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Abstract. Let K,L be convex sets in the plane. For normalization purposes,

suppose that the area of K is 1. Suppose that a set Kn of n points are chosen
independently and uniformly over K, and call a subset of K a hole if it does

not contain any point in Kn. It is shown that w.h.p. the largest area of a

hole homothetic to L is (1 + o(1)) logn/n. We also consider the problems
of estimating the largest area convex hole, and the largest area of a convex

polygonal hole with vertices in Kn. For these two problems we show that the

answer is Θ
(
logn/n

)
.

1. Introduction

Let K be a convex set in the plane, and let Kn be a set of n points chosen
independently and uniformly at random from K. A Kn-hole (or simply a hole) is a
subset of K whose interior does not contain any point of Kn.

In [2], Balogh et al. proved that w.h.p. the size of the largest (in the number of
vertices) polygonal hole with vertices in Kn is Θ(log n/ log log n).

The present work was motivated by a question raised by Matthew Kahle (private
communication to J. Balogh), who asked about the largest hole in terms of area
rather than in terms of the number of vertices. Kahle mentioned two possible
variants of these problems: either (i) find the area of the largest disk hole; or (ii)
find the area of the largest convex hole.

In this note we investigate these questions. For the first question, we give an
asymptotically exact answer. Moreover, we show that the answer is the same for
any convex K, and it is also independent of the chosen shape of the empty convex
region:
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2 LARGE AREA CONVEX HOLES IN RANDOM POINT SETS

Theorem 1.1. Let K,L be convex sets in the plane. Suppose for normalization
purposes that the area of K is 1. Let Kn be a set of n points chosen independently
and uniformly at random from K. Let MaxL(Kn) denote the random variable that
measures the largest (in terms of area) hole that is homothetic to L. Then w.h.p.

MaxL(Kn) = (1 + o(1))
log n

n
.

Regarding the area of the largest convex hole, we give an answer that is asymp-
totically tight within a factor of 4:

Theorem 1.2. Let K be a convex set in the plane with area 1. Let Kn be a set
of n points chosen independently and uniformly at random from K. Let Max(Kn)
denote the random variable that measures the largest (in terms of area) convex hole.
Then w.h.p.

(1 + o(1))
log n

n
≤Max(Kn) ≤ (4 + o(1))

log n

n
.

A third variant of this problem is to investigate large area polygonal holes (for
a related work see [10]). In this direction, our estimate is also asymptotically tight
within a factor of 4:

Theorem 1.3. Let K be a convex set in the plane with area 1. Let Kn be a set of n
points chosen independently and uniformly at random from K. Let PolyMax(Kn)
denote the random variable that measures the largest (in terms of area) convex
polygon with vertices in Kn. Then w.h.p.

(1 + o(1))
log n

n
≤ PolyMax(Kn) ≤ (4 + o(1))

log n

n
.

Questions about large convex substructures in point sets are of fundamental im-
portance in discrete and computational geometry; many such variants are typically
described as “Erdős-Szekeres type problems”, after the seminal paper [8]. Prob-
lems that ask for empty (usually convex) substructures are particularly natural and
important; see for instance [3–5,12–14].

From the algorithmical point of view, a well-studied problem in the field is to
compute the largest empty rectangle (or, say, the largest axis-parallel d-dimensional
empty box). See for instance [1]. A related result by Dumitrescu and Jiang [7] is
an efficient (1 − ε) approximation algorithm for computing a maximum-volume
empty axis-parallel d-dimensional box contained in an axis-parallel d-dimensional
box in Rd. The problem of investigating empty substructures in random point sets
seems to have received far less attention; we could only find two related results in
the literature, other than the already mentioned [2]. In [6], Dumitrescu and Jiang
found the expected number of maximal empty axis-parallel boxes amidst n random
points in the unit hypercube; and, very recently, Fabila-Monroy et al. found the
expected number of empty convex (and also non-convex) four-gons with vertices in
a finite set randomly chosen from a convex set [9].

