus k is either m+1,m+2,m+3,874

or m + 4. Note that if k = m + 2 or k = m + 3 then A ∩ B = ∅, which875

contradicts that {π3} = A ∩B. Thus k is either m+ 1 or m+ 4.876

We work out the details for the case k = m + 1; the case k = m + 4 is877

handled in a totally analogous manner. Since {π3} = A ∩B, it follows that878

π3 = (m,m + 4,m + 2,m + 3,m + 1) = (m + 1,m,m + 4,m + 2,m + 3).879

Therefore π1 = (m,m+4,m+3,m+1,m+2) = (m+1,m+2,m,m+4,m+3),880

π2 = (m,m+ 1,m+ 3,m+ 4,m+ 2) = (m+ 1,m+ 3,m+ 4,m+ 2,m), π4 =881

(m+1,m,m+3,m+4,m+2), and π5 = (m+1,m+2,m+4,m,m+3). Using882

the relabelling j → j−1 on {0, 1, 2, 3, 4} (which leaves (01234) invariant), we883

obtain π1 = (m,m+1,m+4,m+3,m+2), π2 = (m,m+2,m+3,m+1,m+4),884

π3 = (m,m+ 4,m+ 3,m+ 1,m+ 2) π4 = (m,m+ 4,m+ 2,m+ 3,m+ 1),885

and π5 = (m,m+ 1,m+ 3,m+ 4,m+ 2). �886

Proof of Theorem 1. Let D be an antipodal-free drawing of K5,n, with n887

even. In view of Proposition 3 (see Remark 4), we may assume that D is888

clean, so that Φ(D) and Φ1(D) are well-defined.889

In view of Lemma 21, Φ1(D) is isomorphic either to the 4-cycle or to C6.890

Case 1. Φ(D) is isomorphic to C6.891

In this case Φ(D) has 6 vertices, which we label π0, π1, π2, π3, π4, π5,892

so that (π0, π1, π2, π3, π0) and (π0, π4, π5, π3, π0) are 4-cycles. For i, j ∈893

{0, 1, 2, 3, 4, 5}, i 6= j, let λij be the label of the edge πiπj . Since (π0, π1, π2,894

π3, π0) and (π0, π4, π5, π3, π0) are 4-cycles in Φ1(D), it follows that all the895

edges in these 4-cycles have label 1 in Φ(D); that is, λ01 = λ12 = λ23 =896

λ03 = λ04 = λ45 = λ35 = 1. By Proposition 8, λ02 is even. Since Φ(D) is897

antipodal-free, and (by Property (2) of a clean drawing) λij ≤ 4 for all i, j,898

it follows that λ02 is either 2 or 4. By Proposition 20 Φ(D) is 4-free, hence899

λ02 = 2. The same argument shows that λ05 = λ13 = λ14 = λ25 = λ34 = 2.900

Since λ35 = 1 and λ13 = 2, by Proposition 8, λ15 is odd. If λ15 = 1, then901

{π0, π5} ∪ {π1, π2, π4} is a K2,3 in Φ1(D), contradicting Proposition 8; thus902

λ15 = 3. An analogous argument shows that λ24 = 3.903
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The linear system L(Φ(D)) associated to Φ(D) (see Definition 5) is then:

E0 : 2t0 − t1 − t3 − t4 = 0.
E1 : −t0 + 2t1 − t2 + t5 = 0.
E2 : − t1 + 2t2 − t3 + t4 = 0.
E3 : −t0 − t2 + 2t3 − t5 = 0.
E4 : −t0 + t2 + 2t4 − t5 = 0.
E5 : + t1 − t3 − t4 + 2t5 = 0.

(7)

It is straightforward to check that if (t0, t1, t2, t3, t4, t5) is a positive so-904

lution to this system, then t1 = t2, t4 = t5 and t0 = t3 = t1 + t4. By905

Proposition 6, this implies that n ≡ 0 (mod 4). This proves (1).906

We have thus proved that the white vertices of D are partitioned into 6907

classes C0, C1, C2, C3, C4, C5, such that |C1| = |C2|, |C4| = |C5|, |C0| = |C3| =908

|C1|+ |C4|, and such that for i = 0, 1, 2, 3, 4, 5, each vertex in Ci has rotation909

πi. Let r := |C1| and s := |C4|, so that |C2| = r, |C5| = s, and |C0| = |C3| =910

r + s. Note that 4(r + s) = n.911

If necessary, relabel {0, 1, 2, 3, 4} so that π0 = (01234). By Proposition 23,912

perhaps after a further relabelling of {0, 1, 2, 3, 4} (that leaves π0 invari-913

ant), there exists an m ∈ {0, 1, 2, 3, 4} such that π3 = (m,m+ 4,m+ 3,914

m+ 1,m + 2), and {(π1, π2), (π4, π5)} = {((m,m + 4,m + 2,m + 3,m +915

1), (m,m+ 1,m+ 3,m+ 4,m+ 2)), ((m,m+ 1,m+ 4,m+ 3,m+ 2), (m,m+916

2,m+3,m+1,m+4))}. Now perform the further relabelling j 7→ j−m. Af-917

ter this relabelling (which again leaves π0 invariant), we have π3 = (04312)918

and {(π1, π2), (π4, π5)} = {((04231), (01342)), ((01432), (02314))}.919

We have thus proved that (perhaps after a relabelling of {0, 1, 2, 3, 4})920

there exist integers r, s such that D has r + s vertices with rotation π0 =921

(01234), r vertices with rotation π1 = (04231), r vertices with rotation922

π2 = (01342), r + s vertices with rotation π3 = (04312), s vertices with923

rotation π4 = (01432), and s vertices with rotation π5 = (02314). That is,924

D is isomorphic to the drawing Dr,s from Section 3.925

Case 2. Φ(D) is isomorphic to the 4-cycle.926

In this case Φ(D) has 4 vertices, which we label ρ0, ρ1, ρ2, ρ3, so that927

(ρ0, ρ1, ρ2, ρ3, ρ0) is a cycle. The linear system L(Φ(D)) associated to Φ(D)928

is the one that results by taking t4 = t5 = 0 in the linear system (7), and929

omitting the equations E4 and E5.930

It is straightforward to check that if (t0, t1, t2, t3) is a solution to this931

system, then t0 = t1 = t2 = t3. By Proposition 6, this implies that n ≡ 0932

(mod 4). This proves (1).933

Thus the white vertices of D are partitioned into 4 classes C0, C1, C2, C3,934

each of size n/4, so that each vertex in class Ci has rotation ρi.935

Label the vertices 0, 1, 2, 3, 4 so that ρ0 = (01234). Then, by Proposi-936

tion 22, possibly after a relabelling of {0, 1, 2, 3, 4} that leaves ρ0 invari-937

ant, there is an m ∈ {0, 1, 2, 3, 4} such that ρ2 = (m,m+ 1,m+ 3,m+ 4,938

m+ 2), and {ρ1, ρ3} = {(m,m + 4,m + 2,m + 3,m + 1), (m,m+ 4,m +939



THE OPTIMAL DRAWINGS OF K5,n 30

3,m+1,m+2)}. Now we perform the relabelling j 7→ j−m on {0, 1, 2, 3, 4}940

(which obviously leaves ρ0 invariant), we obtain ρ2 = (01342) and {ρ1, ρ3} =941

{(04231), (04312)}.942

We have thus proved that D has r vertices with rotation (01234), r ver-943

tices with rotation (01342), r vertices with rotation (04231), and r vertices944

with rotation (04312). That is, D is isomorphic to the drawing Dr,0 from945

Section 3, with r = n/4. �946
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