Although the proofs of our main results stated above are somewhat technical,
at their core they rely on the following well-known fact from probability theory.
Suppose that we toss n balls into c · n/ log n bins. If c < 1, then w.h.p. none of the
bins will be empty, and if c > 1, then w.h.p. many bins will be empty. The proofs
are also based on some well-known facts from convexity theory that we shall review
in Section 2.
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Theorems 1.1, 1.2, and 1.3 are proved in Sections 3, 4, and 5, respectively.
Section 6 contains some concluding remarks.

2. Basic facts on probability and convex sets

In this section we gather some basic facts that will be used in the proofs of the
three main theorems.

The following is a straightforward exercise in elementary probability theory.

Proposition 2.1. Let k, n ∈ N. Suppose that n balls are thrown independently at
random into k bins. Let Y be the random variable counting the number of bins that
are empty. Then

E[Y ] = k

(
1− 1

k

)n
∼ ke−n/k, and

Var[Y ] = k

(
1− 1

k

)n
+ k(k − 1)

(
1− 2

k

)n
− k2

(
1− 1

k

)2n

∼ ke−n/k − ke−2n/k.

In the proofs of Theorems 1.1, 1.2, and 1.3, we rely heavily on the following
statement.

Proposition 2.2. Let K be a region in the plane of area 1. Suppose that n points
are chosen independently and uniformly at random from K. Let ε ∈ (0, 1). Sup-
pose that K is partitioned into t := n/((1 − ε) log n) equal area regions. Then the
probability that fewer than nε/(2(1− ε) log n) of these regions are empty is at most

∼ 4(1−ε) log(n)
nε .

Proof. Let X be the random variable counting the number of empty regions. By
Proposition 2.1 we have

E(X) ∼ n

(1− ε) log n
e−(1−ε) log(n) =

nε

(1− ε) log(n)
.

Moreover, also by Proposition 2.1 we have Var(X) < E(X), and so it follows from
Chebyshev’s inequality that

P

(
|(X −E(X))| > E(X)/2

)
≤ 4Var(X)

(E(X))2
<

4

E(X)
∼ 4(1− ε) log(n)

nε
.

�

The following fact on approximating convex sets by rectangles was proved by
Lassak in [11]. In this statement, and in what follows, we let a(K) denote the area
of a set K.

Proposition 2.3. Let L be a convex body in the plane. We can inscribe a rectangle
S in L such that a homothetic copy R of S is circumscribed about L. The positive
homothety ratio is at most 2 and 1

2a(R) ≤ a(L) ≤ 2a(S).

The following is a straightforward exercise in convex geometry.

Proposition 2.4. Let K be a convex set in the plane, and let R be a rectangle.
Then there is an integer M such that for all m ≥M there is a partition of K into
m equal area regions such that at least 2/3 of the regions are homothetic to R.
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3. Proof of Theorem 1.1

Let K,L be convex sets in the plane, where K has area 1 and L is convex. Let
Kn be a set of n points chosen independently and uniformly at random from K.

Theorem 1.1 is an immediate consequence of the following two statements:

(1) Fix any ε > 0. Then w.h.p. there exists a hole homothetic to L with area
at least (1− ε) log n/n.

(2) Fix any ε > 0. Then w.h.p. there is no hole homothetic to L with area
greater than (1 + 3ε) log n/n.

Proof of (1).

We start by using Proposition 2.3 to find a rectangle R that circumbscribes L,
and such that a(R) ≤ 2a(L). Now we invoke Proposition 2.4 (we may assume that
n is sufficiently large) to partition K into 2n/((1 − ε) log n) equal area regions, at
least 2/3 of which are homothetic to R. Next, we partition each of the regions
homothetic to R into two equal area parts, one of which is homothetic to L; finally,
we partition the part of K not already covered, into regions of area n/((1−ε) log n).
The result is a partition of K into a collection of n/((1− ε) log n) regions of equal
area, at least 1/3 of which are homothetic to L.

By Proposition 2.2, w.h.p. there are at least nε

2(1−ε) log(n) empty regions. Since

each empty region is homothetic to L with probability at least 1/3, (1) follows.

Proof of (2).

We may assume that L has area (1 + 3ε) log n/n, so that the aim is to show
that w.h.p. there is no empty translate of L. Let P be a convex set contained in
L, whose boundary is a smooth curve, and such that a(P ) = (1 + 2ε) log n/n. By
Proposition 2.3 there is a rectangle Q of area 2a(P ) that contains P . By performing
an affine transformation on the plane, if necessary, we may assume thatQ is a square
whose sides are parallel to the Cartesian axes. Let T denote the set of all translates
of P . To prove (2) it suffices to show that w.h.p. no element of T contained in K
is empty.

We let s(T ) be the convex set contained in T , defined by the following properties:
(i) s(T ) has area (1 + ε) log n/n; and (ii) there is an ω > 0 such that s(T ) consists
of those points whose distance to the boundary of T is at least ω. We let S :=
{s(T )

∣∣T ∈ T }. Note that the map s is invertible: for each S ∈ S, we let s−1(S)
denote the T ∈ T such that s(T ) = S.

For each T ∈ T , we let c(T ) denote the center of mass of T . For each S ∈ S,
we let c(S) denote c(s−1(S)). Note that if S ∈ S then c(S) is not necessarily the
center mass of S.

We claim that ω > (ε/8)
√

log n/n. First note that the sides of Q have length√
(2 + 4ε) log n/n, and so the perimeter per(Q) of Q is 4

√
(2 + 4ε) log n/n. Since

P is a convex set contained in Q, then the perimeter per(P ) of P is also at

most 4
√

(2 + 4ε) log n/n. Now ε log n/n = a(P \ s(P )) ≤ per(P )ω, and so ω ≥
(ε log n/n)/(4

√
(2 + 4ε) log n/n) > (ε/8)

√
log n/n (for all sufficiently small ε), as

claimed.
Let H := {

(
iω, jω

)∣∣i, j ∈ Z}∩K, and let SH := {S ∈ S
∣∣c(S) ∈ H and S ⊆ K}.

Recall that to prove (2) it suffices to show that w.h.p. no element of T contained
in K is empty. Therefore to finish the proof of (2) it suffices to prove that:
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(A) Every element of T contained in K contains an element in SH ; and
(B) W.h.p. no element of SH is empty.

Consider any T ∈ T contained in K. Since every point in K is at distance less
than ω from a point in H, it follows that there exists a point p in H that is at
distance less than ω from c(T ). It follows from the triangle inequality that the
element S ∈ SH such that c(S) = p is contained in T . This proves (A).

To prove (B), we start by bounding |SH |. Let S ∈ SH , and let c(S) = (x, y). We
define �(S) to be the square with vertices (x, y), (x+ω, y), (x, y+ω), (x+ω, y+ω).
If S, S′ ∈ SH , then the interiors of �(S) and �(S′) are disjoint. Since the area
of each such square is ω2, it follows that there are at most a(K)/ω2 = 1/ω2 ≤
(64/ε2)(n/ log n) such squares. Since the map that sends each S ∈ SH to �(S) is
an injection, it follows that |SH | ≤ (64/ε2)(n/ log n).

Fix any S ∈ SH . The area of S is (1 + ε) log n/n, and so the probability that S
is empty is (1− (1 + ε) log n/n))n ∼ n−(1+ε). By the union bound, the probability
that there is an empty element in SH is at most |SH | ·n−(1+ε) ≤ (64/ε2)(n/ log n) ·
n−(1+ε) = o(1). Thus (B) follows.

4. Proof of Theorem 1.2

The lower bound of Theorem 1.2 is an immediate consequence of Theorem 1.1.
Thus it remains to prove the upper bound.

By Proposition 2.3, every convex set contains a rectangle of half its area. Thus
in order to prove Theorem 1.2 it suffices to prove the following:

Theorem 4.1. Let K be a convex set in the plane with area 1. Let Kn be a set of n
points chosen independently and uniformly at random from K. Let MaxRec(Kn)
denote the random variable that measures the largest (in terms of area) empty
rectangle contained in K. Then w.h.p.

MaxRec(Kn) ≤ (2 + o(1))
log n

n
.

The main tool to prove Theorem 4.1 is the following.

Proposition 4.2. Let K be a convex set in the plane with area 1. Let Kn be a set
of n points chosen independently and uniformly at random from K. Let ε > 0 be
given. Then there exists a family R of O(n2) rectangles, each of area (2+ε) log n/n,
with the following property: every rectangle of area (2 + 4ε) log n/n contained in K
contains a rectangle in R.

The proof of Proposition 4.2, although not difficult, is somewhat technical. We
defer it for the moment, and show how Theorem 4.1 (and thus Theorem 1.2) follows
from it.

Proof of Theorem 4.1. Let R be as in the statement of Proposition 4.2. The proba-
bility that a fixed R ∈ R is empty is (1−a(R))n = (1−(2+ε) log n/n))n ∼ n−(2+ε).
Thus it follows from the union bound that the probability that some R ∈ R is empty
is at most O(n2) · n−(2+ε) = O(n−ε). Now every rectangle of area (2 + 4ε) log n/n
contained in K contains a rectangle in R, and so the probability that there is an
empty rectangle of area (2 + 4ε) log n/n is also O(n−ε). �

We devote the rest of the section to the proof of Proposition 4.2.
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Proof of Proposition 4.2. Let ρ denote the diameter of K. The width w(R) (respec-
tively, height h(R)) of a rectangle R is the length of its short (respectively, long)
sides. (If R is a square, then w(R) = h(R)). We recall that the minor axis of a
rectangle is the line that passes through the center of each long side. We say that
the inclination of a rectangle is the angle in [0, π) that the intersection of its minor
axis with the upper halfplane makes with the x-axis. (If the minor axis is parallel
to the x-axis, we let its inclination be 0). Finally, let θ0 := ε(2 + 4ε) log n/(4ρ2n).

Proposition 4.2 is an immediate consequence of Claims A and B below.

Claim A. Every rectangle of area (2+4ε) log n/n contained in K contains a rectan-
gle of area (2 + 2ε) log n/n whose inclination is t · θ0 for some integer t ∈ [0, π/θ0).

Claim B. There is a family R of rectangles with the following properties: (i) each
R ∈ R has area (2+ε) log n/n; (ii) |R| = O(n2); and (iii) every rectangle contained
in K of area (2+2ε) log n/n, whose inclination is tθ0 for some integer t ∈ [0, π/θ0),
contains a rectangle in R.

Proof of Claim A. Let R be a rectangle of area (2+4ε) log n/n contained in K. Let
a, b, c, d be the vertices of R, in the clockwise cyclic order in which they appear as
we traverse the rectangle, so that ab and cd are the long sides of R. See Figure 1.
Let `ab, `bc, `cd, `da be the lines that span the sides ab, bc, cd, and da, respectively.
We rotate `ab clockwise around a until (for the first time) a line perpendicular to the
rotating line reaches an inclination of tθ0, for some integer t ∈ [0, π/θ0). Let φ ≤ θ0
denote the angle that the line `ab got rotated, and let a′ be the point in which the
rotated line intersects the side bc. Proceed similarly with the lines `bc, `cd, and `da,
to define points b′, c′, and d′, respectively. We refer the reader again to Figure 1.

The points in which the segments aa′, bb′, cc′, dd′ intersect (each of aa′ and cc′

intersects each of bb′ and dd′) define a rectangle R′ inscribed in R. Note that
the inclination of R′ satisfies the condition in Claim A. It remains to show that
a(R′) ≥ (2 + 2ε) log n/n.

We start by noting that a(R′) is clearly at least a(R) minus the sums of the
areas of the triangles aa′b, bb′c, cc′d, and dd′a. Since a(aa′b) = a(cc′d) ≥ a(bb′c) =
a(dd′a), it follows that a(R′) ≥ a(R) − 4a(aa′b). Let |a′b| denote the length of
the segment a′b. Then |a′b| = tan(φ) · h(R) < tan(θ0) · h(R) < θ0 · h(R) =
(ε(2+4ε) log n/(4ρ2n))h(R). Thus a(aa′b) = |a′b|h(R)/2 ≤

(
ε(2+4ε) log n/(8ρ2n)

)
·

(h(R))2.
Note that since R ⊆ K and a(R) = (2 + 4ε) log n/n, then the aspect ratio

w(R)/h(R) attains its minimum value when h(R) = ρ (and so w(R) = (2 +
4ε) log n/(ρn)). Thus (2 + 4ε) log n/(ρ2n) ≤ w(R)/h(R). Therefore a(aa′b) ≤
ε ·w(R)h(R)/8 = (ε/8)a(R). Since a(R′) ≥ a(R)− 4a(aa′b), then a(R′) ≥ a(R)(1−
ε/2) = (2 + 4ε)(1 − ε/2) log n/n. Since this last expression is greater than (2 +
2ε) log n/n for all sufficiently small ε, the claim follows. �

Proof of Claim B. Let γ :=
(
2+2ε
2+ε

)1/3
. Let w0 := (2 + 2ε) log n/(ρ · n). Note that,

since ρ is the diameter of K, then w0 is the smallest possible width of a rectangle of
area (2 + 2ε) log n/n contained in K. On the other hand, the largest possible width

of a rectangle of area (2 + 2ε) log n/n contained in K is
√

(2 + 2ε) log n/n. Let M

be the smallest integer m such that γmw0 ≥
√

(2 + 2ε) log n/n. We note for future
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h(R)

d

c
a

b

a′

d′

c′

b′

φ

tan(φ) · h(R)

Figure 1. Finding the rectangle R′ inscribed in R (proof of Claim A).

reference that since γM−1w0 <
√

(2 + 2ε) log n/n, a simple calculation shows that
M = O(log n).

For the rest of the proof we regard points in the plane as column vectors.

Let ∆m
x := γm(γ − 1)w0/2 and ∆m

y := ρ(γ−1)
2γm+3 . For each integer t ∈ [0, π/θ0) we

let At be the rotation matrix

(
cos(tθ0) − sin(tθ0)
sin(tθ0) cos(tθ0)

)
.

Now for each −1 ≤ m ≤M − 2, and each integer t ∈ [0, π/θ0), we define the set
(or grid)

Gm,t :=

{
At
(
i∆m

x

j∆m
y

)∣∣∣∣i, j ∈ Z
} ⋂

K,

and let Rm,t be the set of those rectangles R contained in K such that: (i) the
center of R is in Gm,t; (ii) the inclination of R is tθ0; (iii) w(R) = γmw0; (iv)
h(R) = ρ/γm+3.

Now define

R :=
⋃
m,t

Rm,t,

where the union is over all m ∈ {−1, 0, . . . ,M − 2} and all integers t ∈ [0, π/θ0).
We claim that R satisfies the properties in Claim B.
Property (i) is trivial: every R ∈ R has area w0ρ/γ

3 = (2 + ε) log n/n.
To prove (ii), in order to bound |R| we first estimate |Rm,t| for any two fixed

integers m ∈ {−1, 0, . . . ,M − 2}, t ∈ [0, π/θ0). Let Hm,t be the set of points in
Gm,t that are centers of rectangles in Rm,t. Note that |Hm,t| = |Rm,t|.
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Now consider the map g that sends each point At
(
x
y

)
in Hm,t to the grid

rectangle with vertices At
(
x
y

)
, At

(
x+ ∆m

x

y

)
, At

(
x

y + ∆m
y

)
, and At

(
x+ ∆m

x

y + ∆m
y

)
.

Since every At
(
x
y

)
∈ Hm,t is the center of a (much larger) rectangle (in R) con-

tained in K, it follows that the grid rectangle g
(
At
(
x
y

))
is also contained in K.

Moreover, the interiors of any two distinct such rectangles that are images of g
are disjoint. Each grid rectangle has area ∆m

x ∆m
y . It follows that the number of

grid rectangles that are images under g (and thus also |Hm,t| and |Rm,t|) is at most
a(K)/(∆m

x ∆m
y ) = 1/(∆m

x ∆m
y ) = (4γ3)/((γ−1)2ρw0) = 4γ3n/((2+2ε)(γ−1)2 log n).

Thus for every m ∈ {−1, 0, . . . ,M − 2} and every integer t ∈ [0, π/θ0) we have
|Rm,t| = O(n/ log n). Since M = O(log n) and π/θ0 = (4πρ2n)/(ε(2 + 4ε) log n) =
O(n/ log n), then |R| = (M · dπ/θ0e)|Rm,t| = O(n2). This proves (ii).

To prove (iii), let Q be a rectangle contained in K, of area (2 + 2ε) log n/n,
whose inclination is tθ0 for some integer t ∈ [0, π/θ0). Since w0 is the small-

est possible width of Q, and
√

(2 + 2ε) log n/n ≤ γMw0 is the largest possible
width of Q, it follows that there is an integer m in {−1, 0, . . . ,M − 2} such
that w(Q) ∈ [γm+1w0, γ

m+2w0]. Since a(Q) = w(Q)h(Q) = ρw0, it follows that
h(Q) ∈ [ ρ

γm+2 ,
ρ

γm+1 ].

Now let (x, y) be the point in Gm,t that is closest to the center of Q, and let R be
the rectangle in Rm,t centered at (x, y). Since w(Q) ≥ γm+1w0, it follows that the
distance from (x, y) to each long side of Q is at least γm+1w0/2−∆m

x = γmw0/2.
Similarly, since h(Q)ρ/γm+2, it follows that the distance from (x, y) to each short
side of Q is at least ρ/2γm+2 −∆m

y = ρ/2γm+3. Since w(R) = γmw0 and h(R) =

ρ/γm+3, it follows that R ⊆ Q. �

�

5. Proof of Theorem 1.3

Proof. It suffices to prove the lower bound, since the upper bound for PolyMax(Kn)
follows at once from Theorem 1.2.

We prove the lower bound for the case in which K is the unit square. As we
explain at the end of this proof, the ideas in the proof carry over in a straightforward
way to the general case. We prefer to focus on the case in which K is a square since
the main ideas will not be hidden behind the necessarily more technical details
required in the general case.

We will prove the following. Let δ, ε > 0. Then w.h.p. there is an empty convex
quadrilateral of area at least (1−2δ)(1−ε) log n/n. This clearly implies the required
lower bound.

Let t := 1/((1 − ε) log n/n). For simplicity we assume that t is an integer. We
partition K into t consecutive rectangles (or strips) s1, s2, . . . , st, each of width n/t
and height 1. It follows from Proposition 2.2 that the probability that there are

fewer than nε/(2(1− ε) log n) empty strips is at most 4(1−ε) log(n)
nε .

We now estimate the probability that there exist two consecutive strips that are
empty. The combined area of any two consecutive strips is 2(1− ε) log n/n, and so
the probability that it is empty is ∼ n−2−2ε. There are t − 1 pairs of consecutive
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strips, and so it follows from the union bound that the probability that one such
consecutive pair is empty is smaller than t · n−2−2ε = n−1−ε/((1− ε) log n).

Let e1, e2, . . . , ep denote the empty strips, labeled so that ei+1 is to the right of
ei for i = 1, . . . , p − 1. Suppose for simplicity that p = 4q + 2 for some integer q.
Now for j = 1, 2, . . . , q, let lj1, l

j
2 (respectively, rj1, r

j
2) be the points with the largest

(respectively, smallest) x-coordinates that are to the left (respectively, to the right)
of the strip e4j .

Let us call A the event that for all j 6= k, the sets {lj1, l
j
2, r

j
1, r

j
2} and {lk1 , lk2 , rk1 , rk2}

are disjoint (the probability that A does not occur is at most the probability that
one consecutive pair of strips is empty, that is, smaller than n−1−ε/((1− ε) log n)).
Since the y-coordinates of the points in Kn are independent of their x-coordinates,
it follows that for each j = 1, . . . , q, if A occurs then the following occurs with
probability δ4: the points rj1 and lj1 have y-coordinates larger than 1 − δ, and the

points rj1 and lj1 have y-coordinates smaller than δ. Therefore for each such j, with

probability δ4 the points lj1, l
j
2, r

j
1, and rj2 form an empty convex quadrilateral of

area at least (1− 2δ) · (1− ε) log n/n.
Thus (i) w.h.p. the number p of empty strips is at least nε/(2(1− ε) log n), and

so w.h.p. q = (p − 2)/4 is Ω(nε/ log n); (ii) w.h.p. the event A occurs; and (iii) if

A occurs, then for each j = 1, 2, . . . , q, with probability δ4 the points lj1, l
j
2, r

j
1, and

rj2 form an empty convex quadrilateral of area at least (1 − 2δ) · (1 − ε) log n/n.
Clearly (i), (ii), and (iii) combine to prove that w.h.p. there is an empty convex
quadrilateral of area at least (1− 2δ) · (1− ε) log n/n, as claimed.

For the general case, very few adaptations of substance are needed. For instance,
one may start by approximating K with a convex set T contained in K whose
boundary is smooth, and whose area is arbitrarily close to the area of K (the
smoothness of the boundary of T is not necessary, but it simplifies somewhat the
ensuing discussion). Then, as in the unit square case, one partitions T into t vertical
strips of equal area (thus each vertical strip is bounded by two vertical segments
and by two pieces of the boundary of T ). All the arguments from the unit square
carry over so far to this case: the estimates for the number of empty strips and
the probability that two of them are consecutive are the same. The only technical
complication arises when one needs to do the equivalent step of choosing points rj1
and lj1 with large y-coordinates (and points rj2 and lj2 with small y-coordinates): in
this general case, one needs to define, for each empty strip, small regions at the
top and at the bottom of its neighboring strips (each of these small regions must
have area δ · (1 − ε) log n/n, as in the unit square case). Taking care rigorously
of the details is of course not a deep difficulty (here is where the smoothness of
the boundary of T comes handy), but the simplicity of the basic ideas seems much
more apparent by focusing on the unit square case. �

6. Concluding Remarks

We conjecture that in both Theorems 1.2 and 1.3 the upper bounds should match
the lower bounds (1 + o(1)) log n/n, as in Theorem 1.1.

It is worth noting that in none of the main theorems we make full use of the
convexity assumption for K and L. Actually, all these results hold as long as K
is (for instance) a finite union of convex sets. The convexity of L is only required
so that we can invoke Proposition 2.3, but for any fixed (not necessarily convex)
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bounded L one can obviously find inscribed and circumscribed rectangles that ap-
proximate its area within constant factors. Thus the proofs of the main theorems
can be adapted to prove the following:

Theorem 6.1. Let K,L be sets in the plane, where K is the finite union of convex
sets and L is bounded. Suppose for normalization purposes that the area of K is 1.
Let Kn be a set of n points chosen independently and uniformly at random from K.
Let MaxL(Kn) denote the random variable that measures the largest (in terms of
area) hole that is homothetic to L; let Max(Kn) denote the random variable that
measures the largest (in terms of area) convex hole; and let PolyMax(Kn) denote
the random variable that measures the largest (in terms of area) convex polygon
with vertices in Kn. Then w.h.p.

MaxL(Kn) = Θ

(
log n

n

)
,

Max(Kn) = Θ

(
log n

n

)
, and

PolyMax(Kn) = Θ

(
log n

n

)
.

We also note that all these results and their proofs carry over easily to the
d-dimensional case, although the multiplicative constants one obtains depend on d.
